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ABSTRACT

In Shannon’s 1958 paper, he finds the upper and lower bounds on the probability of

error of optimal codes in the AWGN Channel. When rate is less than Capacity, these

bounds are exponentials of the form C exp(−nE) with E (called error exponent) pos-

itive. However, there is a gap between upper and lower bounds on the error exponent

E for lower rate cases meaning the exact exponent is unknown for these code rates. A

similar gap exists in the coding without restrictions in n dimensional space scenario

considered by Polytrev. Both these problems are related to each other as well as to the

long standing question of optimal packing of spheres in n dimensions.

We use the theory of stochastic geometry and point processes to attack Codes with-

out Restrictions. It can be shown that using Poisson and Matern Point Process to model

random codes together leads to the best known bounds [6]. The repulsive nature of De-

terminantal Point Processes compared to Poisson make them a better model and we try

to construct appropriate determinantal point process to get better bounds. However it

becomes clear that they aren’t useful because of too many resrictions on the kernel func-

tion. This leads us to look for general constraints for first and second moment densities

of stationary point processes. We find a valid stationary point process that matches the

best known bounds of today. This is the only continuous intensity function to give the

best known exponent. Besides, this result gives hope to construct similar functions that

might lead to better lower bounds.
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CHAPTER 1

CODING WITH RESTRICTIONS

We start our research by looking back at Shannon’s classic paper [1]. Here, Shannon

considers optimal codes in the Additive White Gaussian Noise (AWGN) channel under

Maximum Likelihood Estimation (MLE) decoding system. Upper bounds and lower

bounds on the probability of error for optimal codes Pe are computed and it is found

that the bounds are close together for rates near channel capacity as well as zero, but

diverge in between.

1.1 The Problem

1.1.1 Statement

1. Code is a set of M points in n dimensional space under the restriction each code
word be on the surface of sphere of radius

√
nP , with P the signal power.

2. Noise is AWGN with noise power N . This means the code points are randomly
displaced by an n dimensional Gaussian probability distribution of variance N in
each dimension.

3. Pe is Probability of error of a code.

Pe ,
M∑
i=1

1

M
[Probability(Error given i th code word sent)]

4. In this situation what is the probability of error for optimal codes? In other words
what is the theoretical exponent of probability of error of these optimal codes?

1.1.2 Some Definitions

1. A is the signal to noise ratio parameter defined as
√

P
N

. It will turn out useful
because all expressions depend only on the P and N ratio.

2. C is channel capacity 1
2

log(A2 + 1)

3. R is rate of the code defined as 1
n

log(M) and in all our discussion 0 ≤ R ≤ C

4. E(R) is error exponent (also called reliability function) lim supn→∞− 1
n

log(Pe,opt(R, n))
, where Pe,opt is the lowest possible Pe



1.2 Shannon’s bounds

The figures [1] show the error exponent bounds from Shannon for two values of SNR

A.

It can be seen that the lower and upper bounds on the exponent coincide for

1

2
log(

1

2
+
A

4
+

1

2

√
A2

4
+ 1) ≤ R ≤ C =

1

2
log(A2 + 1)

At all lower rates the exact exponent is unknown.

1.3 New Upper Bound

An improved bound [2] to the minimum distance upper bound of Shannon was found

in 2000. The figure [2] below shows the different bounds known today.
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1.4 Ideas Used

Let’s look at the ideas used to derive the various bounds

1.4.1 Random Coding Lower Bound ((a) in the figure)

Consider this experiment: Take the M points of the code one by one and put them in-

dependently and randomly with probability measure propotional to the surface area, on

4



the sphere of radius
√
nP . If you keep repeating this experiment, all possible codes

are got. And then the average probability of error is calculated across all possible

codes. The contribution to the average probability of error due to the first code point

is − 1
M

{
1− [1− Ω(θ)/Ω(π)]M−1

}
dQ(θ), where Q(θ) is defined as the probability of

uniform gaussian noise taking the signal point out of the cone of half angle θ with axis

passing through the signal point. Integrating over all θ and adding contribution from

other M-1 points gives the lower bound on the error exponent (reliability function).

1.4.2 Upper Bounds on the Reliability function ((b) - (e))

Probability of error is given by 1/M
∑

i P (error given ithcodepointwas sent), as-

suming each point has the same probability 1/M of being picked. Each of the terms in

the summation can be calculated once we know the Voronoi tesselation, by integrating

the probability of gaussian noise outiede the voronoi cell of the ithcode point. But it is

not possible to calculate a general expression for this as tesselations are complex and

very different for different codes.

Sphere Packing bound (b)

Circles are easier to handle than polygonal Voronoi cells. So draw a circle centered

around the code point with the same surface area as the polygon. The probability of

gaussian noise taking the centre signal point outside the circle is lesser than that of noise

taking it outside the polygon (because integral of gaussian is lesser inside the polygon

than the circle). The probability of noise taking signal outside the circle (which is a

cone in 3d and higher) is our Q(θ) we saw before. So by finding approximations for Q,

Shannon got this upper bound on the error exponent.

Minimum Distance bound ((c) and (d))

Same problem as before: to calculate the probability of noise taking the ithcode point

outside its Voronoi cell. At lower rates, the geometry doesn’t seem to matter as much

as the closest neighbour distance. So for each point consider only the probability of

noise taking the codeword closer to its nearest neighbout than itself. This is nothing

5



but integral of the gaussian over a half plane, which is much easier to calculate for each

point than the integral outside voronoi cell.

New Upper Bound (e)

Listyn did better than considering only the nearest neighbour. He used results done on

the distance distributions of points in spaces[3] to get better bounds. In effect, he used

how many neighbours a point has on an average(instead of taking only one neighbour

as in minimum distance), and used that to get tighter bounds.

6



CHAPTER 2

CODING WITHOUT RESTRICTIONS

2.1 The Problem

This modified version of the Shannon problem was first considered by Polytrev [4].

2.1.1 Code as Infinite Constellation(IC)

Consider any countable collection of points in Rn as our code S. Let Cuben(a) denote

the n dimesional cube containing points with coordinate magnitude not exceeding a/2

. A quantity of importance here is the normalized logarithmic density of a code defined

as

ρ(S) =
1

n
(ln(limsup

a→∞

| S ∩ Cuben(a) |
an

))

which is in effect a measure of number of codewords in a given volume.

2.1.2 Error

AWG(Additive White Gaussian) Noise displaces our code points randomly. Maximum

Likelihood estimation is used by the decoder for determining the code point sent. The

conditional probability of error when any point s is sent is:

ζ(s) = Pr
{
d(s, s+ z) ≥ d(s

′
, s+ z) for some s

′ ∈ S, s′ 6= s
}

This (just like in the Shannon regime) is nothing but the gaussian noise integrated out-

side the voronoi cell of s.

The average probability of error of code S is given by



ζ(S) = limsup
a→∞

1

| S ∩ Cuben(a) |
∑

s∈S∩Cuben(a)

ζ(s)

where ζ(s) are the conditional probability of noise taking the point s outside its voronoi

cell. ζ(s) for the individual code points depend on the variance per coordinate σ2 of

the AWGN. Analogous to finding sets of achievable (rate,error probability) pairs for the

Shannon regime, our objective here is to find the set of achievable (ρ, ζ) over the choice

of S.

2.1.3 Polytrev Capacity

The generalized capacity (or Poltrev Capacity) of AWGN channel without restrictions

C∞ is defined as the largest number such that for ρ < C∞ there exists, for a sufficiently

large n, an IC with arbitrarily small decoding error probability. Polytrev proved that

C∞ =
1

2
ln(

1

2πeσ2
)

2.1.4 Error Exponent

The reliability function (or error exponent) is defined by the equation below:

η(ρ, σ2) = −limn(
1

n
logζopt(n, ρ, σ

2))

where ζopt is the infimum of ζ(S) over all codes having parameters (n, ρ, σ2). Just

like we found that the Shannon reliability function depended only on the ratio of signal

power to noise power, here we see that the error depends only on α defined by

α =
e−2ρ

2πeσ2

α is called the generalized signal to noise ratio. (It is easy to visualize the fact that

the error probability depends only on α. Any change to ρ and σ that preserves the α

ratio, is a geometrically identical situation). Thus the function η(ρ, σ2) is written simply

as η(α) . From here on η(α) will be called the reliability function of the AWGN channel

8



without restrictions. Note that in Shannon regime there was a dependence on Code Rate

besides the SNR. In this case there is dependence only on GSNR.

2.2 Bounds

The lower bound of the reliability function is called the Polytrev exponent π(α). It is

obtained using the random coding argument similar to previous regime.

π(α) =


α2

2
− 1

2
− ln(α) if 1 ≤ α <

√
2

1
2
− ln2 + ln(α) if

√
2 ≤ α < 2

α2

8
if α ≥ 2

Polytrev also gave an upper bound using sphere packing for all α ≥ 1

η(α) ≤ α2

2
− 1

2
− ln(α).

An improvement to this can be obtained for high α using Cor. 2 of [3]

η(α) ≤ (0.663)2α2

2

The following plot shows the best known bounds on error exponent versus α

9



There is a gap between the bounds for lower rates (high α) just like the Shannon regime.

2.3 Connection with restricted coding

Improvements in the bounds of Polytrev regime helps in the problem of gap between

lower and upper bounds on the reliability function of the traditional AWGN channel.

After all, the restricting codes to surface of a sphere is simply considering a space of

one dimension less. We give a formal mathematical connection below.

2.3.1 Theorem

Let E(R,A) denote the error exponents of the Shannon regime with code rate R and

SNR A. With the generalized SNR of the Polytrev regime α let the error exponent be

η(α). Then we have the following from [5]

lim
A→∞

E(
1

2
ln(

1 + A2

α2
) , A) = η(α)

10



2.3.2 Getting better bounds for Shannon regime

This the case of interest to us. We’ll try to get better upper bounds for η using various

new techniques. An improvement in the gap between the upper and lower bounds for

η(α) will lead to improvement in the gap between the upper and lower bounds for the

reliability function of the AWGN channel, atleast for large signal-to-noise ratios. In the

rest of our study while we’ll be looking only at the problem of error exponents in space,

we need to understand any result obtained can be extended to Shannon regime.
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CHAPTER 3

PALM APPROACH TO LOWER BOUNDS

Refer Appendix A for Point Process theory.

• Our code in Palm approach [5] will be a Point Process φ. The rate of code R =
1
2
ln( 1

2πeα2σ2 ) is related to intensity λ as

λ = exp(nR) = (ασ
√

2πe)−n

Here α is the GSNR , σ is noise deviation and n the dimension of space.

• The noise are modelled as displacement vectors (ditto like Polytrev case), one for
each point of the point process. The displacement vectors are independent of the
points, each displacement vector being Gaussian with iid coordinates having zero
mean and variance σ2 and with the displacement vectors being iid from point to
point.

3.1 Error Exponents

The definitions are given for a general setting. Let D be some stationary ergodic addi-

tive noise. For all stationary and ergodic point processes µn of normalized logarithmic

intensity −h(D) − ln(α) and all jointly stationary decoding regions Cn = {Cn
k }k, let

pppe (n, µn, Cn, α,D) be the probability of error. Then

π(µ,C, α,D) = lim
n→∞

− 1

n
ln(pppe (n, µn, Cn, α,D))

The same limit by plugging in the optimal probability of error across all stationary and

ergodic point processes with NLD −h(D) − ln(α)and all decoding regions will be

called the error exponent η

η(α,D) = lim
n→∞

− 1

n
ln(pppe,opt(n, α,D))

Suppose we take a particular point process µ (say Poisson) and a decoding rule C

(say MLE), the lower bound on the reliability function we calculate in this setting



π(µ,C, α,D) will by definition be lesser than the optimal lower bound η(α,D)

η(α,D) ≥ π(µ,C, α,D)

And similarly

η(α,D) ≤ π(µ,C, α,D)

Then the problem of finding the error exponent η is just estimating the best π. If we take

different point processes µn and find π for each of them, the greatest of these estimates

will be our lower bound on the reliability function η. We’ll be doing exactly that in the

following two sections taking Poisson and Matern point processes respectively.

3.2 Theorem

(Theorem 3-wgn in [5]) For all stationary isotropic and ergodic point processes µnand

all iid white gaussian displacement vectors ~rv, the probability of error under MLE is

pe(n) =

ˆ
r≥0

(1− P n
0 (µn(Bn(r~v, r)) = 0))gnσ(r)dr

where P n
0 is the palm probability of µn,Bn(r~v, r) is a ball of radius r around r~v, and grσ

is the gaussian noise term.

3.3 Lower bound for Error Exponent

The argument is same as Random Coding given by Shannon. The random codes are

in this case conveniently taken as point process. Then the problem of finding error

exponents from the probability of error is simply a minimization problem as shown

below.

pe(n) =

ˆ
r≥0

(1− P n
0 (µn(Bn(r~v, r)) = 0))gnσ(r)dr

=

ˆ
v≥0

(1− P n
0 (µn(Bn(vσ

√
n)) = 0))gn1 (v

√
n)
√
ndv

where Bn is a sphere of radius vσ
√
n touching the Origin. Now if you are able to

represent (1− P n
0 (µn(Bn(vσ

√
n)) = 0)) (the probability of finding a point in a sphere

13



of radius vσ
√
n touching Origin) as exp(−nb(v)), that is

(1− P n
0 (µn(Bn(vσ

√
n)) = 0)) ≤ exp(−nb(v))

then the lower bound for error exponents are simply the result of the optimization

problem- For each α > 1

Minimize a(v) + b(v) over v ≥ 0

3.3.1 A general result

A result true for any point process is the following

1− P n
0 (µn(Bn(r~v, r)) = 0) ≤ min(1,Expected no of pts inB)

Note that the Expected no of pts inB is a conditional expectation on the point at Ori-

gin. So for stationary point process finding b(v) is equivalent to doing the integral

Conditional Expected number of points inB

=

ˆ
B

ρ2(x, o)

ρ1(o)
dx

where B is a sphere of radius vσ
√
n touching the Origin.

3.3.2 Palm Approach for Lower Bound

14



3.4 Example: Poisson Point Process

3.4.1 Result

π(µ,C, α,D) = lim inf
n→∞

− 1

n
ln(pppe (n, µn, Cn, α,D))

Let µ be a sequence of Poisson processes µn of rates λ = enR where R = 1
2
ln( 1

2πeα2σ2 )

for α > 1. Decoding rule C is Maximum Likelihood Estimation denoted by L(WGN).

Noise is AWGN. Then

π(Poi, L(WGN), α,WGN) =


α2

2
− 1

2
− ln(α) if 1 ≤ α <

√
2

1
2
− ln(2) + ln(α) if

√
2 ≤ α <∞

3.4.2 Method

Conditional Expected number of points in B

=

ˆ
B

ρ2(x, o)

ρ1(o)
dx

using Slivnyak’s theorem [7] ˆ
B

λ2

λ
dx

λV n
B (vσ

√
n)

where V n
B (r) is the volume of n dimensional ball of radius r.

≤ C(
v

α
)n

Therefore

b(v) = max(0, log(α)− log(v))

which will be denoted as

b(v) = (log(α)− log(v))+

15



Now we have the integrand in the e−nx form required. The exponent of the integrand at

v is of the form a(v) + b(v) where

a(v) =
v2

2
− 1

2
− ln(v)

pertains to the additive noise and

b(v) = (ln(α)− ln(v))+

to the ball having some point. Carrying out the optimization

Minimize a(v) + b(v) over v ≥ 0

gives α2

2
− 1

2
− lnα for 1 < α <

√
2and 1

2
− ln2 + lnα when α >

√
2.

3.5 Example: Matern Point Process

3.5.1 Result

We consider the ground PPP to have rate λ = enR where R = 1
2
ln( 1

2πeα2σ2 ) for α > 1.

The exclusion radius is (α− ε)σ
√
n. The intensity of this process is always lesser than

the ground process and tends to λ as n→∞. So the infimum we calculate for the error

probability of this point process has to be lesser than the ground process

π(Mat, L(WGN), α,WGN) ≥ α2

8
for all α ≥ 2

Together with Poisson, this gives the Polytrev bounds.

3.5.2 Method

Again consider Conditional Expected number of points in B(vσ
√
n)

When v < α
2

there can’t be any point in the ball and hence b(v) =∞

When α
2
< v < α√

2
the figure [5] below illustrates how to find b(v)
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When v > α√
2

probability of error can be upper bounded by that of Poisson point

process.

The minimization then looks like

minimize b(v) + a(v)

a(v) =
v2

2
− 1

2
− ln(v)

b(v) =


∞ if 0 < v < α

2

lnα − 1
2
ln(v2 − (v − α2

2v
)2) if α

2
< v < α√

2

(lnα− lnv)+ if α√
2
< v

Considering only the case of α ≥ 2 we get α
2

8
as the exponent.
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CHAPTER 4

DETERMINANTAL POINT PROCESS

Determinnatal point process [8] arise in study of random matrices and fermions in quan-

tum physics. They are natural choices for modelling repulsion between points. Incorrect

decoding will be reduced when the code points have repulsion between them. So we

decide to try them on our problem. The lower bound on error exponents got from ran-

dom codes modelled as determinantal point process should be atleast equal to existing

ones.

4.1 Introduction

4.1.1 Definition

A point process χ on Rn is said to be a determinantal point process with kernel K if it

is simple and the joint intensities satisfy

ρk(x1, . . . xk) = determinant [(K(xi, xj)]1≤i,j≤k

for every k ≥ 1 and x1, . . . xk ∈ Rn

4.1.2 Examples

The most popular stationary model is

K(x, y) = ρ exp

[
−||x||

2

a2

]
called the Gaussian kernel. An example of a non stationary determinantal point process

is the following

K(z, w) =
1

π
exp

[
−1

2
(|z|2 + |w|2) + zw̄

]
called Ginibre ensemble



4.1.3 Plot

The following is a two dimensional simulation of a determinantal point process with

Gaussian kernel (algorithm in Appendix B). Below it is a sampling of same number of

points as Poisson.

The repulsion between DPP points is clearly visible in the plots!
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4.2 Conditions on Kernel

A kernel function K(x, y) is valid for a stationary determinantal point process if the

following are satisfied [9]

1. There exists κ ∈ L2(Rn)
K(x, y) = κ(x− y).

So κ(x) = K(x, 0)

2. K(x, y) is continuous and positive definite. Continuity is straight forward to de-
termine. Positive definiteness not so. Bochner’s theorem says that a continuous
positive definite function on a locally compact group corresponds to a finite posi-
tive measure on the dual group. In simple terms for our case this means the radial
fourier transform of K(x, y) = κ(r) needs to be non negative. The radial Fourier
transform is given by

F(κ)(s) =

ˆ ∞
0

ˆ π

0

exp(−jsr cos(θ))κ(r)Vn−2 sin(θ)n−2dθrn−1dr

where Vn is the volume of n dimensional unit ball. Using the definition of Bessel
J function

Jn−2
2

(t) =
t
n−2
2

(2π)n/2
Vn−2

ˆ π

0

exp(−jt cos(θ)) sin(θ)n−2dθ

we have

F(κ)(s) =

ˆ ∞
0

(2π)n/2Vn−2

sr
n−2
2

Jn−2
2

(sr)κ(r)rn−1dr

This means the condition to be met for positive (semi)definiteness of K is
ˆ ∞

0

1

sr
n−2
2

Jn−2
2

(sr)K(r, 0)rn−1dr ≥ 0, ∀s > 0

3. The fourier transform of κ satisfies

F(κ)(s) ≤ 1.

Ofcourse you could do it by the steps used in the previous section by finding
the exact radial fourier transform. We however used an easier method to get a
sufficient condition.

F(κ)(s) =

ˆ
Rn
K(z, 0)e(−2πizs)d(z)

≤
ˆ
Rn
|K(z, 0)e(−2πizy)d(z)|
ˆ
Rn
|K(z, 0)|dz

≤ 1.
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Thus it is sufficient that ˆ
Rn
|K(z, 0)|dz ≤ 1

4.3 Palm Procedure using DPP

• Find a function K(x, y) , {x, y} ∈ Rn satisfying the three conditions above

• From Thm1.7 in [10], we know that palm measure for point at origin o is again a
determinantal point process with kernel

Ko(x, y) =
1

K(o, o)
(K(x, y).K(o, o)−K(x, o).K(o, y) )

• Since intensity is simply K(x, x), the expected number of points in a borel set B
,conditioned on Origin will be

ˆ
B

(K0
n(x, x))dµ(x) ≤ exp(−n b(v))

• After obtaining b(v) minimize a(v)+b(v) for every α to get lower bound on error
exponents.

4.4 Finding a suitable kernel

4.4.1 The Kernel that Gave Better Bounds

Consider the kernel

K(z, w) = λ exp

[
− ‖z − w‖

n

(τασ
√
n)n

]
where τ is a positive parameter we introduce and the rest of the terms are as defined in

Chapter 3. For τ > 1 this determinantal point process gives lower bound α2

2
− 1

2
− ln(α)

which is equal to sphere packing upper bound. However, such a kernel is not valid as

it’s fourier transform satisfies Condition 3 only for τ ≤ 1.

4.4.2 The Kernel that Matched the Existing Bounds

K(z, w) = λ exp

[
− 1

(ασ
√
n)2kn

(‖z − w‖2kn)

]
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for k ≥ 0. This kernel gives error exponents matching the existing lower bounds for

k = 1
2
(α

2

4
− 1) (see Appendix D). But this isn’t positive definite for kn > 1. So invalid

again!

4.4.3 Cauchy Kernel

A valid kernel covariance function for a stationary DPP is

Co(x) =
ρ

(1 + (‖x‖
α

)2)v+n/2
, x ∈ Rn

and the condtion for fourier transform being less than unity is (as given in [9])

ρ ≤ Γ[v + n/2]

Γ[v](
√
πα)n

Plug in ρ ← λ = (ασ
√

2πe)−n, α ← ασ
√
n, v ← τ and we can prove that for τ large

enough

(ασ
√

2πe)−n ≤ Γ[τ + n/2]

Γ[τ ](
√
πασ
√
n)n

So the DPP in our hand is

K(x, y) =
λ

(1 + (‖x−y‖
ασ
√
n

)2)τ+n/2

Though this kernel satisfies all three conditions and is of the same form, it didn’t give

good lower bounds. In fact the lower bounds go to zero for large n.

4.5 Conclusion

After trying to tailor the right kernel we realize there may not be a determinantal point

process that suits us. In any case, it is a bad idea to restrict to dpps alone when what we

want is any stationary point process with favourable first and second moment densities.

This leads to the point process of next chapter.
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CHAPTER 5

A NEW POINT PROCESS

A result on the sufficient condition for the existence of certain point processes is given

in [11]. Using the existence theorem for this point process, we’ll construct valid models

that give good lower bounds.

5.1 Existence Condition

A symmetrical function h(x, y) defined on Rn × Rn satisfying

1. 0 ≤ h(x, y) ≤ 1

2. c = supx
´
Rn(1− h(x, y))dy <∞

will describe a point process such that the intensity meansure ρ are

ρ(x1) = λ

ρ(x1, x2, . . . xm) = λm
∏

{i,j}⊂{1,2,...k}

h(xi, xj)

if

0 ≤ λ <
1

ce
.

5.2 Choosing h

Take

h(x, y) = 1− exp

[
− |x− y|

β

(ασ
√
n)β

]
where β = (α

2

4
−1)n and the rest of the terms are as defined in Chapter 3. The condition

0 ≤ h(x, y) ≤ 1 is obviously satisfied. The second condition

c = sup
x

ˆ
Rn

(1− h(x, y))dy



=

ˆ
Rn

(1− h(0, y))dy

=

ˆ
Rn

exp

[
− |x− y|

β

(ασ
√
n)β

]
dy

= n
πn/2

Γ(1 + (n/2))

(ασ
√
n)n

β
Γ(
n

β
)

<∞ ∀n, β

is also satisfied. By 5.1 ,we are now guaranteed a point process of this form as long

as intensity λ satisfies

0 ≤ λ <
1

ce
.

It can be shown that λ = (ασ
√

2πe)−n satisfies the above constraint (see Appendix C).

So in particular we’ve proved there exists a point process with first and second moment

densities

ρ(x1) = λ

ρ(x1, x2) = λ2h(x1, x2) = λ2

[
1− exp

[
− |x− y|

β

(ασ
√
n)β

]]

5.3 Error Exponents

Now we use the palm approach to get error exponents. The Existence Probability

1− P n
0 (µn(Bn(r~v, r)) = 0) ≤ min(1,Expected no of pts inB)

And for a ball B of radius vσ
√
n centered at vσ

√
nx̂1

Palm Expected no of pts inB =

ˆ
B

λ

[
1− exp

[
− |x|β

(ασ
√
n)β

]]
dx.

It can be shown that (Appendix D) this integral is

≤ exp(−n b(v))
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where

b(v) = (2kα + 1)

{
log(α)− log(v) + log(

(kα + 1)
kα+1
2kα+1

(2kα + 1)
1
2 .2

kα
2kα+1

)

}

and kα = 1
2
(α

2

4
− 1). Hence we have

1− P n
0 (µn(Bn(r~v, r)) = 0) ≤ exp[−n max(b(v), 0)]

With a(v) = v2

2
− 1

2
− log(v), we have the minimization problem to obtain exponents

Minimize a(v) + (b(v))+ over v ≥ 0

The expression a(v) + b(v) achieves minimum at v =
√

2kα + 2. So, under the con-

dition that α > (2kα+1)
1
2 .2

kα
2kα+1

(kα+1)
kα+1
2kα+1

√
2kα + 2, we get the minimum to be a(

√
2kα + 2) +

b(
√

2kα + 2) which is

(2kα + 1) log(α) +kα +
1

2
− (kα + 1) log(2kα + 2) + (2kα + 1) log(

(kα + 1)
kα+1
2kα+1

(2kα + 1)
1
2 .2

kα
2kα+1

)

kα = 1
2
(α

2

4
− 1) possible when α > 2. Then the expression above simplifies to

α2

8

true when α > 2. This matches the best lower bound.

5.4 Conclusion

We have constructed a new stationary point process that gives good lower bounds in the

Polytrev regime. This is the only continuous intensity point process model to give the

best known bounds. The advantage of this technique is it offers a method to improve

the lower bound by constructing better point process in terms of the ρ1 and ρ2 functions.
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5.5 Research Suggestions

• Improving the lower bound will just be about finding the best possible ρ1 and ρ2

satisfying stationarity. Conjecture 5.4 in [13] regarding the existence of stationary
point processes, if true would be more general than 5.1 . Using that, it might be
possible to construct the optimal random codes.

• I concentrated majority of my research on lower bound because it looked easier to
work with than the upper bound over the short time frame. Improving the upper
bounds- both the sphere packing bound and the minimum distance bound would
require work on the 100 year old sphere packing problem (Appendix E).

• The opinions on the various papers I’ve read on which bound is weaker have been
mixed. I am leaning towards "the upper bound that has to be brought down" side.
But what people feel can be misleading.

27



APPENDIX A

POINT PROCESS THEORY

For detailed theory of point process refer [7]. The following is a quick recap.

A.1 Basics

Point process is extension of random variable concept to n dimensions. It is defined as

a random collection of points in Rn with the Borel sets Bn as the associated σ-algebra,

equipped with the Lebesgue measure. We’ll adopt the random measure formalism to

describe the point process distribution. In this, Point processφ is described fully by

φ(B) ,the number of points of φ falling in arbitrary setsB ⊂ Rn. The intensity measure

of a point process φ in a Borel set B is defined as

Λ(B) := E[φ(B)]

The intensity λ is defined as the spatial function such that Λ(B) =
´
B
λdx

A.2 Examples

A.2.1 Poisson Point Process

This is the most popular of all the point processes. We’ll be considering only uniform

PPPs in our discussion.

Uniform PPP, with intensity λ is a point process in Rn such that

• for every bounded closed set B, φ(B) has a Poisson distribution with mean λ |
B |.

• If B1, B2, . . . , Bm are disjoint bounded sets , then φ(B1),φ(B2),. . . φ(Bm) are
independent random variables



A.2.2 Matern Point Process

Matern Process φ ( or Matern Hard-Core Process of type I) can be created by dropping

points from a uniform PPP φb with intensity λb. Flag all points for removal that have a

neighbour within distance r. Then remove all flagged points. Formally,

φ = { x ∈ φb : if | φb ∩ b(x, r) \ {x} |= 0 }

where b(x, r) is the n-dimensional ball centered at x of radius r. The figure below

shows Matern Point Process with its parent Poisson point process.

A.3 Moment Densities

The moment densities (also called joint intensity functions) of a point process φ are

functions ρk : (Rn)k → [0,∞) for k ≥ 1 such that for any family of mutually disjoint

subsets D1, . . . Dk of Rn,

E

[
k∏
i=1

φ(Di)

]
=

ˆ
∏
iDi

ρk(x1, . . . , xk)dx1 . . . dxk.

ρk(x1, . . . xk) are in a way a measure of the likelihood of {x1, . . . xk} being in a real-

ization of point process φ. Further the intensity λ(x) is simply ρ1(x).
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A.4 Palm Distribution Intensity

Palm Distribution means conditional distribution. For stationary point process φ, con-

dition on the occurence of point at Origin o. Then the resulting probability distribution

P (Y |o ∈ φ) is called the reduced Palm distribution and its intensity is (section 7.6 of

[7])
ρ2(x, o)

ρ1(o)

30



APPENDIX B

Simulating DPP

B.1 Determinantal Projection Process

A determinantal point process is a mixture of determinatal projection processes. Sup-

pose χ is a determinantal point process with kernel

K(x, y) = Σn
k=1λφk(x)φ̄k(y)

where φk are normalized eigenfunctions of K with λk ∈ [0, 1] the eigenvalues. Let Ik,

1 ≤ k ≤ n be independent random variables with Ik ∼ Bernoulli(λk). Define KI the

random analogue of kernel K as

KI(x, y) = Σn
k=1Ikφk(x)φ̄k(y)

and the point process with this kernel as χI . Then

χ = χI

An important property of determinantal projection processes is the following:

A determinintal projection process with kernelK(x, y) = Σn
k=1φk(x)φ̄k(y) where {φk}

is an orthonormal set, has almost surely n number of points.

B.2 The Algorithm

(from [9])

1. The first step is to find the eigen functions φ and eigenvalues λ of the matrix of
all possible values of K(x, y). (Eigen in Matlab)

2. Sample the iid Bernoulli random variables Bernoulli(λk) to get the determinan-
tal projection process KI(x, y) = ΣN

k=1φk(x)φ̄k(y) from K(x, y)



3. Define v(x) = (φ1(x), φ2(x), . . . φN(x))\

4. Sample point XN from the distribution pN(x) = |v(x)|2
N

5. Set e1 = v(XN )
|v(XN )|

6. For i = N − 1 to 1do
Sample Xi from pi(x) = 1

i

[
|v(x)|2 −

∑N−i
j=1 |e∗jv(x)|2

]
set wi = v(Xi)−

∑N−i
j=1 (e∗jv(x))ej and eN−i+1 = wi

|wi|
end for
return X1, ..., XN
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APPENDIX C

Proving Intensity Limit

λ = (ασ
√

2πe)−n is non negative, so what we need to check is

Isλ <
1

ce
?

ce <
1

λ

n
πn/2

Γ(1 + (n/2))

(ασ
√
n)n

β
Γ(
n

β
)e < (ασ

√
2πe)n

n

Γ(1 + (n/2))

(
√
n)n

β
Γ(
n

β
)e < (

√
2e)n

We’ve seen this form before and can realize that it will go through only for β = o(n).

Lets put β = n
n

Γ(1 + (n/2))

(
√
n)n

n
Γ(
n

n
)e < (

√
2e)n

(
√
n)n

Γ(1 + (n/2))
e < (

√
2e)n

Using Stirling’s Approximation for Gamma for large n

(
√
n)n√

2π
(1+(n/2))

(1+(n/2)
e

)(1+(n/2))
e < (

√
2e)n

Use the limit limn→∞(1 + 2
n
)−n/2 = e−1

e√
2π
√

(1 + (n/2))
< 1

which is true for suffieciently large n



APPENDIX D

Deriving Error Exponents

Consider the integral over a ball B of radius vσ
√
n centered at vσ

√
nx̂1

ˆ
B

λ(1− exp(− ‖x‖2kαn

(ασ
√
n)2kαn

) ) dµ(x)

≤
ˆ
B

λ
‖x‖2kαn

(ασ
√
n)2kαn

dµ(x)

Splitting x into the cartesian coordinates (x1, x2, x3,, ...xn), we get the integral as

ˆ 2v

x1=0

λ

(ασ
√
n)2kαn

ˆ
x22+x23+...x2n<v

2−(x1−v)2
(x2

1 + x2
2 + ...x2

n)kαndx2...dxndx1

which using binomial expansion becomes

λ

(ασ
√
n)2kαn

kαn∑
i=0

(
kαn

i

) ˆ 2v

x1=0

x
2(nkα−i)
1

{ˆ
x22+x23+...x2n<v

2−(x1−v)2
(x2

2 + ...x2
n)idx2...dxn

}
dx1

=
λ

(ασ
√
n)2kαn

kαn∑
i=0

(
nkα
i

) ˆ 2v

x1=0

x
2(nkα−i)
1

{
V n−1
B (1)

ˆ √v2−(x1−v)2

r=0

r2kαrn−2dr

}
dx1

=
λV n−1

B (1)

(ασ
√
n)2kαn

kαn∑
i=0

(
kαn

i

)ˆ 2v

x1=0

x
2(nkα−i)
1 (2vx1 − x2

1)
2i+nkα−1

2 dx1

=
λV n−1

B (1)

(ασ
√
n)2kαn

kαn∑
i=0

(
kαn

i

)
22nkα+n−1v2nkα+nΓ(i+ n

2
+ 1

2
)Γ(2kαn− i+ n

2
+ 1

2
)

Γ(1 + 2kαn+ n)

Let imax be i value that maximizes
(
kαn
i

)Γ(i+n
2

+ 1
2

)Γ(2kαn−i+n
2

+ 1
2

)

Γ(1+2kαn+n)
. The value of imax can

be found by differentiating wrt to kα and solving for root.

∂

∂kα

[(
kαn

i

)
Γ(i+ n

2
+ 1

2
)Γ(2kαn− i+ n

2
+ 1

2
)

Γ(1 + 2kαn+ n)

]
= 0

Doing the differentiation, we get in the numerator (where PG is the PolyGamma

function)

PG(0, 1+kαn− i)+PG(0,
1

2
+
n

2
+ i)−PG(0, 1+ i)−PG(0,

1

2
(1+4nkα+n−2i))



Using PG(1 + x) ≈ log(1 + x) we have

(1 + kαn− imax)(
1

2
+
n

2
+ imax) = (1 + imax)

1

2
(1 + 4nkα + n− 2imax)

imax =
nkα(n− 3)

2(n+ nkα − 1)

which for large n is

imax =
kαn

2(kα + 1)

The correspoding maximum value is

(
kαn

imax

)
Γ(imax + n

2
+ 1

2
)Γ(2kαn− imax + n

2
+ 1

2
)

Γ(1 + 2kαn+ n)

Using
(
x
y

)
= Γ(1+x)

Γ(1+y)Γ(x−y+1)

Γ(1 + kαn)

Γ(1 + kαn
2(kα+1)

)Γ(kαn− kαn
2(kα+1)

+ 1)

Γ( kαn
2(kα+1)

+ n
2

+ 1
2
)Γ(2kαn− kαn

2(kα+1)
+ n

2
+ 1

2
)

Γ(1 + 2kαn+ n)

We are interested only in the upper bound for the exponential terms. Taking Γ(x) ≤

c(x
e
)xand for large n

≤
(kαn)kαn( kαn

2(kα+1)
+ n

2
)

kαn
2(kα+1)

+n
2 (2kαn− kαn

2(kα+1)
+ n

2
)2kαn− kαn

2(kα+1)
+n

2

( kαn
2(kα+1)

)
kαn

2(kα+1) (kαn− kαn
2(kα+1)

)kαn−
kαn

2(kα+1) (2kαn+ n)2kαn+n

≤ (2kα + 1)
2kα+1

2
n

2(kα+1)n(kα + 1)(kα+1)n

Getting back to our original expression

λV n−1
B (1)

(ασ
√
n)2kαn

kαn∑
i=0

(
kαn

i

)
22nkα+n−1v2nkα+nΓ(i+ n

2
+ 1

2
)Γ(2kαn− i+ n

2
+ 1

2
)

Γ(1 + 2kαn+ n)

≤ λV n−1
B (1)

(ασ
√
n)2kαn

.kαn.

(
kαn

imax

)
22nkα+n−1v2nkα+nΓ(imax + n

2
+ 1

2
)Γ(2kαn− imax + n

2
+ 1

2
)

Γ(1 + 2kαn+ n)

which simplifies to

≤ λV n−1
B (1)

(ασ
√
n)2kαn

.kαn.
(2v)2kαn+n(2kα + 1)

2kα+1
2

n

2(kα+1)n(kα + 1)(kα+1)n
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now using expression for volume of unit ball

c(ασ
√

2πe)−n( 2πe
n−1

)
n−1
2

(ασ
√
n)2kαn

.kαn.
(2v)2kαn+n(2kα + 1)

2kα+1
2

n

2(kα+1)n(kα + 1)(kα+1)n

Collecting only the n−exponetial terms

=

{
(2kα + 1)

1
2 .2

kα
2kα+1

(kα + 1)
kα+1
2kα+1

.
v

α

}(2kα+1)n

This means

b(v) = (2kα + 1)

{
log(α)− log(v) + log(

(kα + 1)
kα+1
2kα+1

(2kα + 1)
1
2 .2

kα
2kα+1

)

}
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APPENDIX E

Sphere Packing Problem

The following table from [13] gives the best known density of sphere packing bounds

in d dimensional space

[3] is the best reference for sphere packing and contains the best known upper

bounds of today. [12] provides new upper bounds for certain dimension spaces. [13]

shows how to use point process for improving lower bounds of sphere packing.
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