
IMPLEMENTATION OF SURF BASED VIDEO

STITCHING ON FPGAS

A Project Report

submitted by

M.S.CHANDRASEKHAR

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2014

THESIS CERTIFICATE

This is to certify that the thesis titled IMPLEMENTATION OF SURF BASED

VIDEO STITCHING ON FPGAS, submitted by M.S.Chandrasekhar, to the

Indian Institute of Technology, Madras, for the award of the degree of Master of

Technology, is a bona fide record of the research work done by him under our

supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Dr.K.Sridharan
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: May 2014

ACKNOWLEDGEMENTS

I am thankful to Dr.K.Sridharan for his guidance throughout the project. His valu-

able insight helped me a lot for the progress of my project. I also thank my friends

Hari Ananth, Tahiyah who helped me throughout the project by discussing various

concept necessary for the project. I thank my college IIT Madras for providing me

the infrastructure required for my project. I thank my parents for giving me the

motivation and support all the way through. Finally, I thank my project mate Sree

Kalyan Peruri for making the project go as smooth as possible.

i

ABSTRACT

KEYWORDS: SURF; Interest Points; Video Stitching; Hessian filters; Image Pro-

cessing in Verilog

The main aim of this project is to implement a SURF based video stitching

algorithm in hardware. Speeded up robust features constitutes major part of the

algorithm. It is an algorithm for detecting the feature points which is an important

part of a video stitching algorithm. An efficient algorithm has been designed to

process two video streams simultaneously and display on the monitor using side

by side configuration. Feature points are detected using SURF which contains

filtering image with Hessian filters. Random sample consensus is used for interest

point matching to achieve the compensation for video stitching. Architecture is

designed using stream processing in hardware to achieve real-time implementation.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 INTRODUCTION 1

1.1 Video stitching . 1

1.2 Literature Survey . 2

2 ALGORITHM DESCRIPTION 4

2.1 SURF algorithm . 5

2.1.1 Integral Image . 5

2.1.2 Fast Hessian Detector 6

2.1.3 Scale Space Construction 7

2.1.4 Interest Point Detection 8

2.2 RANSAC Algorithm . 8

2.3 Frame Stitching . 10

3 ARCHITECTURE FOR HARDWARE DESIGN 12

3.1 Architecture of Two Video Streams Display 12

3.2 VLSI Architecture for Two video Display 13

3.3 Architecture for Hessian Filters 14

3.4 Architecture for Finding Interest Points 15

4 DETAILS OF THE UTILIZED HARDWARE 18

4.1 Proposed Approach . 18

iii

4.2 Overview of the Hardware . 18

4.3 External Systems . 19

4.3.1 Camera details . 19

4.3.2 Display Details . 19

4.4 FPGA Details . 19

4.5 Clock Generation Details . 19

4.6 Input Interface . 20

4.7 DDR2 Interface . 20

4.8 Output Interface . 21

5 IMPLEMENTATION DETAILS 22

5.1 Two Video Streams Side by Side Display 22

5.2 Implementation of Hessian filters 23

5.3 Implementation of Interest Point Detection 24

6 IMPLEMENTATION RESULTS 26

6.1 DDR2 Two Video stream Display 26

6.1.1 Results . 26

6.1.2 Synthesis Reports . 27

6.2 Hessian Filters . 28

6.2.1 Results . 28

6.2.2 Synthesis Reports . 31

6.3 Interest Point Detection . 31

6.4 Video Stitching . 32

6.4.1 Video Stitching with Static Compensation 32

7 CONCLUSION AND FUTURE WORK 34

7.1 Conclusion . 34

8 APPENDIX 35

8.1 Chipscope Pro for debugging the Hardware 35

8.2 Procedure for invoking IPcore 35

LIST OF TABLES

6.2 Logic Distribution Summary 28

6.3 Special Feature Utilization Summary 28

6.1 Logic Utilization summary . 28

6.4 Logic Utilization summary . 31

6.5 Logic Distribution Summary 31

6.6 Special Feature Utilization Summary 31

v

LIST OF FIGURES

2.1 Algorithm flowchart . 4

2.2 Area Computation using Integral Images 6

2.3 Figure showing the original LoG filters and approximated Dxx, Dyy

and Dxy filters respectively . 7

2.4 Filter Structure for Non Maximal supression 8

2.5 RANSAC Algorithm . 9

3.1 Basic Architecture for Implementation 12

3.2 VLSI Architecture . 13

3.3 Architecture for Filter Implementation 15

3.4 Implementation of Linear Filtering 15

3.5 Interest Point detection Block Diagram 16

3.6 VLSI Architecture for IP detection 17

5.1 Architecture for Filter Implementation 24

6.1 Test Setup for Implementation 26

6.2 Two cameras display without Overlap 27

6.3 Two cameras display with Overlap 27

6.4 Dxx Filter . 29

6.5 Dyy Filter . 29

6.6 Dxy Filter . 29

6.7 Determinant Values . 30

6.8 Hessian Filters in MATLAB 30

6.9 Comparision of Hardware and Software Implementation 32

6.10 Frames without Stitching . 33

6.11 Frames with static compensation 33

vi

ABBREVIATIONS

SURF Speeded Up Robust Features

IP Interest Points

RANSAC Random Sample Consensus

FPGA Field Programmable Gate Arrays

SIFT Scale Invariant Feature Transform

vii

CHAPTER 1

INTRODUCTION

Technologies for aligning images and stitching them into seamless photo mosaics

are among the oldest and most widely used in computer vision. The goal of video

stitching is to create wide-angle and high-resolution panorama video from various

video sources. Different from image stitching technologies, video stitching tech-

nologies require more strict real-time processing ability. Video stitching technolo-

gies have broad applications, e.g. largescale video surveillance, wide-view video

conferences, video editing, video entertainments, video games, etc.

As the result of rapid development of the display industry, high resolution displays

are coming into daily life of people and becoming highly affordable. There is a

desired requirement to use wide-angle and high-resolution videos. Video stitch-

ing technologies may be a solution to create data for various high definition video

requirements. Video stitching technologies are also a powerful tool to provide

panorama videos in visual surveillance to monitor very large places, e.g. super-

markets, squares, long streets, large buildings, etc. Our target is an efficient tech-

nology, possibly real-time, for automated panoramic video construction to enable

applications such as streaming videos from multiple capturing devices and allowing

another party to watch the constructed panoramic video in real-time. This would

offer the remote party a better viewing experience, in terms of wider field-of-view.

In this report we discuss a new hardware implementation of Video Stitching algo-

rithm based on high speed parallel processing FPGA.

1.1 Video stitching

The scope of video stitching algorithm is to join videos that are taken by two dif-

ferent cameras for a better field of vision. People are familiar with image stitching

as it has a greater degree of freedom. This freedom arises from aligning the images

by translation and rotation. Video stitching on the other hand has its restrictions.

There has to be an overlap between the two videos and without loss of generality

the cameras are taken to be side by side. A video stitching algorithm has following

stages.

1. Interest Point detection

2. Interest Point Matching

3. Overlap recognition and Aligning

Interest Point detection This is the first and most important part of video stitch-

ing. Interest points are used because they have well founded function, well

defined position in image space, stable under local and global perturbations

and immune to illumination variations. They are very useful in object track-

ing. The interest points have to be detected for all the video streams that need

to be stitched.

Interest Point Matching Once the interest point locations have been found out,

they have to be matched to find the common portion of the image in the

video frames.

Overlap recognition and Aligning After finding the best match for the interest

points in video frames, we have the information to see if the video frames

can be stitched or not. When the video frames are good enough to stitch,

the matching algorithm gives the amount of compensation and movement

required to combine the common portions of the video frames. This is used

to move the frames and combine the videos as required.

1.2 Literature Survey

The following section describes the study carried out in Video stitching in the liter-

ature. The first part of any video stitching algorithm is detecting the interest points.

An Interest point is a point in an image which has the following features. It has a

clear, preferably mathematically well-founded, definition, it has a well-defined po-

sition in image space, it is stable under local and global perturbations in the image

domain as illumination/brightness variations, such that the interest points can be re-

liably computed with high degree of reproducibility. Old methods of corner point

2

detection included Harris corner detection as described in C.Harris and M.Stephens

(1988).

But for a video stitching algorithm, the accuracy of the corner points detected in

C.Harris and M.Stephens (1988) is not sufficient. So, we look at some modern

approaches such as D.Lowe (2004) which uses a Laplacian of Gaussian filter ap-

proach for detecting the Interest points. This process is called Scale Invariant fea-

ture Transform(SIFT) which is robust but when the algorithm is being implemented

on a FPGA, the speed is more important than robustness. A new method is used

in video stitching which is an optimized version of D.Lowe (2004) and is called

Speeded Up Robust Features(SURF) explained in H.Bay and L.Gool (2006) . This

is different from D.Lowe (2004) as it does not use LoG(Laplacian of Gaussian)

filters, but uses an approximate version of it.

More detailed version of SURF can be found in Evans.C (2009) which explains

how the algorithm can be approached from a theoretical point of view and trans-

lates how it can be implemented. Very few resources are available on SURF which

are related to FPGA. WeiLong (2013) is one of the work done on FPGA but the

algorithm described can only be applied to small size images as they are using only

blockRAM and for higher image sizes more memory should be available.

The algorithm proposed here involves using the SURF algorithm as described in

Evans.C (2009) and WeiLong (2013) but the difference is that the algorithm is op-

timized for bigger image sizes. An approach based on DDR memory available on

the target FPGA board is used. This allows for more resource utilization compared

to work done in the previous papers.

After the interest points have been found out as described in H.Bay and L.Gool

(2006), the interest points have to be matched in order to align the frames correctly.

An algorithm proposed in A.Fischler and C.Bolles (1981) gives detailed analysis of

how sample matching can be done. It is called Random sample consensus. The pro-

posed algorithm iscapable of interpreting/smoothing data containing a significant

percentage of gross errors, and is thus ideally suited for applications in automated

image analysis where interpretation is based on the data provided by error-prone

feature detectors.

3

CHAPTER 2

ALGORITHM DESCRIPTION

This section describes the proposed algorithm that is used for video stitching. The

various steps involved in video stitching are explained step by step. The flowchart

for video stitching algorithm is shown in the Figure 2.1.

Figure 2.1: Algorithm flowchart

To find out how much the frames have to be compensated for video stitching,

it is essential to find the distance between the common portions of both frames.

In order to find this distance, the first step involved is finding the feature points

of the frame which is followed by matching them with feature points of the other

frame. The algorithms for finding and matching interest points are explained in this

chapter.

2.1 SURF algorithm

For Interest Point detection we used the latest algorithm that is proposed in this

field and it is called SURF. Proposed by H.Bay in 2006,SURF is the abbreviation

of Speeded up Robust FeaturesH.Bay and L.Gool (2006) and it is a novel approach

for a video stitching algorithm. This robust algorithm is described clearly in the

sections below.

2.1.1 Integral Image

Integral Image is also called a summed area table which is a data structure and

algorithm for quickly and efficiently generating the sum of values in a rectangular

subset of a grid. Much of the performance increase in SURF can be attributed to the

use of integral image as described in Viola and Jones (2001). The integral image

is computed rapidly from an input image and is used to speed up the calculation of

any upright rectangular area. Given an input image I and a point (x,y) the integral

image I∑ is calculated by the sum of the values between the point and the origin.

Formally this can be defined by the formula:

I∑ (x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (2.1)

Using the integral image, the task of calculating the area of an upright rect-

angular region is reduced four operations. If we consider a rectangle bounded by

vertices A, B, C and D as in 2.2, the sum of pixel intensities is calculated by:

∑
= A+D − (C +B) (2.2)

Since computation time is invariant to change in size this approach is particu-

larly useful when large areas are required. SURF makes good use of this property

to perform fast convolutions of varying size box filters at near constant time. This

is the standard method for SURF but in the algorithm that is described in this paper,

this is not used as calculating the integral image needs a lot of memory. Although

the calculation is faster when the integral image procedure is used, memory con-

5

Figure 2.2: Area Computation using Integral Images

straints on the target board does not allow much freedom. The main reason for

using the integral image is to speed up the calculations, but it can be done with-

out using this procedure. More details about how it is done is explained in further

sections.

2.1.2 Fast Hessian Detector

The SURF detector is based on the determinant of the Hessian matrix. In order to

motivate the use of the Hessian, we consider a continuous function of two variables

such that the value of the function at (x, y) is given by f(x, y). The Hessian matrix

H , is the matrix of partial derivatives of the function f .

H(f(x, y)) =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

 (2.3)

The value of the discriminant is used to classify the maxima and minima of the

function by the second order derivative test. Since the determinant is the product

of eigenvalues of the Hessian we can classify the points based on the sign of the

result. If the determinant is negative then the eigenvalues have different signs and

hence the point is not a local extremum, if it is positive then either both eigenvalues

are positive or both are negative and in either case the point is classified as an

extremum.

Now we should translate this theory to work with images rather than a con-

tinuous function. First we replace the function values f(x,y) by the image pixel

intensities I(x, y). Next we require a method to calculate the second order par-

6

tial derivatives of the image. In D.Lowe (2004) this is done using LoG which is a

complicated procedure but in case of H.Bay and L.Gool (2006) the LoG is approx-

imated by the filters shown in Figure 2.3.

Figure 2.3: Figure showing the original LoG filters and approximated Dxx, Dyy and
Dxy filters respectively

As shown in the figure the 9 × 9 approximated filters are used to calculate the

determinant of Hessian Matrix. In Figure 2.3, the Dxy filter the black regions are

weighted with a value of 1, the white regions with a value of -1 and the remaining

areas not weighted at all. The Dxx and Dyy filters are weighted similarly but with

the white regions have a value of -1 and the black with a value of 2. And the

Hessian determinant is calculated using the formula shown below.

det(Happrox) = DxxDyy − (0.9Dxy)
2 (2.4)

2.1.3 Scale Space Construction

After calculating the determinant of Hessian Matrix, in order to detect interest

points using the determinant of Hessian it is first necessary to introduce the no-

tion of a scale-space. A scale-space is a continuous function which can be used

to find extrema across all possible scales as explained in A.Witkin (1983). As the

processing time of the kernels used in SURF is size invariant, the scale-space can

be created by applying kernels of increasing size to the original image. This allows

7

for multiple layers of the scale-space pyramid to be processed simultaneously and

negates the need to subsample the image hence providing performance increase.

Figure 2.4: Filter Structure for Non Maximal supression

2.1.4 Interest Point Detection

After thresholding, a non-maximal suppression is performed to find a set of candi-

date points. To do this each pixel in the scale-space is compared to its 26 neigh-

bours, comprised of the 8 points in the native scale and the 9 in each of the scales

above and below. Figure 2.4 illustrates the non-maximal suppression step. At this

stage we have a set of interest points with minimum strength determined by the

threshold value and which are also local maxima/minima in the scale-space.

2.2 RANSAC Algorithm

Interest point detection is the major part of video stitching algorithm, but it is not

complete without matching. The algorithm used for this is Random sample consen-

sus, as described in A.Fischler and C.Bolles (1981). A hardware implementation

of the algorithm can be seen in Lan-Rong Dung (2013).

The RANSAC algorithm can be applied to get the homography of each image pair.

This is an iterative algorithm,to start four initial feature matches are selected in

8

the random selection step of each iteration. In image matching there are multi-

ple frames to be matched. In this case we have two frames, so the basic idea

is to consider mappings between image pair include scaling + rotation and affine

transformation, as most distortions present in natural-world images can be suffi-

ciently accurately approximated by such mappings. Since perspective distortions

are locally approximated well enough by affine functions, affine transformations

are considered the distortion model for images matching.

Figure 2.5: RANSAC Algorithm

As there is only 2D transformation involved the task is to find the transfor-

mation matrix. If (x, y) are the source image I coordinates, and (u, v) represent

the destination image J coordinates, the affine transformation is represented by a

homogeneous matrix H.


U

V

1

 = H


x

y

1

 , H =


a b c

d e f

0 0 1

 (2.5)

In the matrix shown above there are 9 parameters out of which 6 are unknowns.

So, we take 3 interest points at random from each of the frames and find the cor-

responding H matrix. Considering 3 points (x1, y1), (x2, y2) and (x3, y3) in the

source image I, and their counter-parts (u1, v1), (u2, v2) and (u3, v3) in the desti-

9

nation image J, we have to solve the following system of equations.



x1 y1 1 0 0 0

x2 y2 1 0 0 0

x3 y3 1 0 0 0

0 0 0 x1 y1 1

0 0 0 x2 y2 1

0 0 0 x3 y3 1





a

b

c

d

e

f


=



u1

u2

u3

v1

v2

v3


(2.6)

Instead of solving the big equation provided above, it can be divided into two

sets of equations considering the computational complexity and saving hardware.

The new reduced set of equations are provided below.


x1 y1 1

x2 y2 1

x3 y3 1



a

b

c

 =


u1

u2

u3

 (2.7)


x1 y1 1

x2 y2 1

x3 y3 1



d

e

f

 =


v1

v2

v3

 (2.8)

Now, the H matrix has been found out the task is to test the transformation

matrix using other points. This process is repeated until we can find the H matrix

with required accuracy. The final transformation matrix gives the matching points

in both the frames. The Figure 2.5 shows the total block diagram of the algorithm.

2.3 Frame Stitching

After the image registration i.e., feature point matching is completed, we have the

points that are similar in both the frames and we have the transformation matrix.

For image stitching, the images have to be overlapped where the common portions

exist. This can be interpreted in a different way considering the case of video

stitching.

10

The freedom that exists for image stitching doesn’t exist for video stitching. Image

stitching has no real time constraints. So, any number of images can be stitched and

the time required depends on how efficiently the algorithm has been implemented.

In case of video stitching, the positioning of the cameras is very important. As

the video stream is continuously coming in, there is only a limited time that a

frame can be delayed as the buffer sizes cannot be infinitely large. Generally for

any video stitching algorithm, the cameras are taken to be horizontally/vertically

aligned enhancing the field of view of the output video. So, stitching in case of

videos involves movement of a frame sideways to overlap the common portion in

both the frames.

From the previous stage, the points that are matched in frames are available. The

amount of frame displacement for proper stitching can be found out by calculating

the euclidean distance between the matched coordinates. The output video frame

can be obtained by moving one frame keeping the other frame fixed. An illustration

of how this is achieved is described in the latter section.

11

CHAPTER 3

ARCHITECTURE FOR HARDWARE DESIGN

3.1 Architecture of Two Video Streams Display

The main part of video stitching algorithm is to combine two different video streams

which have some common portion among them. To achieve this, it is important to

display two videos on a display monitor. This allows us to see the overlap between

two videos and decide whether the two videos can be stitched or not. The block

diagram in Figure 3.1 shows how various blocks involved and this architecture can

be used on any platform.

Figure 3.1: Basic Architecture for Implementation

The figure shows different blocks using different frequencies. The camera is

configured to send pixel data at a rate of 80MHz. The camera data comes at 80MHz

which does not match with the frequency of the data written to the VGA Display.

This is not a problem because one pixel data is available only after two clock cy-

cles which makes the frequency of camera effectively 40MHz which is equal to

the frequency of the Display. For any platform, communication between various

devices is essential and this is achieved by using I2C protocol. It is also necessary

for a PLL to generate required clock frequencies for various modules involved. For

the data to redirect from the camera to the display, there should be some buffers

involved to avoid mismatch in reading and writing frequency. The memory device

used in this case is a DDR2 external RAM which operated in burst mode and has

a frequency of 100MHz. There are read enables as well as write enables to ensure

the data is transferred correctly.

3.2 VLSI Architecture for Two video Display

This section illustrates how various modules are connected and how the data flows

between various modules. The details of the hardware used to implement this ar-

chitecture are described in the section below.

Figure 3.2: VLSI Architecture

All the important signals that connect between various modules are mentioned

in the figure above. pix − clk is the clock at which the cameras send the data.

DDR2 uses a FIFO interface, which has some signals. app − wdf − data is the

port through which the actual data is sent. app−wdf −wren is the write enable to

the DDR memory. rd− data− valid is a valid signal, which tells the data is valid

to be read from the memory. rd − data − fifo − out is the data output which is

13

sent to the display module via a output FIFO. From the display module rd− data

is sent to VGA Display. The Input and Output FIFO also contain appropriate read

and write enables which ensure proper flow of the data. dvi − scl and dvi − sda

are the configuration details for the display. Similarly, cam − scl and cam − sda

are the configuration details for the camera. The configuration of the camera and

the display can be changed in their respective I2C modules as required.

3.3 Architecture for Hessian Filters

When a filter is applied to an image it means that the value of the pixel is impacted

by the weights of the pixels surrounding it. How it is impacted depends on the

type of the filter applied. So, for any image a pixel needs it’s surrounding pixels

for a filter to be applied i.e., it needs the pixels in the rows above it as well as the

rows below it. It is not a problem when a filter is applied to an image because it is

already stored in the memory and all the pixel values are present. It is a challenging

task when we are dealing with real-time filtering. When a video stream is coming

in continuously, one cannot buffer everything to calculate the filter value later, this

will lead to buffer becoming full and the new data is lost. To deal with this we

propose a process called row buffering.

Row buffering, as the name suggests we buffer rows of data for applying the filter.

Buffering is not storing data, it means delay the data so that there is time to do

calculations. The number of rows buffered depends on the size of the filter that we

are going to apply. If we consider a 3 × 3 filter, the architecture designed can be

seen in Figure 5.1.

I represents the video stream and the window has the filter function ready to apply

when the third row starts. For a 3 × 3 filter we need first two rows to be buffered.

Similarly, for a 9× 9 filter we need 8 row buffers for implementation.

But the data flow management itself is not sufficient to apply a filter. It is

also essential for the filter function to work to obtain the correct values for a filter.

Detailed architecture of how the filter function is applied is show in the Figure 3.4.

All the three filters are implemented using this architecture. The output of these

filters are used to calculate the determinant. This is the step next to displaying two

14

Figure 3.3: Architecture for Filter Implementation

Figure 3.4: Implementation of Linear Filtering

video streams. So, this has to be applied to both video streams. After finding the

filter values, determinant value has to be found out. The following section gives

the architecture for finding the interest points based on the determinant values.

3.4 Architecture for Finding Interest Points

As the pixels come in, they are send into the hessian filter module to find the filter

values accordingly and the determinant values are sent into the Interest point de-

tection module. The point to be noted is that the hessian filter module will apply

the filter as soon as the first pixel comes in, but for a filter to be applied on the pixel

it needs the values that are not yet available from the camera. The correct filter

15

values will be available from the fifth pixel in the fifth row as a 9× 9 filter is being

used. This is a border condition and considering the size of the image being used,

the error in detecting the interest points towards the borders of the image can be

ignored. This is very important when designing the hardware because it turns out

that the resources used for eliminating the border conditions are more complex and

undesirable.

At the end of Hessian filter module, the determinant values are send to the inter-

est point module. In the interest point detection module, one maximum point is

taken in every 9 × 9 block. For an image size of 800 × 600, this amounts to 5900

feature points, which is a huge number. To reduce the number of feature points

detected, we choose the feature points that are much greater than the average of all

the feature points detected.

I > k × A (3.1)

I is the determinant value of the feature point detected, A is the average of all

the feature points and k is a constant value, which depends on the final number of

interest points that we need to detect. The next step is to do scale space filtering

for more accuracy, to do that hessian filters should be applied across larger scales,

which compromises the space and time of the hardware. So, the feature points are

detected on a single scale. The Figure 3.5 shows the block diagram of how Interest

point module works.

Figure 3.5: Interest Point detection Block Diagram

16

Detecting the interest points means, finding the location where the maximum

value of the determinant exists. Considering software implementation detecting

the maximum value in a block of values is easy. In hardware implementation it

is hard because, values of the 9 × 9 block are not completely available. It can

be seen that we have encountered a similar problem when calculating the filter

values. So, a similar architecture has been designed which takes the maximum

values continuously as the pixels come in.

Figure 3.6: VLSI Architecture for IP detection

The Figure 3.6 shows the vlsi architecture for interest point detection. As the

interest points are detected in a 9 × 9 block, there is a nine counter involved. The

purpose of this counter is to store the maximum value among the 9 pixels in the

registers. When the counter resets, the register count increases. The maximum

value among the next nine determinant values is stored in the second register and

so on. When the next row of pixels come in, the maximum value of the first nine

determinant values in the second row is compared with the value stored in the

first register and replaced accordingly. After the first 9 rows of pixels arrive, we

have the first set of feature points. These are sent for averaging. After the feature

point detection is complete, the average can be found out and depending on the

number of feature points required we can change the threshold. A counter is kept

to keep track of the pixel coordinates which will become the input to Interest point

matching module.

17

CHAPTER 4

DETAILS OF THE UTILIZED HARDWARE

4.1 Proposed Approach

The project is targeted on a LX50T Virtex-5 FPGA Board. The camera input is

taken from two CMOS cameras on a VmodCAM and it is connected to the FPGA

via a VHDC connector. The algorithm designed is applied on the incoming video

stream and is sent to the DVI transmitter to display on a VGA monitor. The block

diagram of the project is shown in Figure 3.2. The communication between the

camera and the FPGA is done by using the I2C protocol. The same applies for the

communication between the Display and the target board.

4.2 Overview of the Hardware

The following peripherals of Virtex-5 Genesys FPGA board are exploited for this

application

1. 100MHz onboard clock

2. VHDC (Very High Density Connector) for camera interface

3. HDMI out (High Definition Multimedia Interface) connector for display

4. Chrontel 7301 DVI(Digital Visual Interface) transmitter

5. Programming port and power supply

6. LCD, switches and LED for testing purpose

7. DDR2 SDRAM (Dual Data Rate Synchronous Dynamic RAM)

4.3 External Systems

4.3.1 Camera details

1. Resolution : 800 x 600

2. Frame rate: 30 FPS

3. Pixel rate: 80MHz

4. Data out : 8-bit parallel, RGB 565 format

5. Interface : I2C

4.3.2 Display Details

1. VGA Display

2. Resolution: 800 x 600

4.4 FPGA Details

The following modules have been instantiated in the Virtex-5 FPGA for imple-

menting the algorithm

1. Clock generator module

2. I/O Interface module
(a) Camera input module

(b) Camera I2C interface module

(c) DVI output module

(d) DVI I2C interface module

3. Input output FIFO modules (Data and Address FIFOs)

4. DDR Controller module (Memory Interface Generater(MIG)- Xilinx IPCore)
for interfacing DDR2 SDRAM

4.5 Clock Generation Details

The Genesys board has an onboard clock of 100MHz. This is the master/main

clock(MCLK). This clock is buffered and input to the clock generation module.

The following clocks are generated from this module

19

1. 24MHz is sent to the camera

2. 80MHz for the DVI output module. 40MHz derived from 80MHz is sent to
the DVI transmitter

3. 200KHz for the DVI camera I2C module. The 200KHz is internally gener-
ated from a 24MHz clock signal

4. 100MHz (for DDR2 data storage)

4.6 Input Interface

For the video stitching project we need two cameras that are available on the Vmod-

CAM. The configuration of both the cameras are set to be the same and the details

are below. The cameras chosen for implementation provides output with a resolu-

tion of 800X600 at a frame rate of 15fps. For implementation, the camera is set

to a resolution of 800x600. The cameras communicates with FPGA through I2C

(Inter IC communication). The cameraiic module generates the control signals for

the I2C interface. The cameras initial settings and the control signal for interface

is send to the cameras from the cameraiic module. A clock of 24MHz generated

from the main system clock of 100MHz is inputted to the cameras. The cameras

output three main signals.

1. A pixel clock of 80MHz, which is generated internally by the cameras from
the 24MHz input clock.

2. Data out(8 bit): Each pixel is defined by 16 bit RGB565 format. Two con-
secutive data outs (of 8 bit each) gives one pixel information.

3. Enable signals: The enable line consists of line enable and frame enable
signals. The data output from the cameras is valid only when both the line
enable and frame enable signals are high.

4.7 DDR2 Interface

Considering the memory constraints imposed by hardware when using the block-

RAM, the external DDR2 memory available on the board is also used. DDR2 has

256MB of memory and it can be used only for storage and it has no parallel pro-

cessing and computational power unlike blockRAM. To initialize DDR2, IPCore

20

from inside ISE has to be invoked. A controller module is present to properly trans-

fer the data from the cameras to the display. For starters, as described in the section

above the data is taken from the camera and display directly via the DDR memory.

This is done to understand how the memory accessing procedures work in DDR

memory.

4.8 Output Interface

For sending the video information DVI controller or transmitter is required. Genesys

board is provided with a DVI transmitter (Chrontel 7301 IC) external to the FPGA.

The DVI transmitter drives the HDMI output through I2C interface. Similar to the

camera initialization, the display is also to be initialized for its internal settings.

Hence, the display initialization is done in the init − 7301iic module. The idea

is to take the stitching video frames and then display it on the monitor. The video

display is only 800 × 600 and both the cameras input 800 × 600 images. So, the

video streams from each camera is cropped to 400 × 600. These cropped frames

are stitched and then sent to the display module.

Along with the output data, 40MHz differential clock (derived from 80MHz sig-

nal), reset, line enable, frame enable and DVI enable signals are sent to the DVI

transmitter. Since the colour pixel has a depth of 24 bit, the 24-bit is divided into

two 12 bit signal and is sent out during both the positive and negative clock edges

for delivering a 24 bit information in single clock pulse.

21

CHAPTER 5

IMPLEMENTATION DETAILS

As discussed in literature the first part of SURF i.e., the Integral Image calculation

is skipped in this algorithm. The reason behind skipping the Integral image cal-

culation is that it is a trade off to use bigger images. When we use an image of

size 800 × 600, the block memory available on the FPGA is not sufficient to store

the complete integral image. And two video streams are simultaneously coming

in, this implies we need to store two integral images each of 480000 pixels. From

WeiLong (2013), it can be seen that approximately 21-bits are sufficient to store

the integral image of each pixel. This amounts to 19.22 Mbits, but the block mem-

ory available on the FPGA is only 1.7 Mbits. So, the external DDR2 memory that

is present on the FPGA board is effectively used in storing the video stream and

sending it out to display on the monitor.

5.1 Two Video Streams Side by Side Display

Displaying two video streams simultaneously using DDR memory is important. It

is the main part of video stitching as without displaying the two video streams,

there is no possiblility of applying the video stitching algorithm. The procedure to

do this is as follows.

1. The main clock on the FPGA board is 100MHz. This clock is sent into the PLL

(Phase Locked Loop) and three clocks are generated 24MHz, 200kHz and 40MHz.

2. The 200kHz clock is needed to configure the I2C communication with the Cam-

era as well as the VGA display with the FPGA board. As two cameras are being

used two cam− iic modules have to be instantiated.

3. The 24MHz clock is sent to the external camera which is attached to the FPGA

board via a VHDC connector. The camera uses this clock to generate a 80MHz

clock and this is the rate at which it sends the pixels in.

4. The two cameras available on the VmodCAM are activated and they start send-

ing data at 80MHz and 8-bits for a single clock cycle. The camera is configured

such that each pixel data is 16-bits, this means pixel data from both cameras come

in at 40MHz.

5. When a pixels come in, it is sent to the the cam − input module and this is

where they are converted to grayscale. Grayscale is used for processing purposes

when we get to applying the filter but for now colour video stream is used.

6. From both cameras we extract pix− cnt, as the name suggests it gives the num-

ber of the pixel that is coming in.

7. Using this pix − cnt we can choose to store either the first camera data or the

second camera data depending upon region in which the stream is displayed on the

monitor.

8. The DDR uses 128-bit write in a single clock cycle. To do this we have created

a buffer which becomes full when 8 pixels come in (each pixel is of 16-bit length)

and then writes into DDR.

9. So, we need a controller module for the DDR memory to properly control when

the signals need to be enabled for reading and writing.

10. Now that both streams are in the DDR memory, we have to display them on

the monitor. From DDR pixels are extracted and sent into the d− output module.

From the DDR memory 16-bit output is extracted.

11. Code is written in the d − output module as to how the pixels are sent to the

monitor for displaying. The results obtained from implementation are illustrated in

the next section.

5.2 Implementation of Hessian filters

An new module is added to the modules that are present for implementing the Hes-

sian filters. First, the filters will be applied to single frame and then are extended

to second frame. The architecture for implementing the filters is explained in the

sections above. As the filter used is a 9×9 filter, we need 8 row buffers. These row

buffers are realized using fifos.

The data from the camera comes in at 80MHz, 8-bit per clock cycle. As we are

using RGB-565 format, two clock cycles give one pixel value. The pixel value is

converted to grayscale as it is coming in and sent into the first fifo buffer as shown

in the figure below

23

Figure 5.1: Architecture for Filter Implementation

The row width of the image is 800 pixels, so the depth of each fifo should be

800. This is called stream processing. The entire module operates on a 40MHz

clock as it is the frequency at which the grayscale values are created. All the

details that are given in the above section regarding the frequencies and hardware

connections remain the same in case of applying hessian filters. As the pixels come

in the filter values are calculated and the filter values are stored in a register which

is redirected to DDR memory to be sent into the display module. As it is already

specified the DDR memory operates at a frequency of 100MHz.

The architecture for hessian filter module is provided in the above section. The

registers used for redirecting the filter values to DDR memory have a data width

of at least 16-bit. DDR has a large amount of memory and the complete data can

be stored in it. But, when the output from DDR module is sent to VGA display

the data width is not sufficient for displaying the entire 16-bits. The VGA display

uses 24-bit colour. As grayscale is being used, truncated 8-bits can only be used

to display the filter values on the monitor. The snapshots of results obtained from

hardware implementation are shown in the Figures 6.4, 6.5, 6.6.

5.3 Implementation of Interest Point Detection

The output from the filter values are sent to the IP detection module. The vlsi

architecture for feature detection is provided in the section above. As we need to

24

calculate the maximum in a 9 × 9 block, registers are provided depending on the

width of the image. The width of the image is 800, so the number of registers that

need to be used is approximately 89. The register count is increased by 1 for every

nine pixels that come in. The value that is stored in the register is the maximum

value of the nine pixels. When the 800 pixels arrive, the register counter again

points to the first register. The values from the second row are compared with the

value stored in the register and the value in the register is replaced accordingly.

Only after 7209 clock cycles i.e., 9 rows and 9 columns, the first maximum value is

obtained and is send to the averaging and thresholding part. For, thresholding the

average of the determinant values of all the feature points have to be present. For

this to happen, it should wait until the camera inputs the complete frame. To do this

we have to store the data in a blockRAM. Instead, the average value can be found

out for the first frame and this can be used for thresholding other frames. This

is attributing to the fact that there is no rapid moving objects in the scene which

allows us to save some memory. After thresholding, the interest points are detected

and the comparision of the results obtained is shown in Figure 6.9.

25

CHAPTER 6

IMPLEMENTATION RESULTS

The test setup used for implementing the algorithm is shown in the figure below.

Figure 6.1: Test Setup for Implementation

6.1 DDR2 Two Video stream Display

6.1.1 Results

The most important part of a video stitching algorithm is to detect the similar parts

in both images and to combine them appropriately. When there is no similarity

between two video streams, there is no point is doing video stitching. First result

Figure 6.2 shows a snapshot of the video stream which has no overlap between the

left hand side and the right hand side. This is not suitable for video stitching. So,

the camera data is reconfigured to obtain overlap making it suitable for stitching.

Figure 6.3 shows the overlap between both the video streams.

Figure 6.2: Two cameras display without Overlap

Figure 6.3: Two cameras display with Overlap

6.1.2 Synthesis Reports

The program is synthesized using Xilinx 13.2 ISE and results are obtained. For this

part of the algorithm the utilization summary cannot be calculated independently as

the modules don’t have any meaning without support of other modules. So, the total

device utilization is shown below. The device used for implementing this is Virtex-

5 LX50T-ff1136-3. Three tables showing Logic utilization, logic distribution and

Special feature utilization are given below.

27

Logic Distribution Used Available Utilization Percentage
Number with Unused Flipflop 1418 4780 29
Number with an unused LUT 2094 4780 43

Number of fully used LUT-FF pairs 1268 4780 26
Number of unique control sets 423

Table 6.2: Logic Distribution Summary

Special Feature Utilization Used Available Utilization Percentage
Number of Block RAM/FIFO 7 60 11

Number of BUFG/BUFG CTRL 14 32 43
Number of PLL-ADV 2 6 33

Table 6.3: Special Feature Utilization Summary

Logic Utilization Used Available Utilization Percentage

Number of Slice Registers 3362 28800 11

Number of Slice LUTs 2686 28800 9

Number used as Logic 2663 28800 9

Number used as Memory 23 7680 0

Table 6.1: Logic Utilization summary

6.2 Hessian Filters

6.2.1 Results

The filters are applied on the incoming video stream and is displayed on the mon-

itor. Also a MATLAB version of filter implementation is used for checking the

results obtained from hardware implementation. The figures below are a snapshot

of filtered video streams that are being displayed on 800× 600 VGA Display.

28

Figure 6.4: Dxx Filter

Figure 6.5: Dyy Filter

Figure 6.6: Dxy Filter

29

Figure 6.7: Determinant Values

The Figures give information about the filters that are applied to the video

stream. The Figures 6.4, 6.5, 6.6 are not accurate when compared to the MAT-

LAB version of the filters. This happens because the VGA display accepts 24-bit

colour input. In case of gray scale it is only 8-bits, but the filter output values need

at least 16-bits. So, the picture shows only the truncated filter values. This is same

in case of Figure 6.7 as the determinant value needs 21-bits for storage.

(a) Original Image (b) Dxx Filter

(c) Dyy Filter (d) Dxy Filter

Figure 6.8: Hessian Filters in MATLAB

30

Now coming to the MATLAB implementation of filters, they are more accurate

than the ones shown in the VGA display. For simulation purposes an image is used

in MATLAB. The Figure 6.8 shows the implementation of filters in software.

6.2.2 Synthesis Reports

For implementation purposes, only data from single camera is used. The tables

below show Logic utilization, logic distribution and special feature utilization.

Logic Utilization Used Available Utilization Percentage
Number of Slice Registers 4541 28800 15

Number of Slice LUTs 5643 28800 19
Number used as Logic 5588 28800 19

Number used as Memory 55 7680 0

Table 6.4: Logic Utilization summary

Logic Distribution Used Available Utilization Percentage
Number with Unused Flipflop 3946 8487 46
Number with an unused LUT 2844 8487 33

Number of fully used LUT-FF pairs 1697 8487 19
Number of unique control sets 524

Table 6.5: Logic Distribution Summary

Special Feature Utilization Used Available Utilization Percentage
Number of Block RAM/FIFO 11 60 18

Number of BUFG/BUFG CTRL 14 32 43
Number of PLL-ADV 2 6 33

Table 6.6: Special Feature Utilization Summary

6.3 Interest Point Detection

Interest point detection in software could not be done with a real time video that

is being recorded in the cameras. So, to check how well the interest points in

Verilog match with the MATLAB results, an image is used. The image is sent into

the verilog module and the points found are plotted on the image. On the other

hand same algorithm is implemented in MATLAB and the points are plotted on the

image.

31

(a) Feature Points in Verilog

(b) Feature Points in MATLAB

Figure 6.9: Comparision of Hardware and Software Implementation

In Figure 6.9 the points in red are the detected interest points. As the picture

suggests, the hardware and software implementation are a good match.

6.4 Video Stitching

6.4.1 Video Stitching with Static Compensation

This part of video stitching does not involve matching the frames in order to obtain

the distance that the frame is required to move. So, a static movement is given to

the frame and the results are obtained. The problem with this is it does not adjust

with the depth.

32

Figure 6.10: Frames without Stitching

Figure 6.11: Frames with static compensation

Figure 6.10 shows the two frames side by side without compensation. The

result of static compensation can be seen in the Figure 6.11. When the frame is

moved, the common portions of the two videos overlap decreasing the width of the

output image. The white patches on the side of the display are a result of this.

33

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

An efficient hardware architecture for two video streams display and video stitch-

ing was designed. A verilog code was developed, synthesized in Xilinx ISE version

13.2 and tested on Gensys Virtex 5 FPGA board. The architecture was imple-

mented and tested for an input resolution of 800 × 600. The following are the

sequence of steps involved in implementing the video stitching algorithm.

1. Studied the requirement of the project and carried out literature survey and
finalized the steps involved in video stitching algorithm based on hardware
implementation requirement.

2. Estimated the amount of hardware required as the size of the image used is
large and the algorithms are modified and designed according to the require-
ments.

3. An efficient architecture for single video stream display was designed and
implemented using Xilinx 13.2 on a Virtex-5 FPGA. This is the hardware
utilized for the complete project.

4. For video stitching, two video stream display is necessary. So, architecture
for two video stream display is designed, implemented and the results are
provided in the section above.

5. Hardware architecture for SURF algorithm was designed, implemented and
the detected interest points. Hessian filters are implemented and the results
are compared to software implementation.

6. Interest points are detected for an image using Verilog and the results are
tested with MATLAB.

7. Extending the two video stream display, stitching with static compensation
is achieved in real time.

CHAPTER 8

APPENDIX

8.1 Chipscope Pro for debugging the Hardware

This section describes the Xilinx ChipScope Analyzer. ChipScope is a set of tools

made by Xilinx that allows us to easily probe the internal signals of design inside

an FPGA. While the design is running on the FPGA, we can trigger when cer-

tain events take place and view any of the design’s internal signals. Because the

ChipScope analyzer logic is implemented in the FPGA, it has some important lim-

itations. The sample memory of the analyzer is limited by the memory resources

of the FPGA. In a design that uses much of the FPGA’s memory, there may not

be much memory left over for the ChipScope cores. Also, ChipScope cannot sam-

ple as quickly as an external logic analyzer. Generally, ChipScope sampling rate

will be the same as the design’s clock frequency. It is therefore not possible to

detect glitches with ChipScope. In order to use the ChipScope internal logic an-

alyzer in an existing design project, first the ChipScope core modules should be

generated, which perform the trigger and waveform capturing functionality on the

FPGA. Afterwards, these cores are instantiated in the Verilog code connected to the

signals to be monitored. The complete design is then recompiled. Instead of load-

ing the resulting .bit file onto the FPGA using iMAPCT, the ChipScope Analyzer

application is used to configure the FPGA. ChipScope Analyzer also provides the

interface for setting the trigger criteria for the ChipScope cores, and for displaying

the waveforms recorded by those cores.

8.2 Procedure for invoking IPcore

1. In the design window Right click on the project top module.

2. Click Newsource.

3. Click on IP(coregenerator and ArchitectureWizard) in the newsourcewizard
pop up window.

4. Give a file name, select addtoproject and click next

5. Search for the required IPcore and select from the drop down menu. The
IPcore can be anything, blockRAMs, fifos, DDR memory. In this project
we have used blockRAMs, fifos, DDR MIG(memory interface generator),
PLL(Phase locked loop).

6. Click next and finish.

7. Wait for the IPcore window to pop up

8. Download the datasheet available in the left bottom of the IPcore window.

9. Read the datasheet for selecting other features of the core for configuring the
IPcore as per the specific requirement of the user. This depends upon the
IPcore that is invoked.

10. After selecting all the features click generate.

11. A .v file and .XCO file is generated in the folder and the IPcore is added to
the design window which indicates that IPcore is added to the project.

36

REFERENCES

1. A.Fischler, M. and R. C.Bolles (1981). Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 381–395.

2. A.Witkin (1983). Scale-space filtering. Int. Joint conf. Artif. Intelligence, 2:1019.

3. C.Harris and M.Stephens (1988). A combined corner and edge detector. Proc.
Alvey Vision Conf , 147–151.

4. D.Lowe (2004). Distinctive image features from scale-invariant keypoints. IJCV ,
60(2):91–110.

5. Evans.C (2009). Notes on the opensurf library. Technical Report CSTR–09–001,
University of Bristol.

6. H.Bay, T. and L.Gool (2006). Surf-speeded up robust features. ECCV , 1:404–417.

7. Lan-Rong Dung, Y.-Y. W., Chang-Min Huang (2013). Implementation of ransac
algorithm for feature-based image registration. Journal of Computer and Commu-
nications, 46–50.

8. Viola, P. and M. Jones (2001). Rapid object detection using a boosted cascade of
simple features. CVPR(1), 511–518.

9. WeiLong, Z. (2013). An efficient vlsi architecture of surf extraction for high reso-
lution and high frame rate video. SCIS, 1–14.

37

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Video stitching
	Literature Survey

	ALGORITHM DESCRIPTION
	SURF algorithm
	Integral Image
	Fast Hessian Detector
	Scale Space Construction
	Interest Point Detection

	RANSAC Algorithm
	Frame Stitching

	ARCHITECTURE FOR HARDWARE DESIGN
	Architecture of Two Video Streams Display
	VLSI Architecture for Two video Display
	Architecture for Hessian Filters
	Architecture for Finding Interest Points

	DETAILS OF THE UTILIZED HARDWARE
	Proposed Approach
	Overview of the Hardware
	External Systems
	Camera details
	Display Details

	FPGA Details
	Clock Generation Details
	Input Interface
	DDR2 Interface
	Output Interface

	IMPLEMENTATION DETAILS
	Two Video Streams Side by Side Display
	Implementation of Hessian filters
	Implementation of Interest Point Detection

	IMPLEMENTATION RESULTS
	DDR2 Two Video stream Display
	Results
	Synthesis Reports

	Hessian Filters
	Results
	Synthesis Reports

	Interest Point Detection
	Video Stitching
	Video Stitching with Static Compensation

	CONCLUSION AND FUTURE WORK
	Conclusion

	APPENDIX
	Chipscope Pro for debugging the Hardware
	Procedure for invoking IPcore

