
Optimization of CUDA Programs using Streams

A Project Report

submitted by

MARYADA SIDDARTHA REDDY

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2014

THESIS CERTIFICATE

This is to certify that the thesis titled Optimization of CUDA programs using Streams,

submitted by Maryada Siddartha Reddy, to the Indian Institute of Technology, Madras,

for the award of the degree of Master of Technology, is a bona fide record of the work

done by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Dr.Shankar Balachandran

Project Guide

Assistant Professor

Dept. of Computer Science and

Engineering

IIT-Madras, 600 036

Place: Chennai

Date: May 2014

ACKNOWLEDGEMENTS

I am thankful to Dr.Shankar Balachandran for his guidance throughout the project.

His valuable insights helped me a lot for the progress of my project. I also thank my

friends who helped me throughout the project by discussing various aspects necessary

for the project. I thank RISE Lab, IIT Madras for providing the infrastructure required

for my project. I thank my parents for giving me the motivation and support all the way

through.

i

ABSTRACT

KEYWORDS: streams;task overlap;task scheduling;CUDA;GPU;parallelism

In this project a mechanism to schedule tasks using streams is developed by taking

advantage of advances in latest CUDA GPUs for simultaneous execution of compu-

tation , data transfer from CPU to GPU and GPU to CPU.Computations on GPU in

general referred as kernels and GPU is referred as device and CPU as host.To enable si-

multeneous execution we divided application into smaller sub-tasks and allowed kernel

and host to device and device to host data transmission of different sub tasks to overlap

there by effectively reducing the run time of the program.To decide on optimal sub task

size ,we have developed two models ,Compute bound model for computing intensive

applications and Data bound model for data intensive applications. On the basis of these

models we implemented scheduling algorithms to understand performance.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 INTRODUCTION 1

1.1 Literature Review . 2

1.2 Contributions . 3

1.3 Organization of Thesis . 3

2 CUDA 5

2.1 Streaming Multiprocessors(SMs) 5

2.2 Programming model . 7

2.2.1 Cuda Kernels and Threads 7

2.2.2 Thread Batching . 7

2.3 Memory Model . 8

2.4 Execution Model . 10

2.5 CUDA Asynchronous Concurrent Execution 10

2.5.1 Concurrent Execution between Host and Device: 10

2.5.2 Overlap of Data Transfer and Kernel Execution 11

2.5.3 Concurrent Kernel Execution 11

2.5.4 Concurrent Data Transfers 11

2.6 CUDA Streams . 12

2.7 Using a Single Stream Multiple CUDA Streams 12

3 Scheduling Mechanism 13

iii

3.1 Classification of Applications . 13

3.1.1 Relation between input and output 13

3.1.2 Computation to Communication ratio 14

3.2 Scheduling Scheme . 14

3.2.1 Static Scheduling . 14

3.2.2 Application customized stream scheduling 16

4 Task Partition Model 18

4.1 Overhead Factors . 18

4.1.1 Synchronization Overhead 18

4.1.2 Bi-directional data transfer bandwidth 20

4.1.3 Kernel Launch Overhead 21

4.1.4 Memory Transfer overhead 22

4.2 Task Partition Schemes . 23

4.2.1 Data Bound Model . 23

4.2.2 Compute Bound Model . 24

5 Results 26

5.1 Sepia Filter . 26

5.2 Matrix Multiplication . 27

6 Conclusion 31

LIST OF TABLES

4.1 Specifications of Tesla K20C GPU 19

4.2 Data Transfer Overhead . 23

v

LIST OF FIGURES

2.1 CUDA Processing Flow . 6

2.2 Grid of thread blocks . 8

2.3 Memory Hierarchy . 9

2.4 Cuda Kernel Launch . 10

3.1 Data Bound Stream Scheduling . 15

3.2 Compute Bound Stream Scheduling 16

4.1 Synchronization overhead . 20

4.2 Kernel Launch Overhead . 22

5.1 Sepia Filter . 26

5.2 Sepia Timeline . 27

5.3 Matrix Multipliction . 28

5.4 Matrix Multiplication Full Time Line 29

5.5 Matrix size vs Time Taken vs No.of blocks 29

5.6 Matrix size vs Time Taken vs No.of blocks 30

vi

ABBREVIATIONS

H2D Host to Device

D2H Device To Host

GPU Graphics Processing Unit

CPU Central Processing Unit

vii

Host CPU

Device GPU

Kernel Function that runs on device

viii

CHAPTER 1

INTRODUCTION

Stream processing is a relatively new computing paradigm that enables parallel process-

ing of a defined series of operations on multiple computing resources with extreme lev-

els of efficiency and performance. Streaming has evolved with graphics and Stream pro-

cessing has been widely used in applications such as audio and video processing[Owens

et al. (2002)] .In these applications work is decomposed into several stages of compu-

tation and the data of input and output is organized as chunks of independent data to

go through several stages of computation like a pipeline. Stream processing can exploit

the inherent parallelism of the pipeline while the different stream elements also can be

processed simultaneously to achieve data parallelism and task parallelism.

Graphics processing unit (GPU) is one of the most successful stream architectures in

recent years which is originally designed for acceleration of graphics applications. Now,

it is widely used as General-purpose computing on graphics processing units (GPGPU)

to accelerate many scientific applications It is becoming increasingly common to use a

Graphics Processing Unit(GPU) unit as a modified form of stream processor. This con-

cept turns the massive computational power of a modern graphics accelerator’s shader

pipeline into general-purpose computing power, as opposed to being hard wired solely

to do graphical operations. Now, it is widely used as General-purpose graphics process-

ing unit (GPGPU) to accelerate many scientific applications.There are many parallel

programming languages that help programmers to write parallel applications with GPUs

such as OpenCL[KhronosGroup (2008)] , Brook[Ian Buck (2004)], CUDA[NVIDIA

(2007)] .Among the parallel programming languages CUDA is one of the most popular

computing platform for GPU. It provides a C-like language for programmers to imple-

ment their GPU programs without any knowledge of graphics processing.

CUDA (Compute Unified Device Architecture) is a parallel computing platform and

programming model created by NVIDIA and implemented by the graphics processing

units (GPUs) that they produce. CUDA gives program developers direct access to the

virtual instruction set and memory of the parallel computational elements in CUDA

GPUs.

CUDA programs consists of host code (running on CPU) and device code (running

on GPU).Host code calls the device code which implements the GPU computation i.e

kernel operation . During computation on a GPU input data has to reside on GPU and

output data will be generated in GPU memory .Since GPU (device) memory is sepa-

rated from CPU(host) memory we need to explicitly transfer data to and receive data

from GPU.Modern GPUs are enabled with simultaneous bi-directional data transfer and

also parallel execution of kernel along with them.In order to achieve overlap between

data transfers and kernel executions requires the use of CUDA streams.

A stream in CUDA is a sequence of operations such are kernel computation ,H2D,D2H

that execute on the device in the order in which they are issued by the host code. While

operations within a stream are guaranteed to execute in the prescribed order, operations

in different streams can be interleaved and, when possible, they can even run concur-

rently.

CUDA provides two copy engines for bi-directional data transfer since version 4.0

while enables to execute data send, receive and kernel simultaneously. Therefore, we

can use three streams respectively for data send, receive and kernel to implement stream

applications and launch kernel, data send and receive at the same time

1.1 Literature Review

Current methods follow batch scheduling[Hou et al. (2008),Nakagawa et al. (2010)] to

take advantage of advances in modern GPUs thus ensuring data transfer overlap with

kernel computation.There were also works on dividing individual tasks into sub tasks

but they didn’t consider several overhead parameters.

2

1.2 Contributions

In this work , we propose a task partition model taking various kernel launch ,memory

copy and synchronization overhead parameters into consideration and using streams we

schedule the sub-tasks depending on the type of application to improve performance of

standalone application by overlapping data send send , data receive and kernel part of

different sub tasks. With two copy engines, we support simultaneous data send, data

receive and kernel execution. We classify applications into data independent and data

dependent applications. Data independent applications mean that there are no shared

input data elements between output data elements such as matrix addition.Data de-

pendent applications mean that there are shared input data elements between output

data elements such as matrix multiplication. For the two types, we provide two kinds

of stream scheduling algorithms: static stream scheduling and application customized

stream scheduling.We also design two application partition models: compute bound

model and data transfer bound model to calculate the optimal subtask numbers. With

the optimal subtask numbers from the task partition model model, the scheduling algo-

rithms can schedule the bi-directional data transfer and kernel execution of each subtask

with multiple streams and overlap them to improve the performance. We assume that

the time cost of kernel execution part in each subtask can be predicted like in Luo and

Suda (2011) and Hong and Kim (2009) programmers can calculate the data size to be

sent for each subtask within a reasonable complexity.

1.3 Organization of Thesis

This thesis is organized into five chapters.

Chapter 1 Introduces the emergence of streaming applications and GPU hardware and

summarizes the contributions of this thesis.

Chapter 2 explains the necessary background on CUDA required to gain a clear under-

standing of the thesis.

Chapter 3 Proposes the scheduling algorithms for the applications classfied ondifferent

features.

Chapter 4 Presents the various overheads involved in task partitioning and developes a

model for finding the optimal sub task size of the application.

3

Chapter 5 describes how to set up experiments to verify the proposed method and

presents the results.

4

CHAPTER 2

CUDA

CUDA (Compute Unified Device Architecture) is the name of NVIDIA’s parallel com-

puting architecture in our GPUs. NVIDIA provides a toolkit for programming the

CUDA architecture that includes the compiler, debugger, profiler, libraries and other

information developers need to deliver products that use the CUDA architecture. The

CUDA architecture also supports standard languages such as C and Fortran, and APIs

for GPU Computing, such as OpenCL and DirectCompute. CUDA gives program de-

velopers direct access to the virtual instruction set and memory of the parallel compu-

tational elements in CUDA GPUs.

Using CUDA, the GPUs can be used for general purpose processing (i.e., not exclu-

sively graphics); this approach is known as GPGPU. Unlike CPUs, however, GPUs have

a parallel throughput architecture that emphasizes executing many concurrent threads

slowly, rather than executing a single thread very quickly.

NVIDIA has defined a general computing instruction set (PTX) and small set of C

language extensions that allow developers to take advantage of the massively parallel

processing capabilities in our GPUs. Other groups provide support for Fortran.Java,

Python, .NET, and other languages on the cuda atchitecture

The term CUDA C to describe the language and the small set of extensions developers

use to specify which functions will be executed on the GPU, how GPU memory will

be used, and how the parallel processing capabilities of the GPU will be used by an

application.

2.1 Streaming Multiprocessors(SMs)

The Streaming Multiprocessors (SMs) are the part of the GPU that runs our CUDA

kernels.

Each SM contains:

• Thousands of registers that can be partitioned among threads of execution.

• Several caches

1. shared memory for fast data interchange between threads,

2. constant cache for fast broadcast of reads from constant memory,

3. texture cache to aggregate bandwidth from texture memory,

4. L1 cache to reduce latency to local or global memory.

• Warp schedulers that can quickly switch contexts between threads and issue in-

structions to warps that are ready to execute.

• Execution cores for integer and floating-point operations

The SMs are general-purpose processors, but they are designed very differently

than the execution cores in CPUs: they target much lower clock rates; they support

instruction-level parallelism, but not branch prediction or speculative execution; and

they have less cache, if they have any cache at all. For suitable workloads, the sheer

computing horsepower in a GPU more than makes up for these disadvantages.

Following diagram 2.1 clearly demonstrates the processing flow of computation in a

CUDA GPU(GeForce 8800).

Figure 2.1: CUDA Processing Flow

1. Copy data from main memory to GPU memory

6

2. CPU instructs the process to GPU

3. GPU execute parallel in each core

4. Copy the result from GPU memory to main memory

2.2 Programming model

2.2.1 Cuda Kernels and Threads

• Parallel portions of the applications are executed on device as kernels.Many threads

are executed in each kernel.

• Difference between CUDA threads and CPU threads is that CUDA threads are

extremely light weight.They have very little creation overhead and fast switching.

• A CUDA kernel is executed by an array of threads.All threads run the same

code.Each thread has an ID that it uses to compute memory addresses and make

control decisions

• Threads may need to cooperate on memory accesses.This may be helpful in band-

width reduction and avoiding redundant computation.

• But cooperation between a monolithic array of threads does not scale well,cooperation

within smaller batches of threads is scalable.

2.2.2 Thread Batching

kernel launches a grid of thread blocks. Blocks are organized into a one-dimensional,

two-dimensional, or three-dimensional grid of thread blocks as illustrated by 2.2. The

number of thread blocks in a grid is usually dictated by the size of the data being pro-

cessed or the number of processors in the system, which it can greatly exceed.

7

Figure 2.2: Grid of thread blocks

Threads with in a block cooperate via shared memory.Threads in different blocks

cannot cooperate.

2.3 Memory Model

There are several different kind of memory available on a GPU.CUDA threads may

access data from multiple memory spaces during their execution as illustrated by 2.3.

Each thread has private local memory. Each thread block has shared memory visible to

all threads of the block and with the same lifetime as the block. All threads have access

to the same global memory.

Registers

• Per thread memory

• Data life time = thread life time

8

Local memory

• Per thread off-chip memory(physically on DRAM)

• Data life time = thread life time

Shared memory

• Per thread block on-chip memory

• Data lifetime = block lifetime

Global memory

• Accessible by all threads as well as host (CPU)

• Data lifetime = from allocation to deallocation

Figure 2.3: Memory Hierarchy

9

2.4 Execution Model

The CUDA execution model is based on primitives of threads, thread blocks, and grids,

with kernel functions defining the program executed by individual threads within a

thread block and grid. When a kernel function is invoked the grid’s properties are de-

scribed by an execution configuration, which has a special syntax in CUDA. Support for

dynamic parallelism in CUDA extends the ability to configure, launch, and synchronize

upon new grids to threads that are running on the device.

Figure 2.4: Cuda Kernel Launch

Kernels are launched in grids.A thread block execute on one multiprocessor , does

not migrate.Several thread blocks reside on one multiprocessor .Number of concurrent

blocks is limited by multiprocessor resources.Registers is divided among all resident

threads.Shared memory is partitioned among all resident thread blocks.

2.5 CUDA Asynchronous Concurrent Execution

2.5.1 Concurrent Execution between Host and Device:

CUDA Run-time supports asynchronous function calls which facilitate concurrent ex-

ecution between host and device, some function calls. In execution of these function

calls, the control is returned to the host thread before the device has completed the

requested task. Some of these are:

10

• Kernel launches

• Memory copies between two addresses to the same device memory

• Memory copies from host to device of a memory block of 64 KB or less

• Memory copies performed by functions that are suffixed with Async

• Memory set function calls.

2.5.2 Overlap of Data Transfer and Kernel Execution

Some devices of compute capability 1.1 and higher can perform copies between page-

locked host memory and device memory concurrently with kernel execution. Appli-

cations may query this capability by checking the asyncEngineCount device property,

which is greater than zero for devices that support it. For devices of compute capabil-

ity 1.x, this capability is only supported for memory copies that do not involve CUDA

arrays or 2D arrays allocated through cudaMallocPitch().

2.5.3 Concurrent Kernel Execution

Some devices of compute capability 2.x can execute multiple kernels concurrently. Ap-

plications may query this capability by checking the concurrent Kernels device prop-

erty, which is equal to 1 for devices that support it. The maximum number of kernel

launches that a device can execute concurrently is sixteen. A kernel from one CUDA

context cannot execute concurrently with a kernel from another CUDA context. Ker-

nels that use many textures or a large amount of local memory are less likely to execute

concurrently with other kernels.

2.5.4 Concurrent Data Transfers

Some devices of compute capability 2.x can perform a copy from page-locked host

memory to device memory concurrently with a copy from device memory to page-

locked host memory. Applications may query this capability by checking the asyn-

cEngineCount device property, which is equal to 2 for devices that support it.

11

2.6 CUDA Streams

Applications manage concurrency through streams. A stream is a sequence of com-

mands (possibly issued by different host threads) that execute in order.Several opera-

tions can be included into a stream and the order in which operations are added to the

stream specifies the order in which they will be executed. Different streams, on the

other hand, may execute their commands out of order with respect to one another or

concurrently; this behavior is not guaranteed and should therefore not be relied upon

for correctness (e.g., inter-kernel communication is undefined).Some of Stream features

are:

• Creation and Destruction

• Default Stream

• Explicit Synchronization

• Implicit Synchronization

• Overlapping Behavior

• Default Stream

2.7 Using a Single Stream Multiple CUDA Streams

Application employ single or multiple CUDA Streams. When we use single stream,

at the beginning of application, the computations are divided into chunks and each

chunked computation and the overlap of memory copies with kernel execution.

On multiple streams, different streams will perform CUDA operations as per application

requirements. For example stream 1 will do copy input buffers to the GPU, Stream 0

will execute its kernel while stream 0 copies its results to the host.

12

CHAPTER 3

Scheduling Mechanism

Our aim is to partition the CUDA application into subtasks and overlap the data send,

data receive and kernel execution part of these subtasks. Therefore, the main parts

of mechanism are application partition models and sub-task scheduling schemes with

multiple CUDA streams

3.1 Classification of Applications

To design task partition model and algorithm we need to classify the applications. We

classified applications primarily on the basic of

• Relation between input and output.

• Computation-to-Communication ratio.

3.1.1 Relation between input and output

From the relationship between input data and output data aspect, we classify the appli-

cations into:

• data independent applications

• data dependent applications.

With data independent applications, the sets of data input required to compute

different outputs are disjoint. For example, matrix addition is an typical data indepen-

dent applications. For C = A + B , we only need A[i][j] and B[i][j] to calculate C[i][j]

while data A[i][j] and B[i][j] can only be used to calculate C[i][j].

For Data Dependent Applications there is share set of input elements for different

output elements. For example, matrix multiplication is a data dependent application.

For C = A B , we need ith row elelments in matrix A and jth row elements in matrix B

to calculate C[i][j] .Each element in ith row of A and jth column of B used to calculate

C[i][j] are also used to calculate other elements in matrix

3.1.2 Computation to Communication ratio

From the computation-to-communication ratio , we classify applications into

• Data Bound Applications

• Compute Bound Applications

Data Bound applications are the applications where bi-directional data transfer

cost is greater than the computation cost

Compute Bound Applications have longer kernel execution time cost than the bi-

directional data transfer time cost

To measure the bi- directional data transfer time cost, we launch the data send and

the data receive simultaneously with two streams and synchronize the two streams.

Then we can obtain the time cost of the bi-directional data transfer by calculating the

time taken for transfer of data

The feature of computation-to-communication ratio decides the optimal subtask par-

tition while the feature of relationship between input and output data mainly affects the

stream scheduling.

3.2 Scheduling Scheme

Scheduling scheme of subtasks can be broadly divided into two types for two kinds of

applications namely Static Scheduling for data independent applications and Applica-

tion customized stream scheduling for data dependent application

3.2.1 Static Scheduling

Static stream scheduling will calculate a scheduling plan first as we know all the pa-

rameters of the runtime of program and then schedule the streams following the plan.

The advantage of static stream scheduling is that it is simple and also efficient to data

independent applications. For the data independent applications, we design two static

stream scheduling algorithms basing on computation- to-communication ratio:

14

• Data bound static scheduling algorithm

• Compute bound static scheduling algorithm

Data bound static Scheduling

When the time cost of bi-directional data transfer is longer than the time cost of kernel

execution, the time cost of each step is decided by the data transfer part. The lower

bound of the time cost of the application with stream scheduling will be equal to the

time cost of the bi-directional data transfer part. Therefore, it is better to hide the kernel

execution part by overlapping the data transfer and kernel execution. As shown in 3.1,

we use three streams: send, kernel, receive. Send stream is used for data send part of

subtask, kernel stream is used for kernel execution part of subtask and receive stream is

used for data receive part of subtask. As each subtasks in the CUDA stream are executed

in order and there are data dependency between the data send, kernel execution and

data receive from the same subtask, we launch the data send, kernel execution and data

receive from different subtasks to the corresponding streams. Then we synchronize the

three streams before the next step. Due to the long time cost of data transfer parts in

each step, we set the subtask in each step to the same size. This can make the algorithm

simple and efficient. The optimal subtask size will be decided by task partition model

which will be introduced in the next chapter.

Figure 3.1: Data Bound Stream Scheduling

15

Compute bound static Scheduling

When the time cost of kernel execution is longer than the time cost of bi-directional

data transfer, the time cost of each step is decided by the kernel execution part. In this

case, the total time cost of the application is equal to the sum of the send time cost in the

first step, the total kernel execution time cost and the receive time cost in the last step.

Therefore, it is better to make the first send time cost and the last receive time cost as

short as possible. As shown in 3.2, to make the first send as short as possible, we set the

first sub-task to a small size which only sends a small size of data for kernel execution.

Then we exponentially increase the sub-task size in the first half of the application. To

make the last receive as short as possible, we exponentially decrease the sub-task size

in the latter half of the application. Here the size of the first sub-task size and the last

sub-task size will be decided by the task partition model as well.

Figure 3.2: Compute Bound Stream Scheduling

3.2.2 Application customized stream scheduling

A major chunk of applications we deal with are data dependent applications.This sec-

tion is aimed at giving pointers regarding the way an application can be customized

depending on its properties to make it efficient.The example we are dealing with is

Matrix-Multiplication which is a very common application in the field of computing

16

In the matrix multiplication of C = A x B, naive GPU implementation will transfer

data of two matrices A and B after the allocation of memory for matrices A,B,C in GPU

and then compute matrix C , after the computation we can send back the matrix C on

to CPU.Here we are losing an opportunity to do simultaneous data transfer and kernel

execution. If we take a closer look at properties of a matrix multiplication, we can

divide each matrix into 4 sub matrices then do a partial matrix multiplication between

the sub matrices and add them later.This division of computation across sub matrices

enables us to do computation between two sub matrices while coping data of other sub

matrices

So in this case we have divided the matrix into sub-matrices , we can enable this by

memory reordering of matrix from row major memory order to Block major memory

order i.e memory organised as blocks of sub-matrices in memory.

So,depending on the application , we need to analyse its computation properties(i.e

data dependencies across elements) and decide on the way to divide application into

sub tasks , then schedule it across streams.

17

CHAPTER 4

Task Partition Model

The task partitioning can affect the performance greatly. Small sub-task partitioning

method does not necessarily mean high performance. In the contrary, it might introduce

significant overhead which leads to poor performance. We will analyze the possible

factors which decide overhead. Then we provide two task partition models to partition

the application which can minimize the total time cost of the application considering

different overheads.

We have done our experiments on Tesla K20C GPU ,its configuration is mentioned

in table 4

4.1 Overhead Factors

In our experiments we found mainly four sources of overheads in various scales de-

pending on the state of computation,namely

• Synchronization overhead

• Bi-directional data transfer bandwidth

• kernel launch overhead

• Memory transfer overhead

4.1.1 Synchronization Overhead

The stream synchronization overhead is the overhead incurred by synchronization across

streams . As sub-task size becomes smaller we need more synchronizations which

means more synchronization overhead.This at some point outweighs advantage we gain

by task overlapping.So need to choose optimal sub-task size. We have done experi-

ments on synchronization overhead when synchronizing different number of streams

which rums a dummy kernel.

Name Tesla K20C

CUDA Run Time Version/Major.Minor version 5.5/3.5

Total amount of global memory 4096 MB

L2 Cache Size 1310720 bytes

Total amount of constant memory 65536 bytes

Total amount of shared memory per block 49152 bytes

Total number of registers available per block 65536

Warp size 32

Maximum number of threads per multiprocessor 2048

Maximum number of threads per block 1024

Max dimension size of a thread block (x,y,z) (1024,1024,1024)

Max dimension size of a grid size (x,y,z) (2147483647, 65535, 65535)

Multiprocessors 13

CUDA Cores/MP 192

CUDA Cores(Cores/MP* Cores) 2496

Clock Speed 706MHz

Run time limit on kernels No

Integrated GPU sharing Host Memory No

Support host page-locked memory mapping Yes

Concurrent copy and kernel execution Yes with 2 copy engine(s)

Table 4.1: Specifications of Tesla K20C GPU

We have taken 32768(2 pow(15)) samples of overhead and calculated mean of

them.We have calculated overhead while synchronizing 1-6 kernels.

T = n× (tsync + tkoh + tdk) (4.1)

tdk << tkoh (4.2)

tsync = (T − n× tkoh)/n (4.3)

T :total time cost

tdk : time taken by dummy kernel

tkoh : time taken for kernel launch

tsync : synchronization overhead

Below is the graph shows the variation of synchronization overhead across different

no. of streams.

19

Figure 4.1: Synchronization overhead

We have observed that synchronization overhead remains almost constant across

multiple streams for static synchronization.

4.1.2 Bi-directional data transfer bandwidth

Although current CUDA (from 4.0) provides two copy engines in some latest GPUs to

support bi-directional data transfer, we found that the time cost of sending and receiving

with two streams simultaneously is much longer than the time cost of only sending or

receiving with single stream from our experiments. Without going into details of the

hardware design, we can build an empirical model to predict the time cost of sending

and receiving simultaneously with two streams.

We use the following equations to calculate the time cost of only sending data and

only receiving data with single stream. We noticed that bandwidth of sending is little

different than bandwidth of receiving.

In our experiments We found that when we overlap the sending and receiving, the

time cost of simultaneous transfer part is longer than the time cost of only sending or

receiving with single. Once either of them stop and the other one goes on, the time cost

20

of this part is equal to the time cost of only sending or receiving. Therefore, we can use

the following equation to calculate Tp

T = min{Ts, Tr} × f + |Ts − Tr| (4.4)

T :total time cost of simultaneous data send and receive

Ts :total time cost of data send from H2D

Tr :total time cost of receive data from D2H

f : bi-directional data transfer factor

The parameter f is a hardware related factor. For our GPU, f is 1.67.

4.1.3 Kernel Launch Overhead

We have observed that , there is some overhead attributed to the launch of kernels i.e

compute engine needs some time time to allocate resources and launch the kernel.This

is validated by calculating time taken for execution of dummy kernel across different

number of streams.

Latest CUDA supports concurrent kernel execution (up-to 8 kernels),but when launched

n dummy kernels across n streams we observed that time taken for individual kernel

launch in each stream takes longer as we increase the number of streams(and hence

no. of kernels), this is explained by the fact that compute engine needs time to allocate

resources and schedule kernel.

We have launched a dummy kernel across streams .We took 2 pow(15) launches

(iterations) in each stream . Calculated the time taken by them , which is largely con-

tributed by kernel launch overhead.

T = n× (tdk + tkohm) (4.5)

tdk << tkohm (4.6)

=> T = n× tkohm (4.7)

21

T :total time cost

tdk : time taken by dummy kernel

tkohm : time taken for kernel launch when used m streams

Below is the graph of variation of overhead(in milliseconds) using different number

of streams thus suggesting the model. In order to verify what we are calculating is kernel

launch overhead , we can check the time line of the program using visual profiler.We

have observed that kernel overhead increases almost linearly with the number of kernels

launched

Figure 4.2: Kernel Launch Overhead

4.1.4 Memory Transfer overhead

With out going into hardware details of the GPU, we have observed that overhead of

memory transaction is different for different types of data.i.e it is different for a float

data type from character data type.From our experiment it is observed that this overhead

is largely dependent on size of basic unit of data.Also overhead is different when there

is a bi-directional transfer from uni-directional data transfer.

Below table shows the overhead of floating point data type at various conditions on

22

a TeslaK20C GPU.

Data Transfer Overhead(in ms)

H2D 0.0047

D2H 0.0048

H2D,D2H 0.011

Table 4.2: Data Transfer Overhead

4.2 Task Partition Schemes

After taking all overheads into consideration,we can design the task partition models to

minimize the total time cost of the applications

we have developed two models depending on compute-to-communication run time

ratio of the application.

1. Data Bound Model

2. Compute Bound Model

4.2.1 Data Bound Model

The data bound model is used to calculate the optimal subtask number for data transfer

bound application to minimize the total time cost of application. We assume the number

of sub-task to be n. For data transfer application, we partition the application into sub-

tasks with equal size. Therefore, we can use the following equation to calculate the time

cost of send part in the sub-task and the time cost of receive part in the subtask

ts = Ts/n , tr = Tr/n (4.8)

ts: time cost of single subtask data sent Ts: time cost of total data sent tr: time cost

of single subtask data received Tr: time cost of total data received

As shown in figure 3.1, the total time cost is the sum of the first send time cost, n

1 times of the simultaneous send and receive time cost, the last receive time cost and

overhead time cost. We can use the following equation to calculate the total time cost.

23

Ttotal = ts+(n−1)×tp+tr+(n+2)×tsync+n×tkoh+(n−2)×tboh+2×(tsoh+troh)

(4.9)

From above two equations we have the following equation to calculate the total time

cost which is a function of n.

Ttotal = (n−2)×(f×min{Ts/n, Tr/n}+|Ts−Tr|/n)+(Ts+Tr)/n+n×(tsyn+tkoh+tboh+2×(tsyn+tsoh

(4.10)

With the mapping function between the total time cost and the number of subtasks,

we can obtain the optimal number of subtasks by calculating the derivative of the func-

tion. We have the following equation to calculate the optimal number of subtasks

n =

√

Ts + Tr − f ×min{Ts, Tr} − |Ts − Tr|

tsyn + tboh + tkoh
(4.11)

4.2.2 Compute Bound Model

The compute bound model is used to calculate the optimal number of subtasks for

compute bound application.Comparing to the equal size of all subtasks in data transfer

bound model, the subtask size will linearly increase in the first part of the application

and then linearly decrease in the latter part of the application.Assuming the time cost

of kernel execution in the first subtask to be t and the number of subtasks to be n and n

to even, then we have the following equation to present the mapping between the time

cost of kernel part in the first subtask and the total kernel execution time cost of the

application.

Tk = 2× t× (1 + 2 + 3 + ...+ n/2 + n/2 + ...1) (4.12)

Then we can calculate the computation time cost of the first subtask with n and Tk

as shown in the following equation.

24

t = (4× Tk)/(n× (n+ 2)) (4.13)

As shown in 3.1, we can sum up the send part in the first subtask, the total kernel

execution of all subtasks, the receive part in the last subtask and overhead to calculate

the total time cost of the application with the following equation which is also a function

of n.

Ttotal = ts1 + Tk + trn + (n+ 2)× tsync + n× (tkoh + tboh) + c (4.14)

Notice that the subtask size queue is symmetric, i.e the size of subtask 1 is equal

to the size of subtask n and the size of subtask 2 is equal to the size of subtask n 1.

Therefore, we can use the following equation to calculate the time cost of send part in

the first subtask and the time cost of receive part in the last subtask.By using differential

we can approximate the optimal no. of sub tasks to following value

n =

√

8× (Ts + Tr)

tsyn + tboh + tkoh
(4.15)

25

CHAPTER 5

Results

We have applied our task partition and scheduling schemes on 3 applications with varied

parameters and verified our model and analysis.

5.1 Sepia Filter

First of all we have applied our model on Sepia Filter which comes under Data In-

dependent Application.We have applied filter over the data several times to vary the

computation time while keeping data transfer time constant and observed how total

time taken in varying compared with naive implementation.

Below graph shows the improvement in run time of optimized application for dif-

ferent number of times the filter is applied against the naive implementation(send-

>compute->receive).

Figure 5.1: Sepia Filter

We have observed that effective run time of the application hasn’t changed much

despite the increase in computation time which is visible in the increase of run time for

naive computation as the no. of times filter is applied increases.This can be explained

from the fact that the application is data intensive and hence all the computation of the

application is overlapped by data transfer ,this leads to no increase on effective runtime.

Below is the image of timeline of the application captured using NVIDIA Visual

Profiler validating the complete overlap of data transfer with computation.

Figure 5.2: Sepia Timeline

5.2 Matrix Multiplication

Matrix multiplication is an important part of various applications , we have optimised

matrix multiplication by dividing matrix as blocks and scheduling partial multiplication

across different streams.

We have used cuda events to resolve dependencies that arise while doing a partial

multiplication.





A11 A12

A21 A22



 ∗





B11 B12

B21 B22



 =





C11 C12

C21 C22



 (5.1)

Lets divide matrix is divided into 4 sub-matrices, then the following four equations

represent individual values of C11, C12, C21, C22

27

C11 = A11 ∗B11 + A12 ∗B21 (5.2)

C12 = A11 ∗B12 + A12 ∗B22 (5.3)

C21 = A21 ∗B11 + A22 ∗B21 (5.4)

C22 = A21 ∗B12 + A22 ∗B22 (5.5)

From the above equation we see the data independency across partial multiplication

of different sub matrices.So we schedule the entire multiplication in such a way that

there is overlap of data transfer and computation.

We declare 6 streams , 1 for data send,1 for data receive,4 for computation of four

submatrices. we load matrix A,matrix B in chunks of sub matrices and notify a CUDA

event for each successful transaction.These are be used to resolve data dependency is-

sues while scheduling.

Below is the time line of matrix multiplication.We can see the overlap of memory trans-

fer and computation.Also overlap of computation kernels.

Figure 5.3: Matrix Multipliction

Complete timeline is given below

28

Figure 5.4: Matrix Multiplication Full Time Line

We automated the scheduling for different block sizes and ran it through different

block sizes.We have observed that as the block size decreases i.e no. of blocks to

schedule increases and hence the scheduling overhead but as the the block size increases

no. of optimal no. of sub blocks it is divided into increases.

Below no. of 3D graph shows the variation of runtime when divided into different

blocks.

Figure 5.5: Matrix size vs Time Taken vs No.of blocks

Below Table has the run time of different sized matrices divided into different num-

ber of blocks

29

Figure 5.6: Matrix size vs Time Taken vs No.of blocks

30

CHAPTER 6

Conclusion

In this work , we have presented ways to divide applications in order to maximize

overlap between memory transfer and computation.We have also modeled various pa-

rameters involved in overhead generated while scheduling sub tasks of the application

and thus deciding the optimal sub task size.From our experiments we successfully over-

lapped data transfer and kernel execution.We also found improvement in run time of the

application depending on the extent to which we can overlap different sub tasks.For ap-

plication with very little scope of memory transfer and computation overlap , there will

be very little improvement in run time.In the future work , we can build more accu-

rate models for overhead generation by taking into account the probabilistic variation

involved delay in scheduling the sub tasks.

REFERENCES

1. Hong, S. and H. Kim, An analytical model for a gpu architecture with memory-level

and thread-level parallelism awareness. In Proceedings of the 36th Annual International

Symposium on Computer Architecture, ISCA ’09. ACM, 2009. ISBN 978-1-60558-526-

0. URL http://doi.acm.org/10.1145/1555754.1555775.

2. Hou, Q., K. Zhou, and B. Guo, Bsgp: bulk-synchronous gpu programming. In ACM

Transactions on Graphics (TOG), volume 27. ACM, 2008.

3. Ian Buck, D. H. J. S. P. H. M. H. K. F., Tim Foley (2004). Brook stream program

language. URL http://graphics.stanford.edu/projects/brookgpu/.

4. KhronosGroup (2008). Open computing language (opencl). URL https://www.

khronos.org/opencl/.

5. Luo, C. and R. Suda, A performance and energy consumption analytical model for

gpu. In Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth

International Conference on. 2011.

6. Luo, C. and R. Suda, Mssm: An efficient scheduling mechanism for cuda basing on

task partition. In Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th Interna-

tional Conference on. 2012. ISSN 1521-9097.

7. Nakagawa, S., F. Ino, and K. Hagihara (2010). A middleware for efficient stream

processing in cuda. Computer Science - RD, 41–49.

8. NVIDIA (2007). The cuda computing platform. URL http://www.nvidia.in/

object/cuda_home_new.html.

9. Owens, J., S. Rixner, U. Kapasi, P. Mattson, B. Towles, B. Serebrin, and W. Dally,

Media processing applications on the imagine stream processor. In Computer Design:

VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE International Con-

ference on. 2002. ISSN 1063-6404.

32

