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ABSTRACT

KEYWORDS: Opportunistic schedulers ; Sensitivity analysis; Proportional fair-

ness

In this report, we present our sensitivity analysis of opportunistic schedulers in the

presence of erroneous rate feedback. A malicious user reports incorrect channel feed-

back to an opportunistic base station. We have analyzed the effect of erroneous rate

feedback by the malicious user on opportunistic schedulers like max-min fair sched-

uler, sum-rate maximizing scheduler and proportional fair scheduler. We characterize

the loss in airtime due to incorrect rate feedback and also identify the worst-scenario

strategy for the malicious user. Using simulations, we evaluate the impact of erroneous

rate feedback for a variety of channel and network conditions. We infer that max-min

fairness and sum rate maximization are very sensitive to erroneous rate feedback, while,

proportional fair scheduler seems robust in terms of isolation.
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CHAPTER 1

Introduction

We study the performance of opportunistic scheduling strategies in cellular wireless

networks in the presence of malicious user. We consider single cell and multi cell

environments of a cellular wireless network with a base station and a fixed number, N ,

of wireless users. We assume that the wireless channel is slotted and the channel fades

randomly and independently over slots. The base station scheduler is opportunistic

and seeks to maximize a known network utility (or a notion of fairness) with channel

quality feedback from the wireless users. In this setup, we study the sensitivity of the

opportunistic schedulers(OS) in the presence of malicious user.

We assume that a malicious user is capable of reporting incorrect channel quality

information (CQI) to the base station with malicious or selfish intent. We, then, aim

to analyze the sensitivity of the various popular scheduling strategies to such incorrect

feedback. In particular, we study the impact of the incorrect feedback on the air time

share, access delay and long term average throughput (of the normal users) as a function

of the scheduling strategies.

The latest cellular standards including LTE-A/3GPP (Al-Rawi et al. (2008)) seek

feedback from the users to enable opportunistic scheduling. In every frame, the rate at

which a user is scheduled depends on the feedback received from the user. It is assumed

in the implementations that the feedback from the users are reasonably accurate. In the

event of incorrect channel feedback, the scheduler may become suboptimal as there is

no provision made available in the implementations to identify such cases. We seek to

clearly distinguish this case with the scenario where the channel quality information is

inaccurate. In the later case, the base station may use adaptive retransmission techniques

to mitigate such effects.

In chapter 2, we describe the network model and assumptions and in chapter 3, we

discuss prior literature relevant to our work. In chapter 4, we define different perfor-

mance metrics. In chapter 5, we study the impact of a single malicious user on the

air time share, access delay and long term average throughput of a single normal user.



We show analytically that the air time share of the normal user can be arbitrarily small

with incorrect channel feedback. We characterize the worst-case strategy for propor-

tional fairness, max-min fairness and sum-rate maximization schedulers. In chapter 6,

we characterize the impact of malicious user for known distributions such as Rayleigh,

Ricean and Nakagami fading channels as well as for large N in singel cell and multi

cell environments. In chapter 7, we conclude with a discussion on future work.
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CHAPTER 2

Network Model and Assumptions

We consider a single cell and multi cell environment of a cellular wireless network with

a base station and a fixed number, N , of wireless users. We assume that the wireless

channel is slotted with slots of size τ seconds. The users time share the common wire-

less channel and a single user can be scheduled in a slot. We assume that the base

station coordinates the channel access among the wireless users with feedback from

the wireless users. We consider both uplink and downlink traffic scenario and we as-

sume that the data queues of the users are saturated, i.e., the users always have data.

Figure 2.1a shows in a single environment and figure 2.1b shows multicell interference

environment.

(a) Single cell Environment
(b) Multi-cell Environment

Figure 2.1: Cellular Networks Models

2.1 Channel Model

We consider a random fading wireless channel between the base station and the users.

We assume that the channel state remains constant in a slot and may vary over time



slots. Let (C1(t), C2(t), · · · , CN(t)) model the vector of channel state in slot t, where

Ci(t) is the channel state of user i at time t. For example, Ci(t) could represent the

channel quality information (CQI), channel gain or the signal to interference plus noise

ratio (SINR) in slot t. Let (R1, R2(t), · · · , RN(t)) be the vector of supported maxi-

mum rates for the users in slot t, i.e., Ri(t) is the maximum rate supported for user i

in the slot t if user i is scheduled. In this work, we consider a single cell and multi

cell environment of a cellular wireless network and we schedule a single user in a slot.

Hence, In a single cell environment Ri(t) is a function of Ci(t) (and would not de-

pend on Cj(t) where j 6= i) and in a multi cell environment Ri(t) is a function of

Ci(t),interference from other cells but in both cases it may depend on AMC, radio and

other transceiver considerations. For example, Ci(t) can be the Rayleigh channel gain

and in a single cell environment, the maximum supported rate in the slot Ri(t) can be

Ri(t) := W log
(

1 +
C2
i (t)

σ2

)
bits per second (where W is the channel bandwidth and σ2

is the AWGN noise power). In a multicell environment, the maximum supported rate

in the slot Ri(t) can be Ri(t) := W log
(

1 +
C2
i (t)

I(t)+σ2

)
bits per second (where I(t) is

interference power, W is the channel bandwidth and σ2 is the AWGN noise power).

2.2 Scheduler and Notion of Fairness

In this work, we assume that the users feed back channel state information to the base

station in every time slot to aid in scheduling. Let (R̂1(t), R̂2(t), · · · , R̂N(t)) be the

estimate of the maximum supported rates for the users at the base station at the begin-

ning of every slot t. The base station would now schedule a user based on the reported

channel rates and the network objective. For example, the scheduler that maximizes the

sum rate schedules

argmax
(
R̂1(t), R̂2(t), · · · , R̂N(t)

)
and the scheduler that implements proportional fairness schedules

argmax

(
R̂1(t)

R̄1(t)
,
R̂2(t)

R̄2(t)
, · · · , R̂N(t)

R̄N(t)

)

where, R̄i(t) = 1
t

∑t
k=1 I{user i is scheduled}(t)R̂i(t), is the time average throughput

of user i up to time t (as recorded by the base station).
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Let the base station schedule a user i with the reported channel rate R̂i(t) in slot

t. We assume that the data communication of user i at the reported channel rate R̂i(t)

is successful if and only if R̂i(t) ≤ Ri(t). In the event R̂i(t) ≥ Ri(t), the data com-

munication is assumed to have failed and all the data is assumed to be lost. In the

event of inaccurate channel feedback, the event R̂i(t) ≥ Ri(t) would trigger adaptive

retransmission strategies to mitigate packet and bit errors.

2.3 Malicious User

In this work, we are interested in analyzing the impact of incorrect channel feedback on

the network performance. We assume that the malicious user reports incorrect channel

values, i.e., R̂i(t) need not be Ri(t), and seek to study the sensitivity of the various

scheduling strategies (proportional fairness, max-min fairness and sum-rate maximiza-

tion). In the event R̂i(t) ≥ Ri(t), the data communication is assumed to have failed

and all the data is assumed to be lost. However, the malicious user may not report a

packet error and fake reception with positive acknowledgement. We note that the cur-

rent implementations permit the possibility of such response and there are no provisions

to identify such incorrect channel and data feedback. In such cases, the network per-

formance would be suboptimal and we are interested in characterizing the sensitivity of

the network performance to incorrect channel feedback.

2.4 Objective

The base station seeks to implement a notion of fairness using the channel feedback

from the wireless users. In this setup, we seek to characterize the robustness of the

various schedulers in the presence of a malicious user. In particular, we characterize

the impact of incorrect channel feedback on the air time share, access delay and long

term average throughput of the normal user for a variety of channel and network scenar-

ios. For example, we now know that proportional fairness is not time fair (Wengerter

et al. (2005)). Hence, a user may gain undue advantage (in terms of air time share) by

reporting an incorrect channel distribution. Our work seeks to identify robust network

utilities and notions of fairness for cellular wireless networks.
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CHAPTER 3

Related Literature

The rate region of a fading wireless channel and throughput/utility optimal schedulers

have been studied in a number of earlier works for a variety of channel and network as-

sumptions. The rate region of a multihop ad hoc wireless network (and a throughput op-

timal scheduler for the rate region) was first characterized in Tassiulas and Ephremides

(1992) and was generalized to fading time-varying channels in Neely et al. (2005).

Using a stochastic approximation framework, in Kushner and Whiting (2004), Kush-

ner and Whiting studied the convergence of a proportional fair scheduler for a cellular

wireless network. A generalized gradient scheduling strategy was proposed in Stolyar

(2005) to maximize any concave network utility over the rate region of the wireless

channel. In Liu et al. (2003), Liu et al propose a general framework for opportunistic

scheduling and study optimal strategies for different notions of fairness such as tem-

poral fairness and utilitarian fairness. We note that all the above works had assumed

that the channel information is perfectly available at the base station at the beginning

of every slot. In our work, we aim to study and characterize the performance of such

schedulers with incorrect channel feedback.

In Gopalan et al. (2012), Aditya et al study the rate region and optimal schedulers for

a wireless network with limited but perfect feedback. A similar model was considered

in Manikandan et al. (2009) and the rate region was characterized. In Lin and Shroff

(2005), the impact of imperfect schedule on the rate region and throughput optimality

was studied. It is assumed that the base station has access to perfect channel state

information but approximates the schedule only to minimize computation. A feasible

rate region under an asynchronous network information model was characterized in

Ying and Shakkottai (2011) for a multihop wireless network. The network information

in Ying and Shakkottai (2011) is assumed to be delayed and not in error. In our work,

we assume that the channel information is incorrect both intentionally and otherwise

and we seek to characterize the network performance.

In Kavitha et al. (2010), Kavitha et al study parametric α-fair scheduling from a

game theoretic perspective in the presence of non cooperative mobiles. In Kong et al.



(2008), Kong et al analyzed the impact of selfish behaviors on performance of MR al-

gorithm and using mixed game theoretic model, showed that the Maximum Rate packet

scheduling algorithm can lead non-cooperative users to undesirable Nash equilibriums.

In Kong et al., Auction based scheduling algorithm is proposed in presence of non-

cooperative multiuser OFDM systems. In our work, we assume that the identity of the

malicious user may not be known and the users are generally unaware of any design.
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CHAPTER 4

Performance Metrics

4.1 Airtime Share

Let (S1(t), S2(t), · · · , SN(t)) model the vector of slots assignment at time slot t, where

Si(t) is the number of slots assigned to user i at time slot t. Let S(t) be the total number

of slots at time t. Percentage of Airtime Share(AS) of user i at time slot t is defined as

ASi(t) =
Si(t)

S(t)

4.2 Throughput

Throughput of user i at time slot t is defined as

R̄i(t) =
1

t

t∑
i=1

I{useriisscheduled}(t)Ri(t)

where Ri(t) is maximum rate supported by user i in time slot t.

4.3 Delay

First moment and second moment of the delays of good user are calculated as,

Firstmoment =
d1 + d2 + d3 + · · ·+ dn

n

Secondmoment =
d2

1 + d2
2 + d2

3 + · · ·+ d2
n

n

where di is number of slots good user has to wait in order to access the channel after

(i− 1)th slot assigned to the good user.

n is the total slots given to the good user



CHAPTER 5

Sensitivity Analysis of Opportunistic Schedulers

5.1 Sum Rate Maximization

Theorem 5.1.1 For a scheduler that maximizes sum rate, the malicious user can max-

imize its channel access (in terms of time share) by reporting a large channel value in

all the slots. The time share of the regular users can be made arbitrarily small for the

setup.

Proof for N = 2 is given and for N > 2 similar results hold

Proof Let (R̂1(·), R̂2(·)) be the reported channel rates of the two users.Assume that

R̂1(t) = k1 for all t. Let F2(r) = P(R̂2(t) ≤ r) be the cumulative distribution function

of the reported channel of user 2 for all time t.

Sum rate maximization scheduler seeks to maximize the total through put of the

system. So it schedules a user with higher rate in every to slot.

argmax
(
R̂1(t), R̂2(t)

)
Probability of user 2 scheduled is,

1− F2(k1) = P(R̂2(t) > k1)

If user 1 reports a constant channel R̂2(t) = k2(> k1) for all t. Probability of user 2

scheduled is,

1− F2(k2) = P(R̂2(t) > k2)

Since CDF of any distribution is a non-decreasing function and k2 > k1

F2(k2) > F2(k1)



1− F2(k2) < 1− F2(k1)

choosing k1 and k2 in such a way that P(k1 < R1(t) < k2) is non-zero.

As the constant rate value of malicious user increases, probability of good user chosen

for transmission decreases. when k(rate of malicious user)→ ∞ , probability of good

user chosen goes zero (limk→∞(1− F2(k)) = 0). Which proves the claim.

5.2 Max-Min Fairness

Theorem 5.2.1 For a scheduler that implements max-min notion of fairness, the mali-

cious user can maximize its channel access (in terms of time share) by reporting a very

small channel value in all the slots. The time share of the regular users can be made

arbitrarily small for the setup.

Proof for N = 2 is given and for N > 2 similar results hold

Proof Let (R̂1(·), R̂2(·)) be the reported channel rates of the two users. Assume that

R̂1(t) = k1 for all t. Let E2[r] =
∫∞

0
rP2(r) dx be the expected value of user 2’s

reported rates.

Max-min fairness seeks to increase the lowest through put among user. So it sched-

ules the user with least time average through put till slot t-1 in slot t. As t→∞ through

put of users will converge to the same value. Let T1 be air time share of user 1. So we

have,

k1 ∗ T1 = (1− T1) ∗ E[r]

k1

E[r]
=

1− T1

T1

If now user 1 reports a different constant channel R2(t) = k2(< k1). Let the air time

share of user 1 be T̂1, Now

k2 ∗ T1 = (1− T1) ∗ E[r]

k2

E[r]
=

1− T̂1

T̂1

11



since k2 < k1,
1− T1

T1

>
1− T̂1

T̂1

=⇒ T̂1 > T1

As k decreases air time share of malicious user increase and that of good user decreases.

k → 0, T̂1 → 1. Which proves the claim.

5.3 Proportional Fairness

Theorem 5.3.1 Let N = 2. Suppose that a wireless user reports a constant channel

to the base station in all the slots. Then, the air time share of the wireless user with

proportional fair scheduler is at least 0.5.

Proof Let (R̂1(·), R̂2(·)) be the reported channel rates of the two users and without

loss of generality assume that R̂1(t) = 1 for all t. Let F2(r) = P(R̂2(t) ≤ r) be the

cumulative distribution function of the reported channel of user 2 for all time t.

A proportional fair scheduler seeks to maximize sum of logarithms of the long term

average throughput of the wireless users. The gradient scheduler that seeks proportional

fair operating point is given by

argmax

(
R̂1(t)

R̄1(t)
,
R̂2(t)

R̄2(t)

)

where R̄i(t) = 1
t

∑t
k=1 I{user i is scheduled}(t)R̂i(t). For ergodic channels, the pro-

portional fair scheduler converges to (R̄1, R̄2) that maximizes log(R̄1) + log(R̄2) in the

rate region of the wireless network (see Stolyar (2005)).

At the optimal operating point, user 2 is scheduled iff

R̂1(t)

R̄1

<
R̂2(t)

R̄2

1

R̄1

<
R̂2(t)

R̄2

(since R̂1(t) = 1 for all t)

R̄2

R̄1

< R̂2(t)

Clearly, the policy is a threshold based policy with threshold R̄2

R̄1
. The long term average

12



throughput of user 1, R̄1, is R̄1 = F2( R̄2

R̄1
) (as R̄1 is also the fraction of slots allocated to

user 1). The long term average throughput of user 2, R̄2, is

R̄2 =

∫ ∞
R̄2
R̄1

uf2(u)du ≥ R̄2

R̄1

(1− F2(
R̄2

R̄1

))

where, f2(u) is PDF of user 2 and the last expression follows from Markov inequality.

Hence, we have,

R̄2 ≥
R̄2

R̄1

(1− F2(
R̄2

R̄1

))

1 ≥ 1

R̄1

(1− F2(
R̄2

R̄1

))

R̄1 ≥ (1− F2(
R̄2

R̄1

))

F2(
R̄2

R̄1

) ≥ (1− F2(
R̄2

R̄1

))

F2(
R̄2

R̄1

) ≥ 1

2

which proves the result.

Theorem 5.3.2 Let N=2. Suppose that a wireless user reports a constant channel to

the base station in every slot. Than the air time share of the wireless user at best can be

100%

Proof Proof by Example:

Example 5.3.3 Let (R̂1(·), R̂2(·)) be the reported channel rates of the two users and

without loss of generality assume that R̂1(t) = 1 for all t. Channel of user 2 is a

piecewise function defined as,

R2(t) =

 1 probability p

100 probability 1− p

Figure 5.1 shows the air time share of good user as the probability p is varied.User with

constant channel getting atleast 50% when p is less than 0.5. When p is greater than

0.5, time share of constant channel user is increasing linearly. But as p→ 1 time share

won’t go to 100% in this particular example. After certain p it will be again be 50%.

13
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Figure 5.1: Percentage of Time Share vs Probability of Channel state

That p depends on a
a+b

ratio, where a,b are the two channel state values and a < b .

If ’a’ and ’b’ are chosen properly i.e. a
a+b

<< 1, time share of malicious user can be

100%.

Proposition 5.3.4 For a scheduler that implements proportional fairness, the malicious

user can maximize its channel access (in terms of time share) by reporting a constant

channel value in all the slots.
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CHAPTER 6

Performance Evaluation

We have used Rayleigh, Rician and Nakagami fading channel to model channel state.

Raylegih PDF:

h(t) =
t

b2
e

−t2
2b2

Mean of the random variable is b
√

π
2

and variance is 4−π
2
b2. So as the b parameter

increaces mean and variance also increases. Figure 6.1 shows probability distribution

of rayleigh random variable for different values of ’b’
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Figure 6.1: Rayleigh Probability Distribution Functions

Rician PDF:

h(t) = I0

(
tk

σ2

)
t

σ2
e

−(t2+k2)

2σ2

As K increases, line of Sight component of signal gets stronger. σ is scaling param-

eter. Figure 6.2 shows probability distribution of rician random variable for different K

and σ.

Nakagami PDF:

h(t) = 2
(m
ω

)m 1

Γ (m)
t(2m−1)e

−m
ω
t2

m = E2[x2]
Var[x2]

will impact on the shapre of pdf and ω = E[x2] is the spread controlling

factor. Figure 6.3 shows the probability distribution of nakagami random variable for

different m and ω.
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Figure 6.3: Nakagami Probability Distribution Functions

In sections 6.1, 6.2 and 6.3, malicious user has a constant channel of value 1. Max-

imum supported rate in the slot Ri(t) is calculated as Ri(t) := W log
(

1 +
C2
i (t)

σ2

)
bits

per second (where W = 5MHz is the channel bandwidth and σ2 = 0.01 is the AWGN

noise power).C2
i (t) = |hi(t)|2 because power of transmitted is assumed to be unity.

Where hi(t) can be rayleigh/rician/nakagami fading channel. Number of users in the

system is N = 2.

6.1 Rayleigh Fading

Figure 6.4 shows the air time share of the good user as the SNR of signal being varied.

Graph shows an increase in time share of the good user when SNR increases. But

when SNR is close 3dB, time share of the good user is close to 41%. Which is typically

considered as unfair. Point to be noted here is when SNR is close to 1dB, signal power

is comparable to noise power. But when the signal power is higher than the noise floor,
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Figure 6.4: Percentage of Time Share VS SNR(rayleigh fading channel)

good user is getting close to 47% which is typically not too unfair. So here in this

example PF seems to robust and malicious user may not affect much when the signal

power very high compared to noise floor. But the good user is at the cell edge(low

signal power), malicious user can affect him badly.

Lesser time share is directly proportional to the delay in accessing the channel. In a two

users system and in presence of malicious user first moment of delay should always be

great than 1. So as the air time share of the good user increases first moment tends to 1.

As SNR increases, air time share of regular user increases so delay moments decreases

as a result.

Figure 6.5 shows the first and second moments of delay
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Figure 6.5: Delay Moments vs SNR(rayleigh fading channel)

Figure 6.6 shows the time averaged throughput of the good user

Increase in throughput is attributed by two factors, increase in air time share of good
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Figure 6.6: Throughput vs SNR(rayleigh fading channel)

user and better channel of good user which also means user can support higher trans-

mission rates.

6.2 Rician Fading

Figure 6.7 shows the air time share of the good user as the Rician K-parameter be-

ing varied for different σ′s As the non-centrality parameter(k) increases unfairness de-

creases for the good user.
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Figure 6.7: Percentage of Time Share vs Rician K factor

Figure 6.8 shows the through put of good user vs non-centrality parameter.

Through put increases because of the better channel good user has.

Figure 6.9 shows first and second moments of delay. As K increases air time share

of user increases this implies delay moments of the user should decrease which is seen

in Figure 6.9. As the air time share of user approaches 50%, first moment of delay is
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Figure 6.8: Throughput vs Rician K factor

tending to 1 which is the expected result.
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Figure 6.9: Delay moments vs Rician K factor

6.3 Nakagami Fading

Figure 6.10 shows the air time share of the good user as the Nakagami m parameter is

being varied. There is a increase in the air time share of good user as M increases.

Figure 6.11 shows Air time share of good user when σ is varied with m fixed in a

each simulation, varied across simulations. Percentage of Time share increases with

increasing σ and as we know from the above plot as M increases time share good user

gets better.

As the air time share of the good user increases first moment tends to 1. For a particular

value of σ time share is proportional to m-parameter so moments inversely proportional
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Figure 6.10: Percentage of Time Share vs Nakagami M parameter
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Figure 6.11: Percentage of Time Share vs Nakagami σ parameter
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Figure 6.12: Delay Moments vs Nakagami M parameter
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6.4 Single Cell Multiple Users

We need to see the effect of malicious user as the number of good user’s increase.

N is total number of users in the system contains, N-1 good users and one malicious

user. All the good users have iid fading channels. Three fading channel scenarios have

been simulated(Rayleigh with Parameter 1, Rician with K=2,σ = 1 and Nakagami with

m=2,ω = 1). Figure 6.13 is the plot between 100
N

- air time share of good user (this

is lose in air time share for the good user) against N. N is varied from 2 to 10.
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Figure 6.13: Percentage of Time Share vs Number of users

Clearly malicious can not effect Good user in a substantial way as the number of

users increase. So PF algorithm seems robust when there are more number of good

users or when good users have a better channel.

6.5 Multicell Interference (N = 2)

Till now we have been looking at the cases where there is no interference from other

base stations expect there is only AWGN noise. It becomes an interesting aspect to see

how interference effects the good user.

Frequency reuse ratio is one and only tier-1 interferers are taken into account.

Path-Loss exponent for all interferers and good user is assumed to be 2. Signal to

interference plus noise ratio in this case will be SINR(t) =
d2
g∗h2

g(t)∑6
k=1 Ik(t)+σ2 (where

Ik(t) = d−2
k ∗ |hk(t)|2 represents power of kth interferer, dk is the distance between
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good user and kth interfering BS, dg is the distance between good user and his BS.

σ2 = 10−4 is the AWGN noise power).hk’s are iid random variables with rayleigh pdf

with same parameter(b = 1√
2
). Radius of cell boundary (inscribed circle of hexagon is

approximated as cell) is assumed to beR = 500m. Figure 6.14 shows network scenario

with interference.

Figure 6.14: Network Scenario with Interference

Maximum supported rate in the slotRi(t) is calculated asRi(t) := W log (1 + SINR(t))

bits per second (where W = 5MHz is the channel bandwidth). Figure 6.15 shows the

variations of air time share of the good user as the BS to good user distance is var-

ied.Three plots shown in the figure 6.15 are with different interference scenarios. Blue

graph shows the air time share when there is interference from all 6 tier-1 BS’s. Red

graph is when we can cancel out the strongest interferer. Black graph is with interfer-

ence case. As the effect of interference decreases(close to BS) air time share of good

user increases. As the distance increases airtime share of the user decreases. Effect of

malicious user is more when a user is at cell edge. As we have seen earlier good user

gets more airtime share when his channel is better. When distance from BS increases

interference increases, so user supposed to get a lower air time share. When user is at

cell edge, his air time share close to 37% which is typically unfair. As the user moves

away from BS to cell edge there is almost 6% decrement in air time share is seen. So

effect of malicious user increases as the user movies close to cell edge.
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Figure 6.15: Percentage of Time Share vs Distance from BS

6.6 Multicell Interference (N > 2)

When number of users in the system is greater 2 and users are distributed at different

locations, effect of malicious user can be different on different users. Each user sees a

different channel and different interference power. We have considered two case with

N = 6 and 11(with 5 and 10 good users). Users are dropped uniformly in the cell. Total

cell is sectorized into three parts, if r is the distance of user from BS When 0 ≤ r < 200,

user is considered to be close to BS

When 201 ≤ r < 400, user is considered to be in the mid range from BS

When 401 ≤ r < 500, user is considered to be at cell

Figure 6.16 shows average air time share of users in different sectors with malicious user

and without malicious user in the system with interference from other base stations.
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Figure 6.16: Average Percentage of Time Share of Users in Different Sectors

With just observing air time share of users with malicious, it seems that malicious user

is effecting cell edge user more than user close to base station because average air
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time share of later is higher. But without malicious user in the system users close to

base station are getting higher air time share than users at cell edge, this is because of

interference from other cells is very less when user is close to BS. Now the malicious

brings down performance of users in all sectors. More importantly decrement in air

time share for users close to base station is little more than the decrement of air time

share for users at cell edge.
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CHAPTER 7

Conclusions

Max-min fair and sum-rate maximization strategies are not robust to attacks from ma-

licious users. Proportional fairness is reasonably robust in terms of isolation. For dif-

ferent scheduling strategies, we identify the worst case performance and the strategy of

the malicious user. The performance of a regular user depends on the channel distribu-

tion (variability) of the wireless user. The performance of a regular user degrades with

decreasing SNR and SINR in the presence of a malicious user. Malicious user brings

down performance users at different distances by almost same amount.
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