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ABSTRACT

KEYWORDS: LTE Positioning, TDoA, Adaptive Kalman Filter

With the advent of location based services, the need for accurate positioning of mobile

stations has been growing. Global Positioning Systems (GPS) using satellites can de-

liver very good estimates of position under certain conditions. However in urban and

indoor areas, positioning with GPS is almost impossible. The new cellular wireless

communication systems, like the OFDM based 3GPP-LTE, provide excellent coverage

in urban and most indoor environments . One of the techniques used in position es-

timation is Kalman Filtering using Time Difference of Arrival (TDoA) measurements

of the 3GPP-LTE signals. However, this approach assumes the knowledge of the mo-

bility model and statistics of the Mobile Station (MS). To overcome this, we propose

an adaptive Kalman filter algorithm for localization which does not assume any infor-

mation about the statistics of the MS mobility model. First we develop an error model

for Time of Arrival (ToA) and Time Difference of Arrival (TDoA) under certain typical

scenarios. We then present our algorithm and evaluate the performance of the algorithm

under these different scenarios.
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CHAPTER 1

INTRODUCTION

Services and applications based on accurate knowledge of user position, such as location-

sensitive billing, fraud detection, recommendation systems based on location etc have

become more and more prominent. These location requirements can be met by global

navigation satellite systems. However in some environments, the GPS signals may be

too weak to detect or much too scattered to provide required accuracy.(Gentner et al.,

2012) Several methods are available to provide good coverage in GPS critical envi-

ronment, eg. cell identification (CID), received signal strength (RSS), angle of arrival

(AoA), time of arrival (ToA) and time difference of arrival (TDoA). The LTE stan-

dard has provided support for localization. One such method is the Enhanced Cell

ID (E-CID) . Another UE-assisted method is the observed time-difference of arrival

(OTDoA). In 3GPP-LTE Rel.9, the positioning reference signal (PRS) is introduced to

enhance the positioning measurements in combination with low interference subframes,

to ensure sufficiently high signal quality and detection probability. The reference signal

PRS is used by the UE to measure the time-difference of arrival, which is referred to as

RSTD (Reference Signal Time Difference). (del Peral-Rosado et al., 2012).

In this thesis we focus on developing a Kalman based approach to solving the lo-

calization problem using RSTD. This type of algorithms as in (Klee et al., 2006) and

(Nájar and Vidal, 2001) assumes certain statistics of the mobility of the mobile station.

However in practice, such information may not be available. We overcome this prob-

lem by developing an adaptive Kalman filter algorithm which assumes no knowledge of

the mobile station’s mobility. We then demonstrate that even without knowledge of the

mobile station’s mobility model, this algorithm can deliver better results than a static

positioning algorithm.

This thesis is organised as follows. In the next chapter we introduce ToA and TDoA

and explain how they can be used to find a position estimate. We then develop an error

model for ToA and TDoA under certain typical scenarios encountered in the LTE en-

vrironment. Chapter III gives an overview of Kalman filter and its approach to localiza-

tion algorithms. In Chapter IV, we present our algorithm and evaluate its performance.



CHAPTER 2

ToA and TDoA: Introduction and Error Models

The key idea behind most localization algorithms is trilateration. It is a method to

determine the position of an object based on simultaneous range measurements from

three or more known non-collinear locations. For example, in two dimension space, if a

point lies on the boundary of two circles simultaneously, then the circle centres and the

two radii provide sufficient information to narrow the possible locations down to two.

Additional information can narrow the possibilities down to a unique location.

Figure 2.1: Trilateration

Another idea is multi-lateration, which is a technique based on the difference in

distances to two or more stations at known locations that broadcast signals at known

times. Difference in distances gives us a hyperbolic locus under 2D geometry. Two such

measurements results in two curves which intersect giving a small number of possible

locations. Some common metrics associated with the localization process are Time of

Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA) and RSSI

(Received Signal Strength Indicator). We will concern ourselves only with the first two

metrics in this thesis.



2.1 Preliminaries

2.1.1 Definitions

ToA: This measurement refers to the time taken for a radio signal to travel from a trans-

mitter to a receiver. Using this measurement and with the knowledge of speed of light

in the medium of propagation, we can calculate the distance between the transmitter

and the receiver. Three or more such measurements can be used to do localization by

trilateration or multi-lateration.

TDoA: A TDoA measurement refers to the difference in travel times of a radio signal

from two distinct transmitters to a single receiver. This can then be used to do localiza-

tion by muti-lateration.

2.1.2 ToA and TDoA Errors

In Non-Line of Sight (NLoS) environments, the ToA errors may be caused by NLoS

effect, presence of multi-path components and/or synchronization strategies. In this

work, we focus exclusively on ToA and TDoA errors as a result of multi-path and

NLoS scenario. We define the ToA error of a path as the time difference of the path and

the Geometric Line of Sight (GLos) path.

As pointed out by (Wang et al., 2009), in geolocations the First Path (FP) and the

Strongest Path(SP) attract the most attention. The FP is closest to the GLoS, whereas

the SP is the most easiest to be detect or extract from the channel profiles. We can

therefore view FP ToA error as a lower bound on the signal’s ToA error and the ToA

error of SP as indicative of the upper bound on the ToA error. The ToA error of the FP

is given by

εFP
ToA1

= εFP
1 = ToAFP

1 − ToAGLoS
1 (2.1)

where ToAFP
1 is the arriving time of the first peak, ToAGLoS

1 is the arriving time of the

GLoS, and the subscript number ′1′ stands for the index of the channel from transmitter

to receiver. Similarly, the ToA error of SP is defined.

εSPToA1
= εSP1 = ToASP

1 − ToAGLoS
1 (2.2)

x



If another transmitter is taken into account, the TDoA error can be derived for FP and

SP respectively as

εFP
TDoA21

= (ToAFP
2 − ToAFP

1 )− (ToAGLoS
2 − ToAGLoS

1 ) = εFP
ToA2
− εFP

ToA1
(2.3)

εSPTDoA21
= (ToASP

2 − ToASP
1 )− (ToAGLoS

2 − ToAGLoS
1 ) = εSPToA2

− εSPToA1
(2.4)

2.2 Methodology

We study the ToA and TDoA errors under different channel conditions mentioned in the

WINNER Phase II channel models using code in (L. Hentila and Alatossava, 2007) and

also under the extended ITU Pedestrian B and Vehicular Channel A from (Sørensen and

Frederiksen, 2005). We build ToA error models for B1, B2, C1 and C3 scenario of the

WINNER channel specifications and for the Extended ITU Ped B and Veh A channel.

2.2.1 Simulation under WINNER package

The WINNER channel models are chosen because their higher complexity provides

more flexibility on the simulation test. These models increase the number of paths (i.e.

up to 20 paths) leading to rich power delay profiles that can help us assess different

situations. The WINNER package describes several channel scenarios. Depending

on the scenario selected, large-scale parameters, such as delay spread, angle spread

or shadow fading, are randomly generated. The small-scale parameters such as delay,

power, AoA and AoD are randomly distributed for each cluster of propagation rays (i.e.

rays with similar delay and directions). Finally, the channel realisations are generated

according to the random initial phases of the scatterers.(del Peral-Rosado et al., 2012)

The simulation is simplified to a single link between transmitter and receiver with

single isotropic antennas. For each scenario, we generate numerous channel realisations

with different BS position and MS position and velocity. For each such realisation, the

ToA error of the first non-LoS path relative to the GLoS path is noted. Similarly the

ToA error of the strongest path is observed. An assumption we make here is that we

have perfect knowledge of the position of FP and SP and the relative strengths of each

path. We make this assumption because our purpose here is to study the ToA and TDoA

xi



errors under various channel conditions purely due to geometry and not due to errors

introduced by the receiver.

The code in (L. Hentila and Alatossava, 2007) exposes the interfaces required to

do the above mentioned simulations for each scenario. We obtained 40000 channel

realisations for each scenario with BS-MS distances varying from approximately 50m

to 600m. For the relative strength of each path, we include the effects of path loss and

shadowing.

2.2.2 Simulation for Extended ITU Ped B and Veh A

We use the Extended ITU Vehicular A and Pedestrian B channel listed in (Sørensen and

Frederiksen, 2005).We study the tap delay distribution by adding an artificial Gaussian-

distributed delay to the fixed tap delay positions. This does not intend to model a

realistic variation of the taps delays, but to assess the impact of the delay variation

statistically. We define the tap delay variations τk(j) as

τk(j) ∼ N(τ k, σ
2
T ) (2.5)

where j is the channel realisation, τ k is the mean tap delay defined by the channel

model, and σT is the standard deviation of the artificial delays. We use a standard

deviation σT = 20m. Under this, like the previous case we generate 40000 realisations

of the channel and fit a probability distribution for FP and SP ToA error. This is done

separately for the Ped B and Veh A channel

2.3 ToA Error Models

We now present the ToA error models for FP and SP for each of the above channel

scenarios. After fitting a distribution, we use a quantile-quantile plot to view how good

our model approximates the sample data.

xii



2.3.1 B1 Scenario - Urban Micro Cell

In urban micro-cell scenarios the height of both the antenna at the BS and at the MS is

assumed to be well below the tops of surrounding buildings. Both antennas are assumed

to be outdoors in an area where streets are laid out in a Manhattan-like grid. The streets

in the coverage area are classified as ’the main street’, where there is the LOS from all

locations to the BS, with the possible exception in cases where the LOS is temporar-

ily blocked by traffic (e.g. trucks and busses) on the street. Streets that intersect the

main street are referred to as perpendicular streets, and those that run parallel to it are

referred to as parallel streets. This scenario is defined for both the LOS and the NLOS

cases. Cell shapes are defined by the surrounding buildings, and energy reaches NLOS

streets as a result of the propagation around corners, through buildings, and between

them.(L. Hentila and Alatossava, 2007)

Table 2.1: B1 Scenario: Statistical parameters of ToA Error

Case Distribution Parameters Mean(m) StandardDeviation(m)
FP Weibull λ = 13.51, k = 0.92 14.06 15.31
SP Weibull λ = 23.32, k = 0.98 23.55 24.11

Figure 2.2: B1 Scenario: CDF of FP and corresponding Weibull fit

An insight to the match between ToA error and our fit Weibull distribution is promised

by the quantile-quantile plot, which shows the similarity of two distributions. The

xiii



Figure 2.3: B1 Scenario: CDF of SP and corresponding Weibull fit

Figure 2.4: B1 Scenario: Quantile-Quantile plot of FP ToA error vs the fit Weibull
distribution

xiv



Figure 2.5: B1 Scenario: Quantile-Quantile plot of SP ToA error vs the fit Weibull
distribution

quantile-quantile plot is a comparison between two statistic sets. The linearity of the

samples in the plot determines the similarity of two distributions. In other words, if two

serials of samples have the same distribution, even with different means and variances,

the samples should locate in a straight line. Fig.2.4 presents the quantile-quantile plot

for the ToA error of FP with respect to our fit Weibull distribution. The y axis represents

the theoretical quantiles from the distribution, and the x axis gives the quantiles of the

measured data. However, the tail at the right move below the line, which indicates the

unsimilarity between the model and the measured data. Apparently our Weibull distri-

bution could model the ToA error of FP except for the tail with low probabilities. In

other words, the model will generate smaller ToA errors than the true levels as they are.

Similarly Fig. 2.5 shows the corresponding plot for SP.

2.3.2 Extended ITU Ped B Channel

Table 2.2: Extended ITU Ped B: Statistical parameters of ToA Error

Case Distribution Parameters Mean(m) StandardDeviation(m)
FP Nakagami µ = 0.58, ω = 396.23 16.31 11.4
SP Kernel Density Kernel=Normal,BW = 4.25 49.44 28.9

The quantile-quantile plot of our Nakagami fit for ToA error as seen in Fig.2.8 and

xv



Figure 2.6: Ex ITU Ped B: CDF of FP and corresponding Weibull fit

Figure 2.7: Ex ITU Ped B: CDF of SP and corresponding Kernel distribution fit
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Figure 2.8: Ex ITU Ped B: Quantile-Quantile plot of FP ToA error vs the fit Weibull
distribution

Figure 2.9: Ex ITU Ped B: Quantile-Quantile plot of SP ToA error vs the fit Kernel
distribution

xvii



KDE fit for SP as seen in Fig. 2.9 suggests that the fit is excellent except possibly for

a few outliers.

2.3.3 Extended ITU Veh A Channel

Table 2.3: Extended ITU Ped B: Statistical parameters of ToA Error

Case Distribution Parameters Mean(m) StandardDeviation(m)
FP Nakagami µ = 0.58, ω = 471.1 17.77 155.34
SP Kernel Density Kernel=Normal,BW = 6.76 66.15 41.22

Figure 2.10: Ex ITU Veh A: CDF of FP and corresponding Weibull fit

The quantile-quantile plot of our Nakagami fit for ToA error as seen in Fig.2.12 and

KDE fit for SP as seen in Fig. 2.13 suggests that the fit is excellent except possibly for

a few outliers.

2.3.4 Other scenarios

We repeat the similar procedure for the B2, C1 and C3 scenario as mentioned by WIN-

NER. We present the results here

xviii



Figure 2.11: Ex ITU Veh A: CDF of SP and corresponding Kernel distributionl fit

Figure 2.12: Ex ITU Veh A: Quantile-Quantile plot of FP ToA error vs the fit Weibull
distribution

xix



Figure 2.13: Ex ITU Veh A: Quantile-Quantile plot of SP ToA error vs the fit Kernell
distribution

B2 Scenario:Bad Urban Macro Cell

Bad urban micro-cell scenarios are identical in layout to Urban Micro-cell scenarios, as

described above. However, propagation characteristics are such that multipath energy

from distant objects can be received at some locations. This energy can be clustered or

distinct, has significant power (up to within a few dB of the earliest received energy),

and exhibits long excess delays. Such situations typically occur when there are clear

radio paths across open areas, such as large squares, parks or bodies of water.

Table 2.4: B2 Scenario: Statistical parameters of ToA Error

Case Distribution Parameters Mean(m) StandardDeviation(m)
FP Weibull λ = 14.36, k = 1.03 14.16 13.7
SP Weibull λ = 115.38, k = 1.38 105.4 77.26

C1 Scenario: Suburban

In suburban macro-cells base stations are located well above the rooftops to allow wide

area coverage, and mobile stations are outdoors at street level. Buildings are typically

low residential detached houses with one or two floors, or blocks of flats with a few

floors. Occasional open areas such as parks or playgrounds between the houses make

xx



the environment rather open. Streets do not form urban-like regular strict grid structure.

Vegetation is modest.

Table 2.5: C1 Scenario: Statistical parameters of ToA Error

Case Distribution Parameters Mean(m) StandardDeviation(m)
FP Weibull λ = 11.00, k = 0.71 13.69 19.61
SP Weibull λ = 38.15, k = 0.73 46.65 65.38

C3 Scenario: Bad Urban Macro Cell

Bad urban environment describes cities with buildings with distinctly inhomogeneous

heights or densities, and results to a clearly dispersive propagation environment in de-

lay and angular domain. The inhomogeneties in city structure can be e.g. due to large

water areas separating the built-up areas, or the high-rise skyscrapers in otherwise typ-

ical urban environment. Increased delay and angular dispersion can also be caused by

mountains surrounding the city. Base station is typically located above the average

rooftop level, but within its coverage range there can also be several high-rise build-

ings exceeding the base station height. From modelling point of view this differs from

typical urban macro-cell by an additional far scatterer cluster.

Table 2.6: C3 Scenario: Statistical parameters of ToA Error

Case Distribution Parameters Mean(m) StandardDeviation(m)
FP Weibull λ = 9.64, k = 0.89 10.18 11.42
SP Weibull λ = 47.96, k = 0.79 54.56 69.2

2.4 TDoA Error Models

The LTE framework, as mentioned early provides support for localization through

TDoA. Hence for the next part of this thesis, which involves localization under LTE,

we develop appropriate TDoA error models using the above ToA error models. We at-

tempt to closely approximate TDoA error through a Gaussian Distribution because the

Kalman filter algorithm assumes Gaussian noise models. We consider a three BS layout

xxi



where TDoA is measured with respect to one common BS. Therefore using equation

(2.3), we write (2.6) and (2.7). It can be seen clearly that the two TDoA error values are

correlated. We intend to capture this correlation by fitting a multidimensional Gaussian

distribution.

εFP
TDoA21

= εFP
ToA2
− εFP

ToA1
(2.6)

εFP
TDoA31

= εFP
ToA3
− εFP

ToA1
(2.7)

A two dimensional Gaussian distribution fit on εFP
TDoA21

and εFP
TDoA31

will give us a co-

variance matrix which will give us the correlation between the two variables and also

the variance of each individually.

Given two independent random processes a1 and a2 from the same distribution with

mean µ and standard deviation σ, their subtraction will be a zero mean process with the

standard deviation of
√

2σ, which approximately holds for the ToA error and TDoA

error models we have developed.

Note: We only do this exercise for the B1 scenario, Extended ITU Ped B and Veh A

channels. This is because these three scenarios are the ones we use to test our localiza-

tion algorithms. Similar models can be built for the other channel scenarios and used

for testing the localization algorithms but in this thesis we restrict ourselves to these

three scenarios.

2.4.1 B1 Scenario: Urban Microcell

The covariance column in table 2.7 gives the covariance between εFP
TDoA21

and εFP
TDoA31

as per equations (2.6) and (2.7). The mean column refers to the mean of εFP
TDoA21

or

εFP
TDoA31

as they are identically distributed. Similarly the standard deviation column

refers to the standard deviation of εFP
TDoA21

or εFP
TDoA31

Table 2.7: B1 Scenario: Gaussian statistical parameters of TDoA Error

Case Mean(m) StandardDeviation(m) Covariance(m2)
FP 0 21.61 229.7
SP 0 34.37 600.4
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Fig. 2.14 shows the joint probability density function of εFP
TDoA21

and εFP
TDoA31

using the

Gaussian distribution described in table 2.7

Figure 2.14: B1 Scenario: Joint probability density function based on Gaussian model
of FP in table 2.7

2.4.2 Extended ITU Ped B Channel

Similar to the above B1 case, we develop a Gaussian model for TDoA error under this

scenario

Table 2.8: Extended ITU Ped B: Gaussian statistical parameters of TDoA Error

Case Mean(m) StandardDeviation(m) Covariance(m2)
FP 0 16.23 133.55
SP 0 40.72 813.9

2.4.3 Extended ITU Veh A Channel

Table 2.9 gives the parameters of the Gaussian distribution under this scenario
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Table 2.9: Extended ITU Veh A: Gaussian statistical parameters of TDoA Error

Case Mean(m) StandardDeviation(m) Covariance(m2)
FP 0 17.54 153.44
SP 0 58.55 1715.3

2.5 Final Remarks

The ToA and TDoA error models we have developed above play an important role in

defining the environment in which we carry tests for our localization algorithms. We use

these models to obtain ToA error values as seen by the MS. The TDoA joint Gaussian

model is used as the noise covariance matrix in positioning algorithms.
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CHAPTER 3

Introduction to Kalman Filter and Application in

Localization

The Kalman filter is an algorithm that uses a series of measurements observed over

time, containing noise to produce estimates of unknown variables that tend to be more

precise than those based on a single measurement alone. The Kalman Filter uses a

state transition model and a set of sequential measurements to produce an estimate

of the system’s state sequence. It was originally developed as a linear filter but can

be extended to non-linear scenarios. We now give a mathematical formulation of the

Extended Kalman Filter. See (Terejanu)

3.1 Model Formulation and Assumptions

Consider the following non-linear system described by the difference equation and the

observation model with additive noise.

xk = f(xk−1) + wk−1 (3.1)

zk = h(xk) + vk (3.2)

The initial state x0 is a random vector with known mean µ0 = E[x0] and covariance

P0 = E[(x0 − µ0)(x0 − µ0)
T ]. We assume that the random vector wk captures un-

certainities in the model and vk denotes the measurement noise. Both are temporally

uncorrelated (white noise), zero-mean random sequences with known covariances, and

both of them are uncorrelated with the initial state x0.

E[wk] = 0 E[wkw
T
k ] = Qk E[wkw

T
j ] = 0 for k 6= j E[wkx

T
0 ] = 0 for all k

(3.3)

E[vk] = 0 E[vkv
T
k ] = Qk E[vkv

T
j ] = 0 for k 6= j E[vkx

T
0 ] = 0 for all k

(3.4)



Also the two vectors wk and vk are uncorrelated

E[wkv
T
j ] = 0 for all k and j (3.5)

Vectorial functions f(.) and (.) are assumed to be C1 functions (the function and it’s

first derivative are continuous on the given domain)

Dimension and Description of variables

xk n× 1 - State Vector

wk n× 1 - Process Noise Vector

zk m× 1 - Observation Vector

vk m× 1 - Measurement Noise Vector

f(.) n× 1 - Process Vector function

h(.) m× 1 - Observation Vector function

Qk n× n - Process Noise Covariance Matrix

Rk n× 1 - Measurement Noise Covariance Matrix

3.2 Extended Kalman Filter Algorithm

Here we present the stages of the EKF as per the model defined in section 3.1

Initialization:

xa0 = µ0 with error covariance P0

Model Forecast Step/Predictor:

xfk ≈ f(xak−1)

P f
k = Jf (xak−1)Pk−1J

T
f (xak−1) +Qk−1

Data Assimilation Step/Corrector:

xak = xfk +Kk(zk − h(xfk))

Kk = P f
k J

T
h (xfk)

(
Jh(xfk)P f

k J
T
h (xfk) +Rk

)−1
Pk =

(
I −KkJh(xfk)

)
P f
k

where Jf is the Jacobian of f(.) and Jh is the Jacobian of h(.)
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3.3 Application in Localization

3.3.1 Existing Method

As discussed in (Nájar and Vidal, 2001), the use of the Kalman filter allows tracking the

position and speed of the UE, yielding an accurate location prediction algorithm. The

state transition equation is defined as

s(k + 1) = As(k) + w(k) (3.6)

where s(k) = [x(k), y(k), vx(k), vy(k)]T is the dynamic state vector, where its compo-

nents represent the UE position and its speed in two-dimensional Cartesian coordinates

at discrete times k. The matrix A is the state matrix with ∆ equal to the time interval

between samples

A =


1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

 (3.7)

and w(k) = [0, 0, wx(k), wy(k)]T is the disturbance transition vector defined as a two

dimensional random speed vector with covariance Q.

The observation equation is defined as (Assuming a 3 BS Scenario)

z(k) = h(s(k)) + v(k) (3.8)

where z(k) = [TDoA21, TDoA31]
T represents the actual TDoA values of the MS-BS

system, h(.) is the non-linear function that calculates the theoretical geometric TDoA

values from s(k).

h(s(k)) =

√(x(k)− xBS2)
2 + (y(k)− yBS2)

2 −
√

(x(k)− xBS1)
2 + (y(k)− yBS1)

2√
(x(k)− xBS3)

2 + (y(k)− yBS3)
2 −

√
(x(k)− xBS1)

2 + (y(k)− yBS1)
2

 /c
(3.9)

where xBSj
and yBSj

represents the position of BS j in a coordinate system where x(k) and y(k)
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represents the position of MS, c is the speed of light and v(k) is the noise term which

captures errors in TDoA with covariance R.

Now once the model has been set up, we can run the Extended Kalman Filter as and

when measurements are obtained to estimate the position of the MS at each instant.

3.3.2 Problem Statement

In the above method, we assume the knowledge of the statistics of the disturbance

transition vector w(k) and the statistics of the TDoA noise vector v(k). Also taken

for granted is the correctness of the model as defined by equation (3.1). As discussed

in the previous chapter, it may be possible to model the statistics of the TDoA noise

vector but the statistics of the disturbance transition vector is not easy to obtain. The

covariance of w(k) depends on the acceleration of the MS which itself might be varying

in an unknown fashion.

We therefore propose an alternate formulation of this localization problem and de-

velop an adaptive Kalman filter algorithm which does not assume the knowledge of the

statistics of w(k) and v(k).

Alternate Formulation of Existing Localization Problem

There are two ways we tackle the problem mentioned above. The first approach is

to retain the state and observation equations discussed under subsection 3.3.1 and run

our developed adaptive Kalman Filter algorithm on this model.Note: This formulation

differs from the one under subsection 3.3.1 by the fact that we do not know the statistics

of w(k) and v(k).

However there is a second approach. Since our TDoA measurements are explicit

measurements of x(k) and y(k), using vx(k) and vy(k) in the state description seems

superfluous. We instead use a state transition equation as shown in equation (3.10).

s(k + 1) = As(k) + w(k) (3.10)

where s(k) = [x(k), y(k)]T is the dynamic state vector, where its components represent

xxviii



the UE position in two-dimensional Cartesian coordinates at discrete times k. The

matrix A is the state matrix

A =

1 0

0 1

 (3.11)

and w(k) = [wx(k), wy(k)]T is the disturbance transition vector defined as a two di-

mensional random position vector with unknown covariance Q. We retain the same

observation equation as under 3.3.1. The vx(k)∆ and vy(k)∆ are subsumed in w(k).

This model is equivalent to saying that the MS at every step can be found in a region

around its previous position. Under this new formulation we test our adaptive Kalman

Filter algorithm.

Important: Our adaptive Kalman filter algorithm has been tested under both for-

mulations and gives identical results. However in this thesis, we present the results as

obtained under the second formulation
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CHAPTER 4

Adaptive Kalman Filter Algorithm for Localization

4.1 Preliminaries

We propose to use an Adaptive Kalman Filter of the type used by (Zhang et al.) to solve

the localization problem we saw under 3.3.2. However the algorithm proposed there

has been developed for a linear model. However we deal with a non-linear observation

equation in the localization problem. We argue that the method used in (Zhang et al.)

ccan be extended to the non-linear case too. We use the same notation developed earlier

for the Extended Kalman Filter (See Sections 3.1 and 3.2).

Prior Innovation: zk − h(xfk)

Posterior Innovation: zk − h(xak)

4.1.1 Prior Innovation

As shown in the linear Kalman filter case by (Zhang et al.), we demonstrate that the

prior innovation has zero mean and has covariance HP f
kH

T +Rk where H = Jh(xfk).

h(xk) = h(xfk) + Jh(xfk)(xk − xfk) +H.O.T. (dropped)

zk − h(xfk) = zk − h(xk) + Jh(xfk)(xk − xfk)

= vk + Jh(xfk)(xk − xfk)

At the kth, xak−1 is fixed and from the forecast step, we can see that xfk is fixed.

Therefore we conclude that H = Jh(xfk) is a constant.

We now write

zk − h(xfk) = vk +H(xk − xfk) (4.1)

Taking expectation on both sides



E[zk − h(xfk)] = E[vk] +HE[xk − xfk ] (4.2)

We now try and evaluate E[xk − xfk ]. We start from

f(xk−1) = f(xak−1) + Jf (xak−1)ek−1 (4.3)

where ek−1 = xk−1 − xak−1 to obtain

xfk = f(xak−1) = f(xk−1)− Jf (xak−1)ek−1 (4.4)

Combining (3.1) with (4.4) we arrive at

xk − xfk = wk−1 + Jf (xak−1)ek−1 (4.5)

Under EKF, we have E[ek−1] = 0 and E[vk] = 0. Applying this to (4.5) gives

E[zk − h(xfk)] = 0 (4.6)

We know find the covariance of the prior innovation

E

[(
zk − h(xfk)

)(
zk − h(xfk)

)T]
= E

[(
vk +H(xk − xfk)

)(
vk +H(xk − xfk)

)T]
= Rk +HE

[
(xk − xfk)(xk − xfk)T

]
HT

= Rk +HP f
kH

T

Therefore

E

[(
zk − h(xfk)

)(
zk − h(xfk)

)T]
= Rk +HP f

kH
T (4.7)

From equations (4.6) and (4.7), we can see that the prior innovation has zero mean and

variance Rk +HP f
kH

T

4.1.2 Posterior Innovation

As shown in the linear Kalman filter case by (Zhang et al.), we demonstrate that the

posterior innovation has zero mean and has covarianceRkS
−1Rk where S = HP f

kH
T +
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Rk.

We begin at

xak = xfk +Kk

(
zk − h(xfk)

)
which follows from the data assimilation step of the EKF algorithm in section 3.2

h(xak) = h
(
xfk +Kk

(
zk − h(xfk)

))
Writing the Taylor series expansion gives us

h(xak) = h(xfk) + Jh(xfk)
(
Kk

(
zk − h(xfk)

))
Using this in our definition of posterior innovation

zk − h(xak) =
(
zk − h(xfk)

)
−HKk

(
zk − h(xfk)

)
which simplifies further to

zk − h(xak) = (I −HKk)
(
zk − h(xfk)

)
(4.8)

We can clearly see that (I −HKk) is a constant matrix. Therefore the statistics of the

posterior innovation are nothing but the statistics of the prior innovation modified by a

constant matrix.

From equation (4.6), we conclude that

E[zk − h(xak)] = 0 (4.9)

Using (4.7) and (4.8),

E
[
(zk − h(xak)) (zk − h(xak))T

]
= (I −HKk)S (I −HKk)T (4.10)

where S = Rk + HP f
kH

T , the covariance of the prior innovation. Substituting for Kk

from the data assimilation step of the EKF Algo (See section 3.2) in (I −HKk)
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(I −HKk) = I −HP f
kH

T
(
HP f

kH
T +Rk

)−1
(4.11)

Recognizing HP f
kH

T = S −Rk and substituting in equation (4.11)

(I −HKk) = I − (S −Rk)S−1 = RkS
−1 (4.12)

Substituting (4.12) in (4.10), we finally arrive at

E
[
(zk − h(xak)) (zk − h(xak))T

]
= RkS

−1Rk (4.13)

From equations (4.9) and (4.13), we can see that the posterior innovation has zero mean

and variance RkS
−1Rk

In the next section we present the Adaptive Kalman Filter Algorithm

4.2 The Adaptive Kalman Filter Algorithm (With In-

flated Noise Covariance)

We follow the same notation followed in section 3.1.

Inputs to the kth run of the algorithm:

xak−1, Pk−1, Q, R, h(.), Jh(.) (R and Q are not true values but initial values)

Output at the end of kth run of the algorithm:

xak, Pk

User defined values for the kth run of the algorithm:

τProcess, τMeasurement

1. Define f(x) = x and calculate Jf (.)

2. Run the model forecast steps from 3.2

3. Calculate S = HP f
kH

T +R where H = Jh(xfk). Also compute the prior innova-
tion I− = zk − h(xfk)

4. We compute the normalized prior innovation vector (normalized by its variance)
Ĩ−i = |I−i |/

√
Sii ∀i. If Ĩ−i > τProcess, then i ∈ Out where Out holds the outlier

indices.

5. We assume that the outliers are caused by unknown process noise. So we inflate
each diagonal element of Qinitial by an equal amount ∆Q ≥ 0 such that each
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diagonal element of P f
k is inflated by ∆Q. Consequently S is inflated by ∆S =

H(∆Q)HT and Ĩ−i = |I−i |/
√
Sii + ∆Sii) ≤ τProcess ∀i where

∆Sii =
n∑

j=1

H2
ij∆Q = (H(i, :).H(i, :)) ([∆Q, ∆Q ...., ∆Q])T

where . denotes dot product. ∆Q is the minimum possible value that satisfies

∆Sii =
n∑

j=1

H2
ij∆Q ≥

(
|I−i |/τprocess

)2 − Sii∀i ∈ Out

We therefore get Q = Q+ (∆Q)In×n

6. Use Q obtained in the previous step to recalculate P f
k and S

7. Run the data assimilation step of the EKF algorithm from section 3.2

8. Calculate T = RS−1R and the posterior innovation I = zk − h(xak)

9. We compute the normalized posterior innovation vector (normalized by its vari-
ance) Ĩi = |Ii|/

√
Tii ∀i. If Ĩi > τMeasurement, then i ∈MeasOut where MeasOut

holds the measurement outlier indices, indicating abnormal measurements.

10. Now, we can separate the measurement "noise" elements from the process "noise"
elements. We denote ProcOut = Out\MeasOut = {i : i ∈ Out and i /∈
MeasOut} as the set difference between Out and MeasOut.

11. If MeasOut is not empty, we will reinflate Q not for all i ∈ Out but ∀i ∈
ProcOut. We use a linear programming approach to solve the optimization prob-
lem and setQ = Q+∆Qwhere ∆Q is a diagonal matrix with entries correspond-
ing to the solution of the following optimization problem.

min
n∑

i=1

∆Qi

s.t ∆Sii =
n∑

j=1

H2
ij∆Q ≥

(
|I−i |/τProcess

)2 − Sii∀i ∈ ProcOut

∆Q1 ≥ 0, ∆Q2 ≥ 0, ....∆Qn ≥ 0

12. As for the measurements, we "inflate"R in this way: ∀i ∈MeasOut, Rii is inflated to λiRii.
As a result, T = RS−1R is also inflated such that the ith diagonal element is now
λ2iTii and

Ĩi = |Ii|/λi
√
Tii ≤ τMeasurement, i = 1, 2, ..n

It is relatively straightforward to compute the λi values by

λi = (|Ii|/
√
Tii)/τMeasurement, i ∈MeasOut
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13. Using the final inflated Q and R, we recalculate the steps of the EKF under
section 3.2. Optionally, the values of Q and R can be "deflated" if the pro-
cess/measurement problems are only temporary.

4.3 Algorithm Performance

The algorithm presented above assumes no knowledge of the statistics of the mobility

of the MS. We benchmark the performance of the algorithm by comparing it against the

performance of a static positioning algorithm which also assumes no statistics of the

MS mobility model and also against the performance of an EKF algorithm which has

complete knowledge of the MS mobility statistics.

We assume a cellular network with equally distributed BS. We assume the MS uses

TDoA information from 3 BS that form a triangle inside which the MS moves as seen in

Fig. 4.1. The distance between adjacent BS is assumed to be 500m. We set τProcess =

1 and τMeasurement = 2. We set Qinitial = I and for Rinitial we use the gaussian TDoA

model we developed in section 2.4

Figure 4.1: BS - MS Layout
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We simulate numerous MS paths and run all three algorithms on each path. The

paths simulated are a mixture of straight and curved paths. The total number of paths

simulated are ∼ 2000 and we measure the position error at ∼ 45000 positions across

all paths. We assume that all the 3 BS see the same channel scenario and that the MS

"sees" the same 3 BS throughtout its entire path. Hence the ToA error due to each BS

is independent and identically distributed.

Using these position errors, we build a CDF of the position errors for each algo-

rithm for comparison. Unlike conventional Kalman filter algorithms for localization,

the states do not explicitly depend on velocity. The adaptive Kalman filter algorithm

developed in the above section uses just positions in its states.The same position se-

quence can then be assumed to have come at different sampling times accounting for

different speeds. Here, we have simulated different path sequences where adjacent po-

sitions are ∼ 2m to ∼ 20m apart.

We study the performance of the algorithms under the B1 Channel Scenario, the

Extended ITU Ped B Channel and the Extended ITU Veh A Channel first assuming FP

is detected and second assuming SP is detected.

4.3.1 B1 Scenario: Urban Microcell

Figure 4.2: B1 Scenario: Performance comparison of algorithms under FP

We can see clearly from figures 4.2 and 4.3 that the proposed algorithm gives better
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Figure 4.3: B1 Scenario: Performance comparison of algorithms under SP

results than the static positioning algoithm under the B1 channel scenario. Understand-

ably the EKF having complete knowledge of the MS mobility statistics gives the best

results.

4.3.2 Extended ITU Ped B

Figure 4.4: Ex ITU Ped B: Performance comparison of algorithms under FP

We can see clearly from figures 4.4 and 4.5 that the proposed algorithm gives better

results than the static positioning algoithm under the the Extended ITU Ped B channel
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Figure 4.5: Ex ITU Ped B: Performance comparison of algorithms under SP

scenario. Understandably the EKF having complete knowledge of the MS mobility

statistics gives the best results.

4.3.3 Extended ITU Veh A

Figure 4.6: Ex ITU Veh A: Performance comparison of algorithms under FP

We can see clearly from figures 4.6 and 4.7 that the proposed algorithm gives better

results than the static positioning algoithm under the Extended ITU Veh A channel

scenario. Understandably the EKF having complete knowledge of the MS mobility
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Figure 4.7: Ex ITU Veh A: Performance comparison of algorithms under SP

statistics gives the best results.

4.4 Concluding Remarks

The proposed algorithm gives better performance than the static positioning algorithm

which operates under the same assumptions as our proposed algorithm. Predictably the

EKF algorithm with complete knowledge of the MS mobility model does better than the

proposed algorithm which has no such knowledge. However, no detailed mathemati-

cal analysis has been done on the optimality of the proposed algorithm. We have also

ignored the impact of non-linearities on the EKF and have not studied the conditions

under which the H.O.T. cannot be neglected. Over our simulations, the proposed algo-

rithm gave robust performance. However further study is needed to analyse the stability

of the algorithm.

The parameters like Qinitial, Rinitial, τProcess and τMeasurement are chosen by the

user and changing them may give better results depending on the situation.τProcess and

τMeasurement can be understood as a measure of confidence in the process and measure-

ment noise covariances respectively. Further studies can be done to identify optimal

values for these parameters.
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