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ABSTRACT 

 

KEYWORDS: Object Tracking, Parallel System, Multi-core processor, Frame subtraction,       

connected components, XMOS. 

 

In this thesis a new system is developed for tracking an object in a video frame in a muticore 

multithreading environment. Memory storage, object tracking algorithm and displaying the 

output in Liquid Crystal Display(LCD) all run in different threads simultaneously. The 

developed system will serve as a test platform for testing any other object tracking algorithm.  

 

The object tracking system uses 6 threads that run in parallel while 1 thread is used initially to 

load the images into SDRAM in RGB565 format. We have achieved a frame rate of 8 frames/s 

for an image of size 480x272. In addition, we also did experiments on memory and timing 

analysis on a multithreaded platform. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation 

 

Pipelining is a natural concept in everyday life, e.g. on an assembly line. Consider the assembly 

of a car: assume that certain steps in the assembly line are to install the engine, install the hood, 

and install the wheels (in that order, with arbitrary interstitial steps). A car on the assembly line 

can have only one of the three steps done at once. After the car has its engine installed, it moves 

on to having its hood installed, leaving the engine installation facilities available for the next car. 

The first car then moves on to wheel installation, the second car to hood installation and the third 

car begins to have its engine installed. If engine installation takes 20 minutes, hood installation 

takes 5 minutes, and wheel installation takes 10 minutes, then finishing all three cars when only 

one car can be assembled at once would take 105 minutes. On the other hand, using the assembly 

line, the total time to complete all three is 75 minutes. At this point, additional cars will come off 

the assembly line at 20 minute interval. 

 

There‟s an everlasting pursuit of realism in computational sciences. Traditional serial computing 

(single processor) has limits in terms of the following: 

 Physical size of transistors 

 Memory size and speed 

 Instruction level parallelism is limited 

 Power usage, heat problem 

 

One solution to these problems is parallel computing: simultaneous use of multiple processing 

units to solve one computational problem. The advantages are: 

 Saving time 

 Solving larger problems 

 Access to more memory 
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 Better memory performance 

 Providing concurrency 

 Saving cost 

 

Mobile and portable platforms increasingly require the ability to handle images and videos 

smoothly. Image data is large in size and mobile devices can afford to have only a chip or two to 

perform the processing. It is therefore important to study computing devices that support parallel 

processing so that applications run in real-time. Some of the contemporary computing solutions 

are based on Field Programmable Gate Arrays (FPGAs) and processors that support multi-

threading. This project examines the power of the latter. In particular, the project examines the 

use of multi-threaded and multicore processors from XMOS for performing a typical image 

processing task namely object tracking, at high speed. We briefly review the basics of object 

tracking as well as multithreading and then proceed to state the precise contributions of this 

project. 

 

1.2 Object tracking 

 

Computer vision has become an important application of smart embedded systems used in a wide 

range of fields ranging from human computer interaction to robotics. Object tracking is a 

fundamental component of computer vision that can be very beneficial in applications such as 

unmanned vehicles, surveillance, automated traffic control, biomedical image analysis and 

intelligent robots, to name a few. Object tracking is used for identifying the trajectory of moving 

objects in video frame sequences. Like most computer vision tasks, object tracking involves 

intensive computation in order to extract the desired information from high-volume video data. 

In addition, the real time processing requirements of different computer vision applications stress 

the need for high performance object tracking implementations. 

 

In addition, real time performance is another constraint which mainly depends on the algorithm 

used for tracking. Hence, object tracking is a challenging task. In this report, we deal with 

moving object tracking problem. All objects with significant motion are tracked. 
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The most common approach to track objects is to first detect them using background subtraction 

and then, establish correspondence from frame to frame to find the tracks of the objects. Despite 

its popularity, background subtraction based methods still lack the robustness to handle specific 

events such as tracking multiple interacting objects with heavy occlusion, the most unwanted 

events that often happen in video. In video sequences, these interactions result in several 

challenges to the tracking algorithm. Since blob generation of moving objects is based on 

connected component analysis, closed objects generate a single merged object, and in this 

situation, visual features of the occluded objects are not observed and occluded objects cannot be 

tracked. 

 

In cases where background is not static we need to follow a completely different approach. An 

example for non-static background is tracking a car in a highway. Here we need to describe the 

object based on certain sharp features. These features should be such that, we can differentiate 

object with that of the background. It is sufficient if we are able to “Detect” the object in every 

frame. In order to detect the moving car, you can choose color, size, model etc.  But the chosen 

feature can easily match with another car that is passing closer to the car which needs to be 

tracked. So much sharper features are necessary while tracking cars in a highway. In order to 

detect clouds, we can take features such as color (blue) and image derivative to get the boundary 

between cloud and the sky. So with these two simple features, we can detect clouds. But In order 

to detect a snake, we need to have even more features as snakes are of different colors and size. 

The features chosen for snake can easily be confused with worms if we missed any feature that 

distinguishes worms and snakes. So “Object Representation” or “Feature Selection” is very 

important for detecting an object. A set of features or “Object Descriptor” is similar to DNA or 

finger print which helps differentiate one object from the other. 

 

From the discussion above, we can see that each object needs special set of features or “Object 

Descriptor” in order to detect them. Histogram of Oriented Gradients (HOG) is one such object 

descriptor used mainly for human detection. With added features to HOG, it is possible for 

human identification but it is much different algorithm than detection. HOG based tracker will be 

explained later in the report. 
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1.3 Literature survey 

 

Even though implementing parallel object tracking application is the main objective of the 

project, the project involved thorough learning about the basic image processing concepts and 

sequential object tracking for moving on to parallel coding. The textbook by Gonzalez and 

Eddins [9] provides all the concepts required for the basics of image processing. 

 

Numerous algorithms for object tracking have been proposed. It is a complex task which 

comprises two main subtasks: i) object detection and ii) tracking. Object detection algorithms 

can be classified according to Yilmaz et al [3] into point-detection schemes, background 

subtraction techniques, and supervised learning techniques. Furthermore the tracking portion of 

object tracking can be performed either separately or jointly with object detection. Tracking aims 

to generate the trajectory of objects across video frames and Yilmaz et al. [3] characterized 

tracking algorithms across three main categories: i) point tracking, ii) kernel tracking, and iii) 

silhouette tracking. In this work we leverage an efficient algorithm which is based on frame 

subtraction detection. The main focus of this work is on the performance improvement achieved 

over a software implementation from a carefully-crafted hardware implementation on the XMOS 

Slicekit.  

  

Several object tracking algorithms have been implemented on reconfigurable devices in previous 

works. Nevertheless, one of the biggest challenges of custom hardware implementations is 

mapping complex algorithms onto reconfigurable fabric architectures that can offer good 

performance under rigid resource constraints. Usman et al. [4] adopted an FPGA software 

processor based design to implement mean shift [3] based object tracking. However, the biggest 

size of tracked objects is limited to 32 x 32 pixels and the performance is very low. For the 

evaluation of our implementation, we use a XMOS Slice kit device. We achieve performance of 

8 fps for 480 x 272 pixels per frame.  

 

There is an extensive literature on object detection, but here we mention a seminal paper on 

human detection [7]. In contrast [7] detector uses a simpler architecture with a single detection 

window, but appears to give significantly higher performance on pedestrian images. Jablonski 
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and Gorgon [6] have implemented this classic two-pass algorithm on an FPGA. This uses 

stream-based processing, with a small local window in the first pass, and a point operation (the 

merge table lookup) in the second pass, giving a latency of one frame. 

 

Several high-speed parallel algorithms exist for connected components labeling [5]. While such 

algorithms give considerable speed improvement over the classic algorithm, this speedup is 

achieved through massive parallelism. Such parallelism is very resource intensive, requiring a 

large number of essentially identical processors. Parallel connected components labeling [2] is 

also proposed in this report.  

 

It uses very simple processing, but requires multiple passes through the image to completely 

label an image. Being iterative, it requires a frame buffer to store the intermediate image between 

passes. The number of passes required depends on the complexity of the region shapes, making 

such an algorithm unsuited for real-time processing.  

 

A modification [1] to the classic two-pass algorithm enables a single pass implementation, 

eliminating the need for a frame buffer, and significantly reducing the latency. A single pass 

algorithm must extract the features of interest for each component while determining the 

connectivity. This removes the need for producing a labeled image and avoids the second, 

relabeling pass. However, it requires merging and relabeling on the fly to ensure that consistent 

results are obtained. 

 

1.4 Multicore XMOS architecture 

 

Real time operation can be accomplished via parallel processing or multithreading. A thread is 

part of a program which can run independently. Any process or an application program can be 

split into independent smaller codes which can be made to run as a thread. Multithreading CPUs 

have hardware support to run each thread concurrently. It can be compared with multiprocessing. 

The main difference between multithreading and multiprocessing is that, error in one thread can 
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bring down all the threads in a process whereas an error in one process cannot bring down 

another process. 

 

For instance, if video compression and pipelined object tracking are two different processes, 

failure in video compression may not affect object tracking process and vice versa. In object 

tracking process, we have memory interface, algorithmic unit and LCD display for the output as 

independent units of the code. Independent here refers to the ability to fetch next image data and 

store it in memory while processing the current image. However, failure in storing the next 

image data in memory by a memory interface thread can affect other subsequent threads in the 

object tracking process. 

 

1.5 Contributions of the project 

 

The contributions of the project are as follows. 

 

1. Design of a pipelined object tracking system that runs on several threads. 

2. Interfacing SDRAM and LCD for storage of image sequences to facilitate streaming and 

processing using different threads and to display the video with results of object 

tracking. 

3.  Implementation of object tracking (based on frame subtraction) on an XMOS multi-

threaded microcontroller to design an embedded system. 

4.  Analysis of memory and time for embedded implementation. 

 

1.6 Organization of the report 

 

The remainder of this report has been organized as follows. 

 

Chapter 2 explains the Pipelined processing for Object tracking, Frame subtraction and 

Connected Component Analysis (CCA) in detail. It also explains issues in object tracking. 
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Chapter 3 gives an introduction to experimental setup. It explains the parallel processor we used 

in this project and also gives an idea of how the setup has been developed. Experimental results 

are provided here. 

 

Chapter 4 gives the memory and timing analysis. It also gives code development and resources 

consumed. 

 

Chapter 5 gives an approach to improve performance by parallel CCA in detail. 

 

Chapter 6 concludes the report. Some pointers to future extensions are provided. 
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CHAPTER 2 

 

PIPELINED OBJECT TRACKING 

 

In this chapter we have discussed the basics of pipelined object tracking and its algorithm. 

Detecting a particular object in each and every frame of the video is known as object tracking. 

Real time performance is the main challenge in object tracking. It depends on the algorithm used 

for tracking.  

 

2.1 Object tracking 

 

Detecting a particular object in every frame of the video is known as object tracking. Almost any 

existing object tracking algorithm can track an object, if the image sequences are noise free but 

the amount of resources it consumes may be huge. This section explains three different methods: 

(i) Background subtraction, (ii) Frame subtraction, (iii) Histogram of Oriented Gradients (HOG) 

for object detection in detail 

 

2.1.1 Background subtraction 

 

Background subtraction is the process of separating out foreground objects from the background 

in a sequence of video frames. Background subtraction is a widely used approach for detecting 

moving objects from static cameras. Fundamental logic for detecting moving objects from the 

difference between the current frame and a reference frame, called background image. 

Background being static means, there should not be any illumination changes, any moving leaves 

due to wind or any waves or ripples in pond, and any moving clouds. So the environment is 

much tighter as shown in the figure 2.1. Artificial lighting environment like inside an office may 

be an ideal static background. 
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Figure 2.1: Background Subtraction 

Gaussian mixture models, Eigen model etc. are used when background remains static. In 

Gaussian mixture models and Eigen models, the static background is modeled using a set of 

video frames. After 10 to 20 frames, objects can be tracked with ease using these background 

models. These background modeling algorithms handles changes in the background to some 

extent as it always adapts itself after every 10 to 20 frames. Every frame is subtracted from the 

background model to get a difference image. Using this difference image, all the foreground 

objects can be identified. From this foreground we can detect the required object using some 

other algorithms and hence the object can be tracked. Flow chart of Background subtraction is 

shown in the figure 2.2. 

 

 

Figure 2.2: Flow chart of Background subtraction 
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In simple background subtraction, we will usually have the background of the video in advance. 

For example, inside an office, background can be an image (when nobody is present inside) with 

all lights switched on. There is another method called Frame subtraction, which is much 

sophisticated than Background subtraction as the variation in the background can be tolerated to 

some extent. Once we obtain the difference image, it has to go through threshold to obtain a 

binary image. Threshold is fixed for a particular video clip. It is easy to identify an ant in white 

background rather than a black background. It will also vary if you resize the images in the 

video. So choosing the right threshold is empirical. 

 

2.1.2 Frame subtraction 

 

Frame subtraction is an improvement made on the background subtraction where we subtract the 

n
th

 frame from (n-k)
th

 frame instead of one frame, generally k=1. It works better than background 

subtraction as small movements in the background such as moving clouds, leaves and ripples in 

the pond etc. can be handled well. Background model has to be updated in each and every frame 

to handle such dynamics in the background. In the code that is developed based on the paper 

does not involve background modeling as in the paper and also does not handle occlusion. Flow 

chart of Frame subtraction is as shown in figure 2.3. 

 

 

Figure 2.3: Flow chart of Frame subtraction 

The difference image obtained in frame subtraction is quite different from that of background 

subtraction. Figure 2.4 shows how Frame subtraction and binarisation is done. The moving 

objects whose intensity is constant won‟t be visible in the binary image. If a square with constant 
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intensity (white) moves on a black background, we will be able to see only the edges of the 

square in the frame subtracted difference image. Whereas in background subtraction, you will be 

able to get complete square in the binary image. In reality such constant intensity objects are 

very rare and the noise present in the image will definitely turn on few pixels between the two 

lines.  

 

 

(a) 

 

(b) 

Figure 2.4: Frame subtraction and binarisation 

 

In frame subtraction method, we will essentially increase noise while subtracting two different 

frames. Hence the path of any object will be predicted with greater noise. If the object is moving 

in a complex track, the predicted track may not be smooth. Kalman filter can be used to reduce 

such noise and smooth track can be obtained in some cases. 
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Pseudo code 1: Frame subtraction and binarisation 

1: Input : RGB 565 image 

2: Output : Binary image 

3: 

4: for i = 1 to height(Image) do 

5:  for j = 1 to width(Image) do 

6:   grn_pix_img1= (0x07E0 & row_buffer_img1[j])>>5 

7:   grn_pix1_img2 = (0x07E0 & row_ buffer _img2[j])>>5 

8:   if grn_pix_img1 > grn_pix_img2 then 

9:    diff = grn_pix_img1-grn_pix_img2 

10:   else 

11:    diff = grn_pix_img2-grn_pix_img1 

12:   end if 

13:   if diff > binThreshold then 

14:    bin_img_pix=0xFFFF 

15:   else 

16:    bin_img_pix=0x0000 

17:   end if 

18:  end for 

19: end for 

 

There are three more parameters which has relevance to getting nice blobs in the binary image. 

They are area threshold, pixel level threshold and subtracting frame (k frames older than the 

current frame).Value of k can usually be kept 1. That is, we are subtracting the current frame 

with previous frame. Pixel level threshold depends mostly on the contrast between the 

foreground and background objects. Pixel level threshold value has to be higher than the noise 

intensity and lesser than foreground intensity value. Its value can be kept as 25 (obtained after 

experimenting with 5-6 videos). Area threshold depends mainly on the size of the image. It is 

directly proportional to the size of the image. If the value of area threshold is 30 for 120x160 

image sequences, it will be 60-70 for 240x320 image sequences. All these parameters have to be 

set correctly for a new video for proper tracking. 
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2.1.2 Histogram of Oriented Gradients (HOG) 

 

Histogram of Oriented Gradient (HOG) is an object descriptor. A set of features (color, intensity 

gradient, area, scale etc.) which helps in describing an object is known as descriptor. HOG is a 

descriptor mainly used for detecting humans in an image. This set of features is invariant to scale 

(to some extent). It mainly depends on two factors, one is the contrast between foreground and 

background and the other is the geometry of the object. 

 

HOG captures the local features of an object much better than any of the other descriptors. A 

detailed description of HOG can be read from Dalal and Triggs [7]. An online lecture Shah [14] 

is also available on HOG which gives very clear explanation of the same. 

 

Extraction HOG features 

 

 

Figure 2.5: Extracting HOG feature 

 

Figure 2.5: Histogram binning and 

interpolation 
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Consider the image shown in the figure 2.5. It is an image of size 64 x 128. Divide the image 

into 16 x 16 blocks with 50 percent overlap. There will be a total of 105 blocks (7x15). Each 

block is further divided into 2 x 2 cells. A single cell has 8 x 8 pixels inside them. Take gradient 

of the cells and quantize them into 9 bins as shown in figure2.6. This vector of length 9 is a 

feature vector describing that particular cell. Concatenating all the feature vectors gives us a 

super vector of size 3780 (105 x4 x9). This super vector describes the entire image. Authors of 

the paper Dalal and Triggs [7] have given a simplified code for extracting HOG feature from an 

image. 

Tracking using HOG features 

In the initial frame, we need to enter the object‟s location and its bounding box manually. From 

the initial bounding box, we extract HOG features and it describes the object for the next frame. 

We also extract HOG features from around the object in order to describe the background. In the 

next frame, we search for the object around its initial location. In the search radius we keep the 

size of the initial bounding box as constant. We keep extracting HOG features from the bounding 

boxes inside the search radius and compute its distance from the features extracted in the last 

frame. The bounding box which is closest to object feature (extracted in last frame) is assigned 

as the new location of the object in current frame. 

During tracking, scale of the objects might vary through the image sequence and we need to 

predict the object‟s location in real time. Different objects will have different area on the image 

and hence we cannot use same window size for every object. Moreover, there is a problem of 

drift while tracking using descriptors. This drift occurs due to constant addition of noise from the 

background. Because of this drift, the bounding box slowly recedes from the object and gets 

stuck to one location in the background with slight jiggle from frame to frame. In the code, we 

have handled partial occlusion but it cannot detect an object which has disappeared due to 

complete occlusion and comes back again in the scene 20-30 pixels away from the original 

position. For example, it cannot detect a car completely occluded by a tree once and comes back 

into the scene at the other end of the tree. In order to detect the car in such situations, search 

radius has to be increased and it might affect real time performance. 
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In order to improve the feature vector of the object, we included initial location, mean, variance 

and skewness of intensity along with HOG features. Initial location was useful when the object is 

moving slow otherwise drift gets increased.  

2.2 Issues in object tracking 

 

Real time speed requirements, illumination changes, object shape changes, noise in images and 

occlusion are few major problems when dealing with object tracking. While we cannot remove 

noise which depends on the sensor used inside the camera we can deal with other issues to some 

extent. Handling occlusion is one of the major issues in descriptor based tracking. There are two 

different occlusions, partial and complete occlusion. To deal with occlusion, machine learning 

(or statistical) concepts can be used rather than simple algorithms. For example, if we want to 

track a particular book and we are able to track it using descriptor based object tracking. Certain 

unique features or descriptors are extracted from the book and used for detecting it in every 

frame. Now if some other book partially starts occluding, then the descriptor gets changed. We 

have two set of descriptors representing the same book. When the book comes out of occlusion, 

the algorithm might start tracking the other book which occluded our original book. These kinds 

of issues usually come up while doing experiments with different set of videos. 

 

2.3 Connected Component Analysis (CCA) 

 

Connected components analysis is a well-known pre-processing step in many image processing 

applications. It is not only used to divide the image into its constituent parts and to give different 

labels for each segment, but also a key step in the tracking of moving objects in video sequences. 

Image labeling using the connected components analysis is a key step in pattern recognition, 

target tracking, computer vision, fingerprint identifications, character recognition, medical 

images analysis and many other image-based applications. Connected component analysis can be 

defined as the process in which a binary image is transferred into N-state image where all 

connected pixels which belong to one object are assigned a unique label. 
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Connected component analysis is the main sub-module in frame subtraction algorithm. After 

thresholding the difference image, we obtain a binary image. This binary image has blobs which 

have to be analyzed to obtain foreground object‟s location in image, area and bounding box. In 

figure 2.7 there are three complex objects and they have to be labeled as shown. CCA helps us to 

obtain area, bounding box and centroid information from the binary image.  CCA retrieves the 

features (area, bounding box etc.) in a single pass without giving any labels. 

 

 

Figure 2.7: Connected components 

 

Connected component labeling has been widely investigated and many algorithms have been 

proposed. These algorithms vary in their complexity and speed, and they can be roughly 

classified into two main categories. The first group of algorithms attempts to solve the 

connectivity between pixels using multiple scans. They keep scanning the image, forward and 

backward to resolve label equivalences until there is no change. The other group attempts to 

assign the labels using two-scans only. In the first scan they assign initial labels and in the 

second scan they resolve the equivalence between the labels. In this report, a fast two-scan 

connected component algorithm is implemented to divide the image into its individual 

components. 
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2.4 Single pass algorithm for CCA 

 

The single-pass connected components algorithm has four main blocks, as shown in figure 2.8: 

 

 

Figure 2.8: Basic architecture of Single pass algorithm. 

 

1. The neighborhood context block provides the labels of the four pixels connected to the current 

pixel being processed. 

2. The label selection block selects the label for the current pixel based on the labels of its 

neighbors. 

3. A merger control block is required to update the merger table whenever two objects are 

merged. 

4. The data table accumulates the raw data from the image required for calculating the features of 

each connected component. Since the image data is not retained, it must be accumulated for each 

connected component as the image is scanned. 

 

2.4.1 Neighborhood context 

The neighborhood context is implemented in much the same manner 

as a window filter. The neighboring pixel labels are stored in 

registers A, B, C, and D as show in figure 2.9. These are shifted 

along each clock cycle as the window is scanned across the image. 

Since the resultant labels are not saved, the labels from the 

Figure 2.9: A label is assigned 

to the current pixel based on 

already processed neighbors. 
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previous row must be cached using a row buffer. The labels from the cache must also be looked 

up in the merger table to correct the label for any mergers since the pixel was cached. 

 

2.4.2 Label selection 

 

The label for the current pixel follows that of the classic connected components algorithm: 

 

• Background pixels are given a label of 0. 

• If all of the neighboring pixels are background, then a new label is assigned. 

• If only a single label is used among the labeled neighbors, that label is also assigned to the 

current pixel. 

• If two different labels are used among the neighbors, then this indicates a merger condition. For 

reasons that will be explained later, we assign the smaller of the two labels to the current pixel. 

In practice, the selection logic may be simplified by considering the neighborhood pixels in a 

particular order. A merger will only occur if pixel B is background and the label of C is different 

from either A or D. In all other cases, the labels will already be equivalent from prior processing. 

 

2.4.3 Merger control 

 

The merger table is used as a look-up table on the output of the row-buffer. This ensures that the 

correct label is used for any labels that have been stored in the row buffer which have 

subsequently been merged. Whenever a new label is created, a new entry is added to the merger 

table pointing to itself. This avoids the need for initializing the merger table prior to processing. 

To keep the merger table up to date, whenever a merger occurs, the label that is replaced should 

subsequently point to the merged label. This means that in addition to reading from the merger 

table every clock cycle, there is also the need to write on some clock cycles. Since only one 

access may be made to memory each clock cycle, this requires either running the merger table 

RAM at twice the clock frequency, or using dual-port RAM with one port for the read and one 

for the write. When a merger occurs, the new label must replace all occurrences of the old label 

within the neighborhood. This requires a multiplexer on the input of register B. Register A does 
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not require a multiplexer because B is always a background pixel whenever regions are merged. 

Timing considerations also require a multiplexer on the input of register C. The next value for C 

is being read at the same time that the merger table is being updated. Therefore the value read 

from the merger table will reflect the label before the merger. So if the next value for C is not the 

background label, the newly merged label should also be copied to C. It is essential that the 

correct label be selected to represent the region when a merger occurs 

 

2.4.4 Data table 

 

As each pixel is processed, the data table is updated to reflect the current state of each region. 

The data that needs to be maintained depends on the features that are being extracted from each 

connected component. If only the number of regions is required, this can be determined with a 

single global counter. Each time a new label is assigned, the counter is incremented, and when 

two regions merge, the counter is decremented. For measuring the area of each region, a separate 

counter is maintained for each label. When two regions are merged, the counts are combined. For 

determining the center of gravity of the region, the sums of the x and y coordinates are 

maintained. At the end of the image, these can be divided by the area to give the region center. 

To obtain the bounding box of each region, the extreme coordinates of the pixels added are 

recorded. Other, more complex, features may be determined in a similar manner by accumulating 

the appropriate raw data. 

 

2.4.5 Table sizes 

Both the merger and data tables require one entry for each label used. 

The worst case for the number of objects possible in an M×N image is 

illustrated in Figure: 2.10 and requires 

           (
 

 
)        

 

 
   Objects. In practice the actual number 

of labels required is significantly less than this, with the number 

required depending on the expected region size and shape. 

Figure 2.10: Worst 

case number of objects 
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Pseudo code 2: Single pass connected component analysis 

 

1: Input : Binary image 

2: Output : Data tables storing component features 

3: Initialisation : a=0, c=0, c=0, d=0, label_cnt=0 

4: Row_buffer[i]=0 for all i 

5: Merger_table[i]=0 for all i 

6: Left_border_table[i]=0 for all i 

7: Right_border_table[i]=0 for all i 

8: 

9: for i = 1 to height(Image) do 

10:  for j = 1 to width(Image) do 

11:        p = pixel(i, j) 

12:   if p is not object_pixel then 

13:    current_label = 0 

14:   end if 

15:   if p is object_pixel then 

16:    if each of a, b, c, d = 0 then 

17:     label_cnt = label_cnt + 1 

18:     current_label = label_cnt 

19:    end if 

20:    if exactly one of a, b, c, d ≠ 0 then 

21:     current_label=non_zero_value(a, b, c, d) 

22:    end if 

23:    if c and a ≠ 0 or c and d ≠ 0 then 

24:     current_label = minimum(c, a) or minimum(c, d) 

25:     Merger_table[c] = current_label 

26:     Merger_table[a] = current_label 

27:    Merger_table[d] = current_label 

28:     update Data_table[current_label] 

29:    end if 
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30:    if j = 1 then 

31:     Left_border_table[i]=current_label 

32:    end if 

33:    if j = width then 

34:     Right_border_table[i]=current_label 

35:    end if 

36:   end if 

37:  a = b 

38:  b = c 

39:  Row_buffer[j-1] = d 

40:  d = curren_label 

41:  c = Row_buffer[j+2] 

42:  end for 

43: end for 

 

SUMMARY 

 

1. Real time object tracking can be accomplished via parallel processing or multithreading 

and pipelining. 

2. The main aim of any object tracking algorithm is to provide the trajectory of an object 

over time by locating its position every frame of the video. 

3. In simple background subtraction, we will usually have the background of the video in 

advance. 

4. Handling occlusion is one of the major issues in descriptor based tracking. 

5. Frame subtraction is an improvement made on the background subtraction where we 

subtract the nth frame from (n-k)
th

 frame instead of one frame. 

6. Connected components analysis is used to divide the image into its constituent parts and 

to give different labels for each segment, but it is also a key step in the tracking of 

moving objects in video sequences. 
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CHAPTER 3 

 

IMPLEMENTATION ON MULTICORE XMOS ARCHITECTURE 

 

This chapter gives an introduction to experimental setup. It explains the parallel processor we 

used in this project and also gives an idea of how the setup has been developed. Experimental 

results are provided here. Real time operation can be accomplished via parallel processing or 

multithreading and pipelining. A thread is a part of a program which can run independently. Any 

process or an application program can be split into independent smaller codes which can be 

made to run as a thread. Multithreading CPUs have hardware support to run each thread 

concurrently. It can be compared with multiprocessing. In object tracking process, we have 

memory interface, algorithmic unit and LCD display for the output as independent units of the 

code. 

 

3.1 SliceKIT and setup 

SliceKIT comprises a core board powered by an xCORE multicore microcontroller with four 

slots for plugging in four I/O sliceCARDs. The sliceKIT core board features a dual-tile device 

that delivers the deterministic, responsive processing required to handle a variety of peripheral 

interfaces, data processing and control tasks. Each additional I/O sliceCARD is supplied with a 

demo application that allows getting up and running quickly. The result is a framework of 

peripherals and I/O providing with an exact fit chip for your system. 

A large and growing range of expansion slices supporting a broad range of I/O types are 

available. The slices connect to the core board using low cost PCIe style connectors. This 

reduces the cost of slices since the connectors are simply contacts on a dual sided PCB. It also 

means adding slice is straightforward. Core board comprises of 16 core xCORE multicore 

microcontroller.  Rapid prototyping of systems becomes possible with slice kit because it 

supports a lot of interfaces available as slices. We use SDRAM and LCD slices for our project. 

The experiment setup is shown in the figure 3.1.  
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Figure 3.1: Slice kit setup 

SDRAM used in our project has a size of 8 Megabytes. LCD screen size is 480 x 272. In the 

main board you will be able to see four slots available: square, circle, start and triangle. We can 

even interchange the position of LCD and SDRAM but we need to modify ports accordingly. As 

discussed, before developing applications for slice-kit we need to understand its hardware 

specifications. 

In the figure 3.2 socket_00, socket_01, socket_10, socket_11 represent square, star, circle and 

triangle respectively. X0 indicates XCore0 and X1 indicates XCore1. We have to use correct 

ports in the application program. 
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Figure 3.2: Slice kit port map 

3.2 LCD Slice 

Features 

 480 x 272 full color display 

 40-pin ZIF connector with ribbon cable to the display 

 Resistive touch screen with 2 wire interface to xCORE 

The LCD used in our project has a resolution of 480 x 272 with pixel format of RGB565. The 

xCORE multicore microcontroller drives the display directly without the use of an external LCD 

controller, via a parallel RGB interface. The SDRAM slice could also be a useful addition to 

system, providing additional data memory for frame buffering. We have used sc_lcd-master 

which is an open source code of XMOS available at http://www.github.com/xcore. It displays 

XMOS logo on the screen. In this case, they store the entire image in RAM to display the image 

and use RGB565 format for lightening each pixel. The main reason for not using RGB888 

format is due to lack of availability of output pins in the slice kit. 
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The code writes two neighboring pixels at a time. An integer data type is of 32 bits, first 16 bits 

correspond to one pixel and the later 16 bits correspond to its neighboring pixel. For example, 

0xFFFF0000 makes the first pixel black and second pixel white. An image has to be in above 

format to be displayed on the LCD screen. First an image of RGB888 format has to be converted 

into RGB565 format. Then we need to concatenate two neighboring pixel. The following 

example explains how to concatenate two pixels. The figure 3.3 gives overall picture of the 

SDRAM working. 

0xF0FF 0x00FF 0x01AE 0xFF0F . . . be the first four pixel value in RGB565 format without 

concatenation. 0x00FFF0FF 0xFF0F01AE will be our new concatenated format useful for 

displaying on LCD screen. So an image of size 120x160 in RGB24 format will become 120x80 

in our new format.  

 

Figure 3.3: LCD server 

LCD server takes care of the port configuration. It gets the data to be displayed in the correct 

format from the application program written by us and displays it on the screen. lcd_init, lcd_req, 

lcd_update are three main functions used in the code. lcd_init checks whether the LCD is ready 

for use. It checks for a control token of a given value. If the next byte in the channel is a control 

token which matches the expected value then it is input and discarded, otherwise an exception is 

raised. lcd_req is again similar to lcd_init where a token is sent through channel indicating the 

previous write operation on the LCD is complete and hence the server can receive next data to be 

written on the screen. lcd_update receives a row of information from the application program 

(row here means 240 x 32 bits or an integer array of size 240. Number of pixels in a row is 480. 

Since we write two pixels at a time in RGB565 format we only need an integer array of size 
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240). LCD server takes care of how to display the entire row. Having finished displaying the 

entire row, lcd_req will receive a token indicating that we can send the next row‟s data. This 

happens in an infinite while loop to display an image continuously. 

Double buffer 

Double buffer is used to prevent flickering while displaying image on the LCD. We have image 

data stored in SDRAM. As the size of the LCD screen is 480 x 272, a single row of pixel will 

need a buffer of size 240 x 4 bytes. An integer array of size 240 is required to display one row in 

LCD. It is 240 and not 480 because we use RGB565 format. 

In double buffer usage, we have two integer buffers of size 240. While buffer A is being 

displayed on the LCD, buffer B is getting filled up with data for next row of pixels from 

SDRAM. Timing becomes important for real-time performance. In the code given in appendix, 

while displaying buffer A, we are clearing buffer B instead of loading it with next row data and 

vice versa. The necessity of clearing will be explained shortly. We can also triple buffer if we 

have memory to improve on time complexity. 

There are two other functions that are fairly important. “add” and “sub” function. The server 

works with a dual buffer concept. There are two integer buffers of size 240. Buffer A is meant 

for displaying even rows while buffer B is meant for displaying odd rows on the LCD screen. 

The total number of rows on the LCD is 272. Let the size of an image we need to display be 120 

x 160 and assume we display it in the left corner of the LCD. Both A and B are initialized with 

the background color to start with. Between 1
st 

row and 120
th

 row we need to update the values 

of these buffers according to the image and this is done by the “add” function. Once we have 

finished displaying the entire image, we must display background for the entire 121
st
 row but in 

the buffer B we will still have values of 119
th

 row‟s data. Hence, the rest of the rows (121 - 270) 

will be filled with values of 119
th

 row. To avoid this we use sub function which updates (resets) 

the buffers with background color after displaying the entire image. 

SDRAM and LCD are running in parallel. The following code snippet will help you understand 

they run in two different threads. Even though only 2 threads are required, 6 more threads are 

added to simulate worst case scenario. Instead of par (int i=0; i<6; i++) while(1);, we can write 
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while(1); 6 times both means the same. The figure 3.4 shows the clock frequency versus number 

of threads. If more than 4 threads are active, each thread is allocated at least 1/n cycles (for n 

threads). 

 

 

 Figure 3.4: Processing speed versus number of parallel threads  

 

3.3 SDRAM Slice 

The SDRAM Slice card provides a large external random access memory to sliceKIT, perfect for 

any application where a large external data buffer is required: image buffering for a display 

controller, audio buffering for effects processing, or perhaps data capture, processing and 

logging. 
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Features 

 8 MByte SDRAM 

 Clock speed upto 50MHz 

 Data rate upto 80MBytes/second 

The memory available in SDRAM is split into 4 banks. Each bank has 212 rows, 28 columns of 

cells where a cell is a 16-bit memory. We have used sc_sdram_burst-master an open source code 

developed by XMOS available at Jason. The figure 4.4 gives overall picture of the SDRAM 

working. There are three main functions used for performing writing and reading operations in 

the SDRAM. They are 

1. sdram_buffer_write(chanend, bank, row, col, size, buffer) 

2. sdram_buffer_read(chanend, bank, row, col, size, buffer) 

3. sdram_wait_until_idle(chanend, buffer) 

 

„chanend‟ is one end of the channel used for communication between the application program 

and the sdram server. Bank can take any value between 0 and 3 choosing one among the four 

banks available. Similarly row and col are used to address a specific location in the SDRAM. 

„size‟ is the size of the buffer that we want to be written onto or read from SDRAM. 

 

 

Figure 3.5: SDRAM server 

 

The functions read/write two cells at a time. This can only be understood with an example. Say 

we need to write an integer array of 3 words. 

Buffer = {0xFFFF, 0x1FFF, 0x2FFF} 
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Invoking the 1
st
 function with size equals 3, sdram_buffer_write(chanend, 0, 0, 0, 3, Buffer); 

sdram cells are written in the following fashion. 

0x0000 0xFFFF 0x0000 0x1FFF 0x0000 Ox2FFF 

Table 3.1: Buffer array as stored in sdram 

Now invoking the 2
nd

 function with “col” changed as “col+1”, sdram_buffer_read(chanend, 0, 0, 

1, 3, Buffer); will produce a buffer with following values. 

Buffer = {0xFFFF0000, 0x1FFF000, 0x2FFF****} 

 

3.4 xTIMEcomposer Studio 

xTIMEcomposer Studio is based on the industry standard Eclipse IDE. Additional perspectives 

and views have been added to support the unique tools that XMOS has developed to make it easy 

to develop real-time embedded applications for xCORE multicore microcontrollers. They 

include: 

 XMOS Timing Analyzer, which uses the determinism of the xCORE architecture to 

deliver verified time-critical solutions; 

 xSCOPE for real-time non-intrusive code instrumentation and debugging; 

 xSOFTip Explorer for browsing our library of soft peripherals and code blocks. 

 

3.5 Thread Scheduling 

Object tracking app is divided in to three phases 

Phase 1:  Loads TGA images from hard disk to SDRAM with the help of loader. RGB565 values 

of pixels in each row are written to SDRAM. 

Phase 2: Frame subtraction and binarisation using given threshold. Single Pass CCA reads the 

image again row by row, finds bounding boxes of connected components. The image is read 

once again for annotation by app. The annotated image is written back to SDRAM. The 

threshold computation, CCA and annotation can be pipelined for successive images. 

Phase 3: The annotated images are displayed one after another to display video. 
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Thread      Phase 1   Phase 2    Phase 3 

Loader 

Demo App 

Frame subtraction 

+ Binarisation 

Single Pass CCA 

Annotate 

Display Manager 

Display Controller 

SDRAM server 

LCD server 

Table 3.2: Thread Scheduling 

3.6 Implementation 

 

While implementing such an algorithm in XMOS embedded platform, the image data (RGB565 

format) is streamed from the SDRAM in a raster format. Classical labeling algorithm is a two 

pass labeling process which requires the whole image to be present in the buffer to extract 

features. Unfortunately, memory available in XMOS is as low as 64kb/core. So an optimized 

single pass connected component analysis is implemented instead of classical connected 

component analysis. 

 

3.6.1 Image format 

 

Image format used is RGB565 format. We read image.tga file of size 480 X 272. In RGB888 

format, we need 382.5kilobytes (480 X 272 X 3 ÷ 1024) to store image.tga. The image size is 

much more than 64kilobytes. We need to break the image into 8 parts and load them part by part 

   Load image                 Object tracking                  Display Video 
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into SDRAM. Each part is 47.8125kilobytes. The file image.tga has 8 bits each for red, blue and 

green. We need to convert it to RGB565 format by ignoring 3 least significant bits from blue and 

red, and 2 least significant bits from green. 

 

The RGB565 format image obtained is loaded into SDRAM. We use only green component of 

the image in connected component analysis. Green is less noisy when compared to red and blue 

since we lose only 2 least significant bits. A RGB image when converted to gray scale, green has 

about 70 percent contribution. RGB565 format is used to brighten each pixel in the LCD. This is 

shown in figure 3.6. 

 

 

 

Figure 3.6: Image format 

 

3.6.2 Pipelined Object tracking system 

 

 The pipelined object tracking implemented is shown in figure 3.7 below. There are three 

pipelined stages: (i) Frame subtraction and binarisation, (ii) Connected component analysis, (iii) 

Annotation. In annotation we draw green bounding box for an object. Since there is so much 

noise in binary image due to illumination changes and object shape changes we have to fix object 

threshold. Object threshold depends on moving object and illumination changes.  
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Figure 3.7: Pipelined object tracking 

 

The design runs 6 threads in parallel. The figure 3.8 will describe how the threads interact with 

each other and display tracked object in the LCD. 

 

In figure 3.8 c_loader, client, c_sdram and c_lcd are channels used for communication between 

different threads. The grey rectangular boxes app, loader, display_controller, sdram_server and 

lcd_serer are threads. They all run in parallel. The green rectangular boxes are hardware that is 

connected to the slice kit. SDRAM corresponds to SDRAMslice and LCD corresponds to LCD 

slice. Sdram_ports and lcd_ports are specific ports to which sdram slice and lcd slice are 

connected to slice kit.  
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Figure 3.8: Thread diagram 

Loader thread does the following steps until all the images are loaded into the SDRAM. 

1. Read image in TGA format of size 480 x 272 

2. Divide them into 8 parts 

3. Load each part into SDRAM after converting each pixel to RGB565 format (It 

concatenates two pixels into one 32-bit integer) 

 

The app thread in figure 3.7 is our object tracking application. It takes image data from SDRAM, 

does the processing and makes necessary changes to the image data to display it in LCD along 

with the bounding box around the object. In detail, app thread reads one row of pixel data (480 

pixel = integer array of size 240) from current image and same numbered row from previous 

frame. It subtracts these two arrays to get a difference array. Difference array needs to be 

processed pixel by pixel to obtain a binary image. We take 1 variable from integer difference 
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array of size 240. An integer variable occupies 32 bits while a pixel occupies only 16 bits in 

RGB565 format. There are two pixels concatenated into one single integer variable. As described 

earlier, 1st 16 bits of the integer corresponds to pixel 1 and later 16 bits corresponds to pixel 2 of 

the LCD. 

 

We need to separate red, green and blue from 16 bit data. As per the format, 5 least significant 

bit corresponds to red, 5 most significant bit corresponds to blue and the remaining 6 bits in the 

middle corresponds to green. We consider only green component of the difference array. The 

green component is multiplied by 4 and passed on to thresholding. After thresholding the pixel 

(green difference of the pixel), it is passed on to optimized CCA. Once all the pixels (480 x 272) 

are processed, we get area, bounding box and centroid information of the object from optimized 

CCA. Using the extracted features, we can track the object. Display controller thread c_dm 

manages SDRAM server and LCD server. It manages reading and writing of data into sdram. 

Next image handle is maintained in such a way that overwriting does not occur on lcd. Further 

information is given in comments section of the code. Display controller is available online 

Jason [10]. 

 

3.7 Results 

The results obtained from object tracking application are shown in figures below 

 

 

Figure 3.9.1: Bounding box has been put over the moving object in frame 1 



 

35 
 

 

 

Figure 3.9.2: Bounding box has been put over the moving object in frame 2 

 

 

Figure 3.9.3: Bounding box has been put over the moving object in frame 3 
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Figure 3.9.4: Bounding box has been put over the moving object in frame 4 

 

 

Figure 3.9.5: Bounding box has been put over the moving object in frame 5 
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Figure 3.9.6: Bounding box has been put over the moving object in frame 6 

 

 

Figure 3.9.7: Bounding box has been put over the moving object in frame 7 
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Figure 3.9.8: Bounding box has been put over the moving object in frame 8 

 

 

Figure 3.9.9: Bounding box has been put over the moving object in frame 9 
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Figure 3.9.10: Bounding box has been put over the moving object in frame 10 

 

 

Figure 3.9.11: Bounding box has been put over the moving object in frame 11 
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SUMMARY  

 

1. SliceKIT comprises a core board powered by an xCORE multicore microcontroller with 

four slots for plugging in four I/O sliceCARDs. 

 

2. LCD has a resolution of 480 x 272 with pixel format of RGB565. 

 

3. Double buffer is used to prevent „flickering‟ while displaying image on the LCD. 

 

4. The 8 MByte memory available in SDRAM is split into 4 banks. Each bank has 212 

rows, 28 columns of cells where a cell is a 16-bit memory. 

 

5. xTIMEcomposer Studio is based on the industry standard Eclipse IDE used to develop 

real-time embedded applications for xCORE multicore microcontrollers. 
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CHAPTER 4 

 

MEMORY AND TIMING ANALYSIS 

 

In this chapter we have discussed Resource utilization, memory analysis and timing analysis in 

detail. Memory in embedded systems can be categorized as program memory, stack memory and 

free memory. 

 

4.1 Memory analysis 

 

Memory analysis is important in embedded systems in order to design an application with lowest 

memory consumption. In C language, we have memory consumption for various data types as 

per Table 4.1 

 

DATA TYPE MEMORY 

Integer 4 bytes 

Char 1 byte 

Signed char 1 byte 

Float 4 bytes 

Double 8 bytes 

Table 4.1: Memory required for different datatypes 

 

When we build a XC code, the compiler converts it to a binary file. This binary file is loaded into 

XMOS processor to run the application in XMOS hardware. XMOS processor has an internal 

RAM memory of 64 kilo bytes. The compiler checks whether the memory usage doesn‟t exceed 

64 kilo bytes while building the XC code. Sum of program memory, stack memory and free 

memory will always be equal to 64 kilo bytes. Stack memory consists of variables such as 

integers, characters, arrays etc. Program memory consists of syntax and logic.  
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In XMOS development environment, double click on the binary file available in the project 

explorer. This will open a window consisting of memory consumption, number of logical cores 

used and number of timers used. All the experimental data given in this chapter is obtained from 

XMOS development environment. This helps programmer to know which part of the code goes 

to which type of memory.  

 

4.2 Space Complexity (Processor memory usage) 

Different phases of object tracking App are explained in last chapter 

 

Operation   Phase 1  Phase 2  Phase 3 

Loader    O(w+n) 

Load image   O(w) 

Frame subtraction +                 O(w) 

Binarisation 

Single Pass CCA     O(w+c) 

Annotation      O(w) 

w – Width of the image, n – number of images, c – number of connected components 

Table 4.2: Space complexity 

4.3 Image Processing Operations - I/O and Memory 

 

Loader 

Inputs: TGA file names 

Outputs: RGB565 values of image pixels (via c_loader) 

Memory: To store file names, RGB565 values of pixels of one row of image 
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Load image 

Inputs: RGB565 values of pixels (via c_loader) 

Outputs: RGB565 values of each row of image to SDRAM 

Memory: To store RGB565 values of pixels of one row of image 

Frame Subtraction and binarisation 

Inputs: RGB565 values of each row of image from SDRAM 

Outputs: Binary image 

Memory: To store RGB565 and binary values of one row of image 

Single pass CCA 

Inputs: RGB565 values of each row of image from SDRAM 

Outputs: Number of connected components, bounding box coordinates, area, center of gravity. 

Memory: To store merger table and bounding box coordinates in arrays of size equal to the 

maximum number of connected components, previous row buffer 

Annotation 

Inputs: Number of connected components, bounding box coordinates, RGB565 values of each 

row of image from SDRAM 

Outputs: RGB565 values of annotated row of image to SDRAM 

Memory: To store RGB565 values of pixels of one row of image 
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4.4 Resource utilization 

 

The figure 4.10 shows the resources utilized for object tracking application. In sliceKIT there are 

two Xcore tiles (each has 8 cores). The below pie chart in figure 4.10:  includes both tiles. Total 

memory is 128 kilo bytes (64 kilo bytes per processor). 

 

 

Figure 4.1: Resource utilization 
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4.5 Timing Results 

 

FUNCTION TIME 

Frame Subtraction + Binarisation 38 ms 

CCA 117 ms 

Annotation 4 ms 

 

Table 4.3: Timing results 

 

SUMMARY 

1. Memory analysis is important in embedded systems in order to design an application with 

lowest memory consumption. 

 

2. When we build a XC code, the compiler converts it to a binary file. This binary file is 

loaded into XMOS processor to run the application in XMOS hardware 

 

3. In sliceKIT there are two Xcore tiles (each has 8 cores), total memory is 128 kilo bytes 

(64 kilo bytes per processor). 

 

4. From timing result we can observe that connected component analysis (CCA) stage takes 

more time.  
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CHAPTER 5 

 

PERFORMANCE IMPROVEMENT 

 

5.1 Parallel CCA 

 

The parallel algorithm uses a divide and conquer approach. This algorithm divides the image, 

and then obtains the features of the objects in each sub-image. The features are passed from right 

to left; hence a sub-image to the left will have a higher precedence than one to the right. The 

algorithm has four major steps as shown in Figure 5.1. 

 

In the first step, the image is divided into K sub-images using vertical cuts of the image where 

the last column of each sub-image overlaps with the first column of its successive sub image. K 

can be any value greater than one. For the purpose of explanation it is assumed to be 4. Each 

sub-image undergoes a single pass connected component analysis labeling procedure. At the end 

of the analysis, each sub- image will have for itself a corresponding merger table (implemented 

in an array) along with arrays to hold the features of components that are present in each sub-

image. Also a border table is maintained which stores the labels assigned at the overlapping 

column. In other words, the labels of the last column and first column of all sub images are 

stored in border tables. They are in fact the same column just being assigned with different 

labels. The merger tables obtained can be visualized as graphs where the nodes are the labels and 

an interconnection between nodes implies the labels are equivalent. In this algorithm, 

equivalences can also be implied by observing the border table of a neighboring partition. For 

example, consider the mirror image of a C shaped object that is cut in the middle. The partition 

in which the two ends of the object are present will be counted as two objects. This problem is 

resolved by resolving the merger table of a given sub-image using the information in its border 

table and the labels present in the border table of the partition neighboring it. 
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Figure 5.1: Block diagram of proposed parallel CCA 
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Consider Figure 5.2. When the features are passed from C to B, both the labels 1B and 2B will 

be possible candidates. To resolve this problem, the merger table must be resolved to show that 

1B and 2B are equivalent labels. In this case, the merger table of sub-image B is resolved using 

the left border table of sub-image C. Although different labels (labels 1B and 2B) have been 

assigned in B for the object pixels on the border, the left border table of sub-image C contains an 

equivalent label for them. Hence equivalence between labels 1B and 2B is created. In the second 

case as shown Figure 5.3, the C shaped object is cut in the middle. Hence we obtain an 

analogous case to the previous one but in this case while the features are passed from C to B, the 

features of label 1C and label 2C are passed to the same label (label 1B) in sub-image B. As a 

result, in this case we need not resolve the merger table of C. Effectively, what is implied by 

these two cases is that it is sufficient to resolve the merger table of a given sub-image based on 

the information of the sub-image to its immediate right. 

 

 

Figure 5.1: Passing features case I 

 

Figure 5.2 : Passing features case II 

 

 

Hence, this step (Block 2 of Figure 5.1) involves simplifying the merger table of each sub-image 

by considering its right border table. It is sufficient to consider only the right border table as 

equivalences need to be derived only from the information contained in its right neighbour as 

explained. Hence we take the right border table of the sub-image and left border table of its right 

neighbour to resolve equivalences. 
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The next two steps in Figure 5.1 (Block 3 and Block 4) are straightforward. Data corresponding 

to features such as area and center of gravity of each node are pushed to the root of the node and 

the data present in the node is removed. In the case of area, the data which is number of pixels 

from a node is added to the root of the node and the area data of the node is made zero. This 

ensures that only root node possesses data. 

 

The final step is to merge the information obtained from each sub-image. A sub-image on the left 

will have higher precedence than one on the right. We iterate through each non-zero label on the 

right border tables and add to the root of that label node, the data corresponding to the label at 

the same position in the neighboring sub-image‟s left border table. This implies that there is a 

component common to both A and B. Its features from B will be pushed to the component in A 

and its corresponding data in B will be removed ensuring we do not count the same component 

again. Finally, the total number of components in the entire image is the number of components 

with non-zero features in the sub-images. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

In this chapter, we give the summary of the work done and discuss possible future work. 

 

6.1 Conclusion 

 

The developed object tracking system uses 6 threads simultaneously while 1 thread is used 

initially to load the images into SDRAM in RGB565 format. Now it is possible to detect a 

particular object in each and every frame of the video. In addition, real time performance is 

another constraint. It has obtained a processing speed of 8 frames per second.  So, it is required 

to increase processing speed for real time performance. Currently we are detecting all the 

moving objects in the video and put a bounding box around the objects with area threshold of 50 

pixels. 

 

6.2 Future work 

 

Possible extensions are 

 

1. From timing analysis it is clear that CCA is taking more time to label binary image. To 

increase processing speed, it is needed to optimize CCA by splitting it in to two parallel 

tasks and run in two different cores simultaneously. 

2. Binary images will have more noise if large movements in the background such as 

moving clouds, leaves and ripples in the pond etc. We need to take care of this by adding 

appropriate filter.  

3. Using a camera slice with an addition of one more thread we can make a more 

sophisticated system to track moving objects from live camera. 

 



 

51 
 

REFERENCES 

 

[1] D. G. Bailey, C. T. Johnston, “Single Pass Connected Components Analysis”, Proceedings of 

Image and Vision Computing pp. 282–287,  New Zealand, December 2007. 

 

[2] PL. Siddharth , N. Sudha, Dan Wilkinson, “A Parallel Algorithm for Single-Pass Connected 

Component Analysis and its Realization on a Multi-Core XMOS Processor” 

 

[3] A. Yilmaz, O. Javed and M. Shah, “Object tracking: A survey,” ACM Computing Surveys 

(CSUR), Vol. 38, No. 4, 2006.   

 

[4] U. Ali, M. B. Malik and K. Munawar, “FPGA/Soft-processor based real-time object tracking 

system”, Proc. IEEE Southern Conference on Programmable Logic ,33-37, 2009. 

 

[5] H.M.Alnuweiti and V.K. Prasanna, "Parallel architectures and algorithms for image 

component labeling", IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10), 

1014-1034 (1992). 

 

[6] Jablonski, M., Gorgon, and M., "Handel-C implementation of classical component labelling 

algorithm", in Euromicro Symposium on Digital System Design (DSD 2004), Rennes, France, 

387-393 (2004). 

 



 

52 
 

[7] Dalal, N. and B. Triggs, “Histograms of oriented gradients for human detection”. In 

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society 

Conference on, volume 1. 2005. ISSN 1063-6919. 

 

[8] Yang, T., Q. Pan, J. Li, and S. Li, “Real-time multiple objects tracking with occlusion 

handling in dynamic scenes”. In Computer Vision and Pattern Recognition, CVPR 2005. IEEE 

Computer Society Conference on, volume 1. 2005. ISSN 1063-6919. 

 

[9] Gonzalez, R. E. W., Rafael C. and S. L. Eddins, “Digital image processing using MATLAB”. 

Pearson Education India, Reading, MA, 2004. 

 

[10] Jason, A. S. (). Controlling external SDRAM. Last access May 5
th

 2014.  URL 

https://github.com/xcore/sc_sdram_burst. 

 

[11] XMOS(). xtimecomposer user guide, Last access May 5
th

 2014.  URL      

https://www.xmos.com/download/public/xTIMEcomposer-User-Guide%28X3766B%29.pdf 

 

[12] XMOS(). slicekit hardware manual, Last access May 5
th

 2014. URL 

https://www.xmos.com/support/documentation/xkits?subcategory=sliceKIT&product=15826&c

omponent=16091 

[13] XMOS(). Programming XC on XMOS Devices , Last access May 5
th

 2014. URL 

http://www.xmos.com/download/public/Programming-XC-on-XMOS-Devices(X9577A).pdf 

 

14. Shah, M. (2012). Histogram of oriented gradients (HOG), Last access May 5
th

 2014. URL 

http://www.youtube.com/watch?v=0Zib1YEE4LU 

https://github.com/xcore/sc_sdram_burst
https://www.xmos.com/download/public/xTIMEcomposer-User-Guide%28X3766B%29.pdf
https://www.xmos.com/support/documentation/xkits?subcategory=sliceKIT&product=15826&component=16091
https://www.xmos.com/support/documentation/xkits?subcategory=sliceKIT&product=15826&component=16091
http://www.xmos.com/download/public/Programming-XC-on-XMOS-Devices(X9577A).pdf
http://www.youtube.com/watch?v=0Zib1YEE4LU

