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ABSTRACT

KEYWORDS: Lie algebras; representation theory; Weyl denominator formula;
modular forms; Jacobi forms; Siegel modular forms; additive lift; eta products

We begin with a review of the classficiation of finite semisimple Lie algebras and
affine Kac-Moody Lie algebras. We work out two applications of the Weyl denom-
inator formula and find modular forms naturally appearing in the denominator
formulae for affine Kac-Moody algebras. In order to study Borcherds algebras,
we take a detour into modular forms and, in particular, Jacobi forms and Siegel
modular forms. Finally, we establish one case of two conjectures that concern
the additive lift of a weight 1 and index 1/2 Jacobi form Ψ1,1/2 that produces the
Siegel modular form ∆1. We also tabulate the characters of all multiplicative eta
products corresponing to conjugacy classes ofM12 under modular transformations.
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CHAPTER 1

Finite Lie Algebras

1.1 What is a Lie Algebra?

A Lie algebra L is just vector space over a field F with an operation, formally
called the Lie Bracket, [·, ·] : L× L→ L satisfying the following properties:

(L1) (x, y) 7→ [x, y] is linear for all x, y ∈ L

(L2) [x, x] = 0 for all x ∈ L

(L3) [x, [y, z]] + [y, [z, x]] + [z, [y, x]] = 0 for all x, y, z ∈ L

Notice that (L1) and (L2) together imply antisymmetricity of the Lie bracket
[x, y] = −[y, x]. Axiom (L3) is called Jacobi Identity.

1.2 Some Mundane Definitions

If H,K are subspaces of L, then [HK] is defined as the subspace spanned by all
products of the form [hk] with h ∈ H, k ∈ K.

A subspace H ⊂ L is a subalgebra if it is closed under the lie bracket i.e.
[HH] ⊂ H

An ideal I of L is a special kind of subalgebra with the added property that
it is closed under multiplication with L, that is [IL] ∈ I

Suppose we have two lie algebras L1, L2 over k. A map θ : L1 → L2 is a
homomorphism if θ is linear and if it respects the Lie bracket,

θ([xy]) = [θ(x), θ(y)] for all x, y ∈ L1

A bijective homomorphism is called isomorphism of Lie algebras.

An associative algebra A is a vector space equipped with an associative
bilinear map (·, ·) : A × A → A that takes (x, y) → xy for x, y ∈ A. Given any
associative algebra, we can form a Lie algebra by just defining the lie bracket to
be the commutator [x, y] = xy − yx. Its easy to see that the Jacobi identity (L3)
is satisfied by the virtue of associativity.



1.3 Representations

If V is a vector space over k, then GL(V ) is an associative algebra. As mentioned
above, it can be made into a Lie algebra by setting [x, y] = xy− yx. This is called
the general linear Lie algebra gl(V )

Any subalgebra of the general linear Lie algebra is called a linear Lie algebra.

A representation is a just a homomorphism ρ : L→ gl(V ). Incidentally, this
also makes V into an L-module by defining

x · v = ρ(x)v for all x ∈ L, v ∈ V (1.1)

A L-module is to a vector space what a vector space is to a field. That is, it
defines a way in which elements of L multiply with elements of V to give a product
in V

1.4 The Adjoint Representation

The most important example of a representation for a lie algebra is the Adjoint
representation ad : L → gl(V ) which send x → adx where adx(y) = [x, y].
In this case, the vector space V is chosen to be L itself and L becomes as an
L-module.

1.5 Cartan Subalgebra

A Cartan subalgebra of a Lie algebra is a maximal nilpotent subalgebra. More
formally, define the normaliser N(H) of a subalgebra H as

N(H) = {x ∈ L : [h, x] ∈ H ∀h ∈ H}

H is called Cartan subalgebra if it is nilpotent and N(H) = H.

The next theorem helps us to find Cartan subalgebras explicitly:

Theorem 1. Let x be a regular element of L. Then the null component L0,x is a
Cartan subalgebra of L.

The converse of the above theorem is also true:

Theorem 2. If H is a Cartan subalgebra, then there exists an x ∈ L such that
L0,x = H

3



1.6 Killing Form

The Killing form (x, y) of x and y is defined as

(x, y) = Tr(adx ad y) (1.2)

Note that this makes sense as the trace of a matrix is independent of the basis.

In general, a bilinear form β(x, y) is called non-degenerate if its radical S is
0, where S = {x ∈ L : β(x, y) = 0 ∀y ∈ L}. Since the Killing form is associative,
its radical is in fact an ideal of L. This tells us that

Theorem 3. Let L be a Lie algebra. It is semisimple if and if only if the Killing
form is non-degenerate.

1.7 The Root System

For a semisimple algebra, the Cartan subalgebra is abelian. Since H is abelian,
adLH is a commuting set of endomorphisms of L. This tells us that adLH is
simultaneously diagonalizable and thus L permits a decomposition as a direct
sum L = ⊕Lα where Lα = {x ∈ L : [hx] = α(h)x ∀h ∈ H}, where α ∈ H∗ are
called the roots and dimLα is the multiplicity of the root. The vector x ∈ L for
which [h, x] = α(h)x is called the root vector.

The dimension of Cartan subalgebras of L is called the rank of L.

Let α1, α2, . . . , αn be a fixed basis of roots so that every element of H0
∗ can be

written as ρ =
∑

i ciαi. Define an ordering on H∗0 as:

(i) ρ > 0 if the first non-zero ci > 0

(ii) ρ < 0 if the first non-zero ci < 0

(iii) ρ > σ iff ρ− σ > 0

Given a set of roots, we can write it as a disjoint union of positive roots and
negative roots. A simple root is one which can not be written as a sum of two
or more positive roots.

4



1.8 Cartan Matrix

For an n rank algebra, the Cartan matrix is the n× n matrix

Aij =
〈αi, αj〉
〈αj, αj〉

(1.3)

where α1, . . . , αn are simple roots.

For example, the Cartan Matrix for sl(2) is

A =

[
2 −1

−1 2

]
(1.4)

1.9 Weyl Group

The Weyl group is the group generated by reflections about the roots. Given an
element in α ∈ L, the weyl group element wα acts on element β ∈ L as

wα(β) = α− 〈α, β〉
〈α, α〉

β

It turns out that the Weyl group is in fact generated by just the reflections
about the simple roots. So the Cartan matrix provides all the information neces-
sary to compute the Weyl group reflections.

wαi(αj) = αj − 2
〈αj, αi〉
〈αi, αi〉

αi

= αj − Ajiαi

1.10 Dynkin Diagrams

The determination of all possible Cartan matrices is possible using Dynkin Dia-
grams. A Dynkin diagram of a root system with n simple roots is simply a graph
with n nodes. The ith node represents the ith simple root and the ith and jth
nodes are connected by Aij · Aji lines.

If two nodes are connected by more than one lines, then we mark the larger
root by an arrow pointing towards it. The larger root among node i and j can be
determined by finding the smaller one of Aij and Aji.

It turns out that the class of admissible Dynkin diagrams that correspond to
root systems is rather restricted. This allows to classify all semisimple lie algebras,

5



as shown in figure 1.1.

1.11 Classification

Semisimple Lie algebras have a out to have a very elegant classification.

Once we have the adjoint representation and the Cartan subalgebra, the action
of Lie algebra L on H via the adjoint representation gives the root system. The
scalar product on the root space gives us a connection between between H and its
dual space H∗. We then establish a one to one correspondence between semisimple
lie algebras and root systems. This reduces the problem to one of classification of
root systems. The information about simple roots is completely contained in the
Cartan Matrix, which can be classified using Dynkin Diagrams, as shown in figure
1.1.

Classical Lie algebras

An:

Bn:

Cn:

Dn:

Exceptional Lie algebras

E6:

E7:

E8:
F4:
G2:

Figure 1.1: The complete classification of all Semisimple Finite Lie algebras.
Apart from the four families of classical Lie algebras defined as subal-
gebras of gln, we find five exceptional Lie algebras.
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CHAPTER 2

Beyond Finite Lie Algebras

By relaxing the conditions on the admissible Cartan matrices, and consequently
on the types of simple roots, we get generalizations of the finite Lie algebras
studied in the previous chapter. Starting with finite Lie algebras, which contain
only positive normed simple roots, we get other (often infinite-dimensional) Lie
algebras by adding suitable simple roots.

Finite
Lie

Algebras

Affine
Kac-Moody
Algebras

Borcherds
Lie

Algebras

+

zero norm
roots

+

imaginary
simple roots

our understanding decreases and the
analytical methods change drastically

Figure 2.1: Summary of the types of Lie algebras

2.1 Generalized Cartan Matrix

We will move on to more general Lie algebras, associated with a generalized
Cartan matrix (abbreviated as GCM). An n×n matrix A is a GCM if it satisfies

aij = 2 for i = 1, . . . , n (2.1)

aij ∈ Z and aij ≤ 0 if i 6= j (2.2)

aij = 0 =⇒ aji = 0 (2.3)

As can be easily seen, the GCM reduces to a Cartan matrix if the off-diagonal
entries are non-positive.

2.2 Trichotomy of GCMs

If A is an indecomposable GCM, then it is exactly one of the three types



(a) Finite
(b) Affine
(c) Indefinite

A GCM has a finite type if

(i) detA 6= 0

(ii) there exists u > 0 with Au > 0

(iii) Au ≥ 0 implies u > 0 or u = 0

A GCM has affine type if

(i) corank A = 1

(ii) there exists u > 0 with Au = 0

(iii) Au ≥ 0 implies Au = 0

A GCM has indefinite type if

(i) there exists u > 0 with Au < 0

(ii) Au ≥ 0 and u ≥ 0 imply u = 0.

It is possible to construct Lie algbras corresponding to a given GCM. Such
algebras are of the finite, affine and indefinite type respectively.

2.3 Affine Kac-Moody Lie Algbras

As shown in figure 2.1, Lie algebras of the affine type are obtained by adding zero
normed roots to the existing list of finite Lie algebras. The representation theory
of Affine Lie algebras is well understood. The complete list of affine Lie algebras
can infact be constructed from the finite Lie algebras list in a simple fashion.

2.4 Borcherds Lie algebras

A further generalization to our story of Lie algebras occurs when we allow imagi-
nary simple roots. Such Lie algebras are called Borcherds Kac-Moody (or Gener-
alized Kac-Moody) algebras. Other than that, a Borcherds algebra is defined in a
very similar way to a Kac-Moody algebra.

8



CHAPTER 3

Weyl Denominator Formula

One of the main objects of our study is the Weyl denominator formula, which
is a special case of the Weyl character formula for the trivial one dimensional
representation. In the following sections, we shall illustrate this interesting formula
with two cases: one of finite semisimple Lie algebra sl2(C) and the other of the
affine Lie algebra Â1. We shall see how the latter case naturally leads us to a
study of modular forms, an important aspect in our later endeavours.

3.1 Finite Lie Algebra: su(3)

As a very simple application of the Weyl denominator formula, lets take the case of
the semi-simple lie algebra sl2(C) or, in the Cartan classification, A2. The Cartan
matrix and the Dynkin diagram for A2 is(

2 −1

−1 2

)

The Weyl denominator formula for the finite semi simple lie algebras is

eρ
∏
α∈Φ+

(1− e−α) =
∑
w∈W

ε(w)ew(ρ) (3.1)

where

ρ is half the sum of the positive roots,
Φ+ is the set of all positive roots,
W is the Weyl group,
ε(w) is the order of the Weyl group element w.

Let the simple roots be {α1, α2} and the set of the positive roots will then be
{α1, α2, α3}, where α3 = α1 + α2.

ρ, half the sum of all positive roots, is simply α3.



The Weyl group is generated by the action of the simple roots only. The action
of the generators is thus

wα1 : α1 → −α1

α2 → α1 + α2

ρ = α1 + α2 → α2

wα2 : α2 → −α2

α1 → α1 + α2

ρ = α1 + α2 → α1

α1−α1

α2

−α2−α3

α3

wα1

wα2

Figure 3.1: Roots of the finite lie algebra A2 or su(3)

The complete Weyl group is composed of six elements

W = {1, wα1 , wα2 , wα2wα1 , wα1wα2 , wα1wα2wα1}

The LHS of equation (3.1) can be written down

eα3(1− e−α1)(1− e−α2)(1− e−α3)

Writing e−α1 = x and e−α2 = y, we get the LHS as

x−1y−1(1− x)(1− y)(1− xy)

whereas the RHS is

eα3 − eα2 − eα1 + e−α2 + e−α1 − e−α1−α2

which is just

x−1y−1 − x−1 − y−1 + x+ y − xy.

10



We can now see that Weyl denominator formula for SU(3) is just the algebraic
identity

(1− x)(1− y)(1− xy) = 1− x− y + x2y + xy2 − x2y2.

3.2 Affine Lie Algebra: Â1

The Cartan matrix and the Dynkin diagram for the affine Kac-Moody lie algebra
Â1 is

(
2 −2

−2 2

)

The roots are

I: {nα0 + (n− 1)α1 | n ∈ Z}

II: {(n− 1)α0 + nα1 | n ∈ Z}

III: {nα0 + nα1 | n ∈ Z, n 6= 0}

The Weyl group W here turns out to be Z2 n Z. Lets prove this. The Weyl
group is generated by the reflections about simple roots, wα0 and wα1 . Using the
reflection formula Sα(β) = β − 2 〈β,α〉〈α,α〉α and the Cartan matrix, we can work out
how the Weyl group acts on all the roots.

wα0(α0) = −α0

wα0(α1) = α1 − 2
〈α1, α0〉
〈α0, α0〉

α0

= α1 + 2α0

wα1(α0) = α0 − 2
〈α0, α1〉
〈α1, α1〉

α1

= α0 + 2α1

wα1(α1) = −α1

11



Using these results to get

wα0(nα0 + (n− 1)α1) = −nα0 + (n− 1)(2α0 + α1)

= (n− 2)α0 + (n− 1)α1

wα1(nα0 + (n− 1)α1) = n(α0 + 2α1) + (n− 1)(α1)

= nα0 + (n+ 1)α1

wα0(n(α0 + α1)) = wα1(n(α0 + α1))

= n(α0 + α1)

wα1(n(α0 + α1)) = n(α0 + α1)

The action of the Weyl group on the roots is shown in Figure 3.2. For convenience,
write x = wα0 and y = wα0wα1 with the relations x2 = 1, (xy)2 = 1. The group
H = 〈x〉 is isomorphic to Z2 and the group N = 〈y〉 is isomorphic to Z. The
complete Weyl group W is generated by compositions of x and y, that is 〈x, y〉.
To prove thatW is, in fact, the semidirect product HnN , we need to show that N
is a normal subgroup, H∩N = {1} andW = HN . (xy)2 = 1 =⇒ xy = y−1x−1 =

y−1x. This lets you ‘pull’ all x to the left in an term containing x, y in arbitrary
order, which shows that any element can be written as xmyn, m ∈ {0, 1}, n ∈ Z.
Therefore, W = HN . Similarly, in wymw−1, where w ∈ W , all x can be pulled to
the left. The power of x has to be even due to the presence of both w and w−1.
This shows that wymw−1 = yk for some k ∈ Z. Hence N is a normal subgroup
and W = Z2 n Z

α1

α0

I III

II

x = wα0

y = wα0wα1

y = wα0wα1

Figure 3.2: Roots for Affine Lie Algebra Â1. The red lines show the action of
Weyl group elements on the roots. The imaginary roots (Set III)
are invariant under the action of the Weyl group. The elementary
reflections (wα0 and wα1) interchange Set I and Set II, and an even
number of elementary reflections translate the roots along the lines.
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Positive roots are the ones in the positive quadrant

L+ = {(n− 1)α0 + nα1 | n ≥ 0} ∪ {nα0 + (n− 1)α1 | n ≥ 0} ∪ {nδ | n > 0}

The Weyl vector ρ is defined as half the sum of all positive roots.

Weyl denominator formula is∑
w∈W

(detw)ew(ρ)−ρ =
∏
α∈L+

(1− e−α)multα (3.2)

We can calculate w(ρ) − ρ in three steps, one for each set of roots (I, II and
III). For each of the sets, notice that w(ρ) and ρ are both infinite sums. To get
around this, we look at w(ρ) − ρ. The roots in w(ρ) that are not present in ρ

belong to

Φw = {w(α) | w(α) < 0, α > 0}

and the roots in ρ that do not constitute w(ρ) belong to

Φ′w = {w(α) | w(α) > 0, α < 0}.

But Φ′w = −Φw, and so the infinite sum reduces to a finite sum,∑
w∈W

(detw)e
∑
α∈Φw

w(α).

1. Set I {(n− 1)α0 + nα1 | n ≥ 1}

(a) w = ym, m < 0 (as m > 0 just pushes the roots further towards the
positive direction and does not contribute to the sum)

ym((n− 1)α0 + nα1) = (n+ 2m− 1)α0 + (n+ 2m)α1

The roots which become negative on applying ym are those with

n+ 2m ≤ 0

n ≤ −2m

=⇒ 1 ≤ n ≤ −2m

13



We can therefore do the inner summation:

−2m∑
n=1

(ym((n− 1)α0 + nα1)) =
−2m∑
n=1

((n+ 2m− 1)α0 + (n+ 2m)α1))

= −
−2m∑
n′=1

n′α0 −
−2m−1∑
n′=1

n′α1

= −
(

(−2m+ 1)(−2m)

2
α0 +

(−2m)(−2m− 1)

2
α0

)
= −m[(2m− 1)α0 + (2m+ 1)α1]

(b) w = xym, m < 0

xym((n− 1)α0 + nα1) = (n+ 2m+ 1)α0 + (n+ 2m)α1

The part that contributes to the sum is

n+ 2m+ 1 ≤ 0

n ≤ −2m− 1

=⇒ 1 ≤ n ≤ −2m− 1

The sum becomes

−2m−1∑
n=1

(xym((n− 1)α0 + nα1)) =
−2m−1∑
n=1

((n+ 2m+ 1)α0 + (n+ 2m)α1))

= −(2m+ 1)[(m+ 1)α0 +mα1]

2. Set II {nα0 + (n− 1)α1 | n ≥ 1}

(a) w = ym, m > 0

ym(nα0 + (n− 1)α1) = (n− 2m)α0 + (n− 2m− 1)α1

The limits on the sum are

1 ≤ n ≤ 2m,

and, therefore, the sum is

2m∑
n=1

(ym(nα0 + (n− 1)α1)) =
2m∑
n=1

((n− 2m)α0 + (n− 2m− 1)α1))

= −m[(2m− 1)α0 + (2m+ 1)α1]

14



(b) w = xym, m ≥ 0

xym(nα0 + (n− 1)α1) = (n− 2m− 2)α0 + (n− 2m− 1)α1

The limits on the sum are

1 ≤ n ≤ 2m+ 1,

and, therefore, the sum is

2m+1∑
n=1

(ym(nα0 + (n− 1)α1)) =
2m+1∑
n=1

((n− 2m)α0 + (n− 2m− 1)α1))

= −(2m+ 1)[(m+ 1)α0 +mα1]

Using the above results and clubbing them together, we get the LHS of the Weyl
denominator formula [Equation (3.2)]∑

w∈W

(detw)ew(ρ)−ρ = 1 +
∑
m<0

em[(2m−1)α0+(2m+1)α1] −
∑
m<0

e(2m+1)[(m+1)α0+mα1]

+
∑
m>0

em[(2m−1)α0+(2m+1)α1] −
∑
m≥0

e(2m+1)[(m+1)α0+mα1]

=
∑
m∈Z

em[(2m−1)α0+(2m+1)α1] −
∑
m∈Z

e(2m+1)[(m+1)α0+mα1]

The RHS of the Weyl denominator formula is easy to write down. It is just the
product of terms involving positive roots,∏
α∈L+

(1− e−α)multα =
∏
m≥1

(1− e−((n−1)α0+nα1))(1− e−n(α0+α1))(1− e−(nα0+(n−1)α1))

Finally, we get the Weyl denominator formula for the Affine Kac-Moody alge-
bra Â1 to be

∑
m∈Z

em[(2m−1)α0+(2m+1)α1] −
∑
m∈Z

e(2m+1)[(m+1)α0+mα1]

=
∏
m≥1

(
1− e−((n−1)α0+nα1)

) (
1− e−n(α0+α1)

) (
1− e−(nα0+(n−1)α1)

)
(3.3)

3.2.1 Jacobi Triple Product Identity

Setting e−α0 = r and e−α1 = qr−1, we get the RHS∏
m≥1

(1− qn)(1− qnr−1)(1− qn−1r)

15



and the LHS as ∑
n∈Z

qn(2n+1)r−2n −
∑
n∈Z

qn(2n+1)r2n+1

In the first summation, put k = 2n so that the sum runs over all even integers and
in the second summation, we set k = 2n+ 1 so that it runs over all odd integers.∑

n∈2Z

q
k(k+1)

2 r−k −
∑

n∈2Z+1

q
(k−1)k

2 rk

Replacing k by −k in the first sum and grouping both the sums together, we get
RHS ∑

n∈Z

(−1)kq
k(k−1)

2 rk

The denominator identity becomes the Jacobi triple product identity for the Jacobi
Theta Function∏

n≥1

(1− qn)(1− qnr−1)(1− qn−1r) =
∑
n∈Z

(−1)nq
k(k−1)

2 rk

= q−1/8r1/2
∑
n∈Z

(−1)nq
(k−1/2)2

2 r(k−1/2) (3.4)

We use the following definition of the ϑ function1,

ϑ1(τ, z) = ι
∑
n∈Z

(−1)nq
(n−1/2)2

2 r(n−1/2) (3.5)

which is related to the usual ϑ function as

−ϑ1(τ, z) = ϑ11(τ, z) = eπι(
τ
4

+z+ 1
2

)ϑ

(
τ, z +

1

2
τ +

1

2

)
(3.6)

with q = e2ιπτ and r = e2ιπz. Finally,

−ιϑ1(τ, z) = q1/8r−1/2
∏
n≥1

(1− qn)(1− qnr−1)(1− qn−1r)

=
∑
n∈Z

(−1)nq
(k−1/2)2

2 r(k−1/2)

This is a remarkable result. It suggests that the denominator formulas for
more complicated lie algebras might be expressible as identities of modular forms.

1This is also (-ϑ11). See this Wikipedia article: https://en.wikipedia.org/wiki/Jacobi_
theta_functions_(notational_variations)
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Infact, for the more complex cases, it be possible to recover the lie algebra associ-
ated with such special functions by considering their product identities. We will
therefore take a detour in the next chapter to study modular forms in some detail.

3.3 Borcherds Denominator Formula

Without going into the technicalities, we merely state the denominator formula
for Borcherds Lie algebras,

e(ρ)
∏
α∈φ+

(1− e(−α))mα =
∑
w∈W

ε(w)w

(
e(ρ)

∑
Ψ

(−1)|Ψ|e(−
∑

Ψ)

)
(3.7)

where

µ → e(µ) is an isomorphism between the additive group of weights and the
corresponding multiplicative group,

Φ+ is the set of positive roots,
W is the Weyl group,
mα = dimLα,
Ψ runs over all finite subset of mutually orthogonal imaginary fundamental roots,

and
ρ is any element of Q⊗ R such that

〈ρ, αi〉 =
1

2
〈αi, αi〉

Notice the factor e(−
∑

Ψ) on the right hand side of equation (3.7). It appears
due to the inclusion of the imaginary simple roots.
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CHAPTER 4

Modular Forms

4.1 Modular Group and Congruence Subgroups

The modular group is the group of all 2 × 2 matrices with integer entries and
unit determinant.

SL2(Z) =

{[
a b

c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}

The upper half space is defined as

H = {τ : =(τ) > 0}

Let γ ∈ SL2(Z). Its easy to see that the modular group acts on the upper half
space by the transformation

z → γ(τ) =
az + b

cz + d

Definition 1. A function f : H → C is a modular form of weight k, where k is
an integer, if

f(γ(τ)) = (cτ + d)kf(τ) for γ =

(
a b

c d

)
∈ SL2(Z) and τ ∈ H (4.1)

and f is holomorphic on H and at ∞.

If we replace SL2(Z) by a subgroup Γ, then we get a more generalized notion of
a modular form. We say that such a function f is a modular form on the subgroup
Γ. A congruence subgroup is a subgroup obtained by imposing some congruence
conditions on the elements of SL2(Z).

The principle congruence subgroup of level N is

Γ(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ (a b

c d

)
≡

(
1 0

0 1

)
mod N

}



A few other important congruence subgroups are

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ (a b

c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}
(4.2)

Any subgroup Γ ∈ SL2(Z) for which there exists an N ∈ Z+ such that Γ(N) ∈ Γ

is a congruence subgroup of level N .

4.2 Generalizations

Modular
forms

Jacobi
Forms

Siegel
Modular Forms

mix with
elliptic functions

generalize the
group to Sp2(Z)

Figure 4.1: Generalizations of modular forms

4.2.1 Jacobi Forms

For a subgroup Γ1 ∈ Γ, we define

(φ|k,mM)(τ, z) := (cτ + d)−ke2πιm(−cz
2

cτ+d
)φ

(
aτ + b

cτ + d
,

z

cτ + d

)
M =

(
a b

c d

)
∈ Γ

(φ|k,mX)(τ, z) := e2πιm(λ2τ+2λz)φ(τ, z + λτ + µ) X = [λ µ] ∈ Z2

Definition 2. A Jacobi form of weight k and index m on a subgroup Γ ⊂ Γ1

is a holomorphic function φ : H× C→ C satisfying

(φ|k,mM) = φ M ∈ Γ

(φ|k,mX) = φ X ∈ Z2

and having a Fourier expansion of the form

φ(τ, z) =
∞∑
n=0

∑
r∈Z

r2≤4nm

c(n, r)e2πι(nτ+rz).
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The following properties can be checked

(φ|k,mM)|k,mM ′ = φ|k,m(MM ′)

(φ|k,mX)|k,mX ′ = φ|k,m(X +X ′)

(φ|k,mM)|k,mXM = (φ|k,mX)|k,mM

where X,X ′ ∈ Z2 and M ∈ Γ1. This shows that the full Jacobi group is a
semidirect product ΓJ1 := Γ1 n Z2

4.2.2 Siegel Modular Forms

The Siegel upper half space is defined as the set Hn of complex symmetric
n× n matrices Z with positive-definite imaginary part. The group:

Sp2n(R) = {M ∈M2n(R) | MJ2nM
T = J2n}, J2n =

(
0 −In
−In 0

)
,

=

{(
A B

C D

)
| A,B,C,D ∈Mn(R), ABT = BAT , CDT = DCT , ADT −BCT = In

}

acts on Hn by (
A B

C D

)
· Z = (AZ +B)(CZ +D)−1. (4.3)

Note that Sp2(Z) is just the usual modular group Γ1.

A Siegel modular form of degree n and weight k with respect to the full
Siegel modular group Γn = Sp2n(Z) is a holomorphic function F : Hn → C
satisfying

F (M · Z) = det (CZ +D)kF (Z)

for all z ∈ Hn and M =

(
A B

C D

)
∈ Γn. If n > 1, such a function has a Fourier

expansion of the form

F (Z) =
∑
T≥0

A(T )e2πιTr(TZ)

where T runs over positive semidefinite semi-integral n × n matrices, that is,
2tij, tii ∈ Z for i = 1, . . . , n.
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If n = 2, we write Z as

Z =

(
τ z

z τ ′

)

with the positive definiteness of the imaginary part implying that Im(detZ) >

0 =⇒ Im(z)2 < Im(τ) Im(τ ′). Similarly,

T =

(
n r

2
r
2

m

)

with n, r,m ∈ Z and r2 ≤ 4nm as T is a positive semidefinite matrix (it can be
taken to be symmetric without loss of generality since the antisymmetric part of
T vanishes in T · Z)

Writing F (Z) as F (τ, a, τ ′) and A(T ) as A(n, r,m), we get the following Fourier
expansion

F (τ, z, τ ′) =
∑

n,r,m∈Z
n,m, 4nm−r2≥0

A(n, r,m)e2πι(nτ+rz+mτ ′)
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CHAPTER 5

Eta Products

5.1 Dedekind Eta Function

The Dedekind eta function η : H → C is a modular form of weight 1
2
.

η(τ) = e
πιτ
12

∞∏
n=1

(1− qn), (5.1)

= q1/24

∞∏
n=1

(1− qn), (5.2)

where q = e2πιτ . It transforms with the character

ε(a, b, c, d) =


(
d
c

)
e
ιπ
12

[bd(1−c2)+c(a+d)]e
ιπ(1−c)

4 , for c odd(
c
d

)
e
ιπd
4 e

ιπ
12

[bd(1−d2)+d(b−c)], for d odd

The Legendre symbol, for a ∈ Z and p prime, is defined as

(
a

p

)
=


1 if a ≡ x2 (mod p) for some x ∈ Z \ {0}

−1 if a 6≡ x2 (mod p) for any x ∈ Z

1 if a ≡ 0 (mod p)

The Jacobi symbol generalizes the Legendre symbol for odd composite p. If p can
be prime factorized as p = pd1

1 p
d2
2 . . . pdkk , then the Jacobi symbol is defined as(

a

p

)
=

(
a

p1

)d1
(
a

p2

)d2

· · ·
(
a

pk

)dk

5.2 Multiplicative Eta Products

As mentioned in [GK10], we associate to the cycle shape ρ = 1a12a2 · · ·NaN , the
following product of eta functions

ρ = 1a12a2 · · ·NaN 7→ gρ(τ) = η(τ)a1η(2τ)a2 · · · η(Nτ)aN . (5.3)



A balanced cycle shape is one for which there is an integer N for which the cycle
shape

∏N
i=1 m

ai
i remains invariant under mi 7→ N/mi.

A series f(τ) =
∑t

n=0 anq
n, with q = e2πιτ and τ in the upper half plane H, is

multiplicative if amn = aman for all coprime pairs (m,n) ∈ Z2.

It was shown in [DKM85] that all the multiplicative eta products for M24 have
balanced cycle shapes. In this chapter, we follow [DKM85] to derive the character
for eta products of M12 and enumerate all the multiplicative eta products.

5.3 Modular Transformation of Eta Products

Lets take a moment to figure out how an eta product transforms under modular
transformations. This is important as the character for an eta product transfor-
mation appears in the Hecke operator, as given in [CG11].

Let m1, . . . ,mt be nonzero integers, ei = sgn(mi), 2k =
∑t

i=1 ei. We make the
following assumptions:

(i)
∑
mi ≡ 0 (mod 12)

(ii)
∑
N/mi ≡ 0 (mod 12)

(iii)
∏
ni ≡ Nk mod× square integers

We have, if f(x) is a product of eta functions,

f(
aτ + b

cτ + d
) = (cτ + d)kχk(d)f(z).

Let

(
a b

c d

)
∈ Γ0(N), with c ≥ 0

f(
aτ + b

cτ + d
) =

∏
η

(
ni
aτ + b

cτ + d

)ei
=
∏

η

(
a(niτ) + bni

(c/ni)(niτ) + d

)ei
=
∏[

ε(a, bni, c/ni, d)e−ιπ/4(cτ + d)
1/2η(niτ)

]ei
=
[∏

ε(a, bni, c/ni, d)ei
]
e−ιπk/2(cτ + d)kf(τ)

Note that since c/ni appears in the above computation, we must have c ≡ 0

mod ni for all ni, i = 1, . . . , t. As

(
a b

c d

)
∈ Γ0(N), we need N to divisible by

LCM (n1, . . . , nt).
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Let

E = e−ιπk/2
∏
i

ε(a, bni, c/ni, d)ei .

For d odd,

E = e−ιπk/2eιπkd/2e
ιπ
12
σ
∏
i

(
c/ni
d

)
where

σ =
∑
i

(
a
c

ni
(1− d2) + d(bni −

c

ni
)

)
= a(1− d2)

∑
i

c

ni
+ d

∑
i

bni − d
∑
i

c

ni

Thus,

E = (−1)k
d−1

2
+σ′
∏
i

(
c/ni
d

)
= (−1)k

d−1
2

+σ′
(
N

d

)k
Simplifying σ′

We have
∑
ni = 12l and

∑
1/ni = 12m/N for positive integersm,n. Also c = Nc′

for some integer c′. Putting this,

σ = c(a(1− d2)− d)
∑ 1

ni
+ bd

∑
ni

= Nc′(a(1− d2)− d)
12l

N
+ bd(12m)

= 12
(
lc′(a(1− d2)− d) + bdm

)
For N even, we have a, d odd,

σ = 12
(
lc′(a(1− d2)− d) + bdm

)
σ

12
≡ (lc′ +mb) mod 2

Therefore,

E = (−1)k
d−1

2
+l c

N
+mb

(
N

d

)k
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For k odd, we use (−1)
d−1

2 =
(−1
d

)
to get

E =

(−1)l
c
N

+mb
(−N

d

)
k odd

(−1)l
c
N

+mb k even
(5.4)

If N is odd, however, then d might be odd or even. If it is odd, then the above
calculation goes through. Else if d is even, then c must be odd. So,

E = e−ιπk/2e
ιπ
4

∑
i(1−

c
ni

)eieιπτ/12
∏
i

(
d

c/ni

)

where

τ =
∑
i

ei[[bnid(1− (c/ni)
2)] + c(a+ d)/ni]

= (bd
∑

niei) + (bdc2 + c(a+ d))
∑
i

ei
ni

= 12bd+ (bdc2 + c(a+ d))
12

N
τ

12
= bd+ bdc

c

N
+

c

N
(a+ d)

≡ a
c

N
mod 2 (since d is even, c is odd)

The Jacobi symbol product can be written as

∏
i

(
d

c/ni

)
=

(
d

N

)k
Finally,

E = e−
ιπ
4
c 12
N eιπ

ac
N

(
d

N

)k
= −eιπac/N

(
d

N

)k
Combining the above results,

χ =


e
c
N

+b
(−N

d

)k
N even, or N odd and d odd

−eιπac/N
(
d
N

)k
N odd and d even

(5.5)

Using the above result for the character, we used a sage script to enumerate all
balanced cycle shapes of M12 and checked the first few coefficients to determine
which of them correspond to multiplicative eta products. The result is shown in
table 5.1.
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Cycle Shape Character χ N

k = 1

11111
eιπ( c

11
+b)
(−11

d

)
for d odd

11
−eιπac/11

(
d
11

)
for d even

10121 eιπ( c
20

+b)
(−20

d

)
20

9131
eιπ( c

27
+b)
(−27

d

)
for d odd

27
−eιπac/27

(
d
27

)
for d even

8141 eιπ( c
32

+b)
(−32

d

)
32

5171
eιπ( c

35
+b)
(−35

d

)
for d odd

35
−eιπac/35

(
d
35

)
for d even

62 eιπ( c
36

+b)
(−36

d

)
36

k = 2

11213161 eιπ( c
6

+b) 6

1252
eιπ( c

5
+b) for d odd

5
−eιπac/5 for d even

2242 eιπ( c
8

+b) 8

34
eιπ( c

9
+b) for d odd

9
−eιπac/9 for d even

k = 3

1333
eιπ( c

3
+b)
(−3
d

)
for d odd

3
−eιπac/3

(
d
3

)
for d even

26 eιπ( c
4

+b)
(−4
d

)
4

k = 4

1424 eιπ( c
2

+b) 2

Table 5.1: Character table for multiplicative eta products with cycle shapes in
M12. This is analogous to the character table in [DKM85] which enu-
merates cycle shapes of M24 instead.
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CHAPTER 6

Additive Lift

6.1 Conjectures

In the following sections, our main goal will be to gather evidence for the following
two conjectures of [GK10], for the case N = 6.

Conjugacy class
ρ of M24

η-product
gρ(τ)

Siegel modular form
Φ

(N,M)
k (Z)

BKM Lie superalgebra
GN(M)

map (5.3)

Additive
Lift

square
root

Figure 6.1: Summary of the conjectures

Conjecture 1. Let the cycle shape be ρ = 1 · 2 · 3 · 6 (conjugacy class of M12) and
the corresponding eta product gρ = η(τ)η(2τ)η(3τ)η(6τ). Let

∆1 = Lift

(
θ(τ, z)

η(τ)3
η(τ)η(2τ)η(3τ)η(6τ)

)
The conjecture states that the sum and product representations of the ∆1 are pre-
cisely the sum and product sides of the Weyl-Kac-Borcherds (WKB) denominator
formula for the BKM Lie superalgebra with the generalized Cartan matrix

A1,II =


2 −2 −2

−2 2 −2

−2 −2 2

 (6.1)

Conjecture 2. Consider the square of the additive seed in the previous case. The
conjecture is that the squaring operation and the additive lift ‘commute’. More



precisely, if

Φ2 = Lift

(
θ(τ, z)2

η(τ)6
η(τ)2η(2τ)2η(3τ)2η(6τ)2

)
,

then we must have

Φ2(Z) = [∆1(Z)]2 .

6.2 N=6

Lets take the cycle shape 1 · 2 · 3 · 6, which gives gρ(τ) = η(τ)η(2τ)η(3τ)η(4τ).

The additive seed is a Jacobi form of weight k = 1 and index t = 1/2,

Ψ1,1/2(τ, z) =
ϑ1(τ, z)

η(τ)3
gρ(τ)

=
ϑ1(τ, z)

η(τ)3
η(τ)η(2τ)η(3τ)η(6τ)

As seen in the table 5.1, this is a Jacobi form with respect to the subgroup
Γ0(6). [CG11] defines the group

Γ1(Nq, q) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod Nq), b ≡ 0 (mod q), a ≡ d ≡ 1 (mod Nq)


(6.2)

Its easily seen that Γ1(Nq, q) ⊂ Γ0(N). Also, note that Γ1(N · 1, 1) = Γ0(N).

For Γ1(Nq, q), we use the Hecke operator

T (N)(m) =
∑
ad=m

(a,Nq)=1
b mod d

Γ1(Nq, q)σa ·

a qb

0 d

 (6.3)

where a > 0 and σa ∈ SL2(Z) such that σa ≡

a−1 0

0 a

 mod Nq. This element
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induces a Hecke operator on the Jacobi form φ̃(Z) = φ(τ, z)e2πιω

φ̃|kT (N)
− (m)(Z) = mk−1

∑
ad=m

(a,Nq)=1
bmod d

d−kχ(σa)φ(
aτ + bq

d
, az)e2πιmtω. (6.4)

To fix q so that the given Hecke operator is applicable on a modular form of Γ0(6),
observe that for N = 6, q = 1, the supposition that Ker(χ) ⊃ Γ1(Nq, q) does not
hold true. But for N = 6 and q = 2, it does hold true since

Ker(χ) =


a b

c d

 ∈ SL2(Z) | c ≡ 6b mod 12)


The additive lift, given by

Fφ(Z) = Liftµ(φ)(Z) =
∑

m≡µmod q
m>0

φ̃|kT (N)
− (m)(Z), (6.5)

is a modular form for Γqt(N)+ with a character χt,µ.

We define,

∆1(Z) = Lift1(Ψ1,1/2)(Z) (6.6)

=
∑

m≡1 mod q
m>0

mk−1smt
∑
ad=m

(a,Nq)=1
bmod d

d−kχ(σa)Ψ1,1/2

(
aτ + bq

d
, az

)

=
∑

m≡1 mod 2
m>0

s
m
2

∑
ad=m

(a,6q)=1
bmod d

d−1Ψ1,1/2

(
aτ + bq

d
, az

)
. (6.7)

We implemented the lift given in equation (6.7) in Sage (The source code
listing is provided in section A.1). The resulting expansion is:

Ψ1,1/2 =qh

(
rh −

1

rh

)
+ q3

h

(
−r3

h + 2 rh −
2

rh
+

1

r3
h

)
+ q5

h

(
−2 r3

h + 4 rh −
4

rh
+

2

r3
h

)
+ q7

h

(
r5
h − 4 r3

h + 7 rh −
7

rh
+

4

r3
h

− 1

r5
h

)
+ · · · (6.8)

where we use qh = q1/2, rh = r1/2, sh = s1/2. The additive lift of equation (6.7) may
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be written as a series in sh as

∆1 = (1 + s3
h T3 +s5

h T5 +s5
h T5 + · · · )Ψ1,1/2, (6.9)

where we have abbreviated the Hecke operator Ψ|k TN
− (m) as simply Tm Ψ. The

first few terms of the expansion are

∆1 = sh(−q3
hr

3
h + qhrh +

q3
h

r3
h

− qh

rh
+ · · · )

+ s3
h(2 qhrh −

2 qh
rh

+
qh
r3
h

− qhr
3
h + · · · ) + · · · (6.10)

Let δ1, δ2, δ3 be the three simple roots. As given in appendix D.1 of [GK09],
we can write

e−πι(δ1,Z) = qr, e−πι(δ2,Z) = r−1, e−πι(δ3,Z) = sr.

For the root α[n, l,m] = nδ1 + (m+ n− l)δ2 +mδ3, we have

qnrlsm = e−ιπ(α[n,l,m],Z).

In this notation, the real simple roots are {α[1, 1, 0], α[0,−1, 0], α[0, 1, 1]}. Since
we have the sum side of the denominator formula, each term in expansion of ∆1

must be generated by Weyl reflections of the simple roots. For example, the roots
corresponding to the real simple roots themselves are

q
1/2r

1/2s
1/2(qr, r−1, sr) = (q

3/2r
3/2s

1/2, q
1/2r

−/12s
1/2, q

1/2r
3/2s

3/2),

all of which can be seen in the expansion (6.10). (The real simple roots are shown
in boldface).

For conjecture (2), we evaluated coefficients of Φ2(Z) using the additive lift for
integer indices

Φ2(Z) =
∑

(n,l,m)>0

∑
d|(n,l,m)

χ(d)dk−1a

(
nm

d2
,
l

d

)
qnrlsm, (6.11)

where (n, l,m) > 0 implies n,m ∈ Z+, l ∈ Z and (4nm − l2) > 0. The first few
terms of the expansion are
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Φ2(Z) = s

(
q(r +

1

r
− 2) + q2(−2 r2 + 6 r +

6

r
− 2

r2
− 8) + · · ·

)
+ s2

(
q(−2 r2 + 6 r +

6

r
− 2

r2
− 8)

+ q2(6 r3 − 26 r2 + 54 r +
54

r
− 26

r2
+

6

r3
− 68) + · · ·

)
+ · · ·

The resulting expansion was found to be the same as the one obtained by squaring
∆1(Z) directly, which confirms the conjecture

[∆1(Z)]2 = Φ2(Z).

We have thus shown that the square-root of Φ2(Z) is equal to ∆1(Z) that appears
in the Weyl Denominator Formula for a BKM Lie super algebra.
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CHAPTER 7

Borcherds Lift

Having confirmed the sum side (in chapter 6), we now move to the other part of the
denominator formula, the product side. The product series for the Siegel modular
form ∆1(Z) can be generated using a Borcherds Lift. Here we introduce the
Borcherds Lift and describe its application in our case.

Recall that the number of non-equivalent cusps of the Hecke congruence sub-
group Γ0(N) is equal to

∑
e|N,e>0 ϕ((e, N

e
)) where ϕ is the Euler’s function and

(a, b) is the greatest common divisor of a and b. Let P denote the set of all cusps

P =
{
f
e

: e|N, e ≥ 1, f mod (e, N
e

), (e, f) = 1
}
.

We associate to each cusp, the matrix Mf/e via

f
e
7→Mf/e =

f ∗

e ∗

 ∈ SL2(Z), Mf/e〈∞〉 = f/e.

Given a Jacobi form φ ∈ Jnh0,t (Γ0(N)), we can now write its Fourier expansion at
the cusp f/e using Mf/e

(φ|0,tMf/e)(τ, z) =
∑

n∈Z/he

∑
l∈Z

cf/e(n, l)q
nrl.

The following is a restatement of the theorem 3.1 from [CG11], which describes
how to write the Borcherds product for a given modular form.

Theorem 4. Let φ ∈ Jnh0,t (Γ0(N)). Assume that for all cusps of Γ0(N) we have
he
Ne
cf/e(n, l) ∈ Z if 4nmt−m2 ≤ 0. Then the product

Bφ(Z) = qArBsC
∏
f/e∈P

∏
n,l,m∈Z

(n,l,m)>0

(
1− (qnrlstm)Ne

) he
Ne
cf/e(n,l),

where

(n, l,m) > 0 means


if m > 0, then n ∈ Z, l ∈ Z

if m = 0 and n > 0, then l ∈ Z

if m = n = 0, then l < 0



he is the height of the cusp, Ne = N/e and

A =
1

24

∑
f/e∈P
l∈Z

hecf/e(0, l) , B =
1

2

∑
f/e∈P
l∈Z,l>0

lhecf/e(0, l) , C =
1

4

∑
f/e∈P
l∈Z

l2hecf/e(0, l)

defines a meromorphic modular form of weight

k =
1

2

∑
f/e∈P

he
Ne

cf/e(0, 0)

with respect to Γt(N)+ with a character χ.

For Γ0(6), let

ψ(τ, z) :=
1

6
φ0,1(τ, z)−

(
1

6
E

(2)
2 (τ) +

1

2
E

(3)
2 (τ)− 5

2
E

(6)
2 (τ)

)
φ−2,1(τ, z) ∈ Jnh0,t (Γ0(6)) ,

(7.1)

where
φ0,1(τ, z) = 8

[
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

]
,

φ−1,2(τ, z) = η(τ)−6ϑ1(τ, z)2 ,

are two basic Jacobi forms that generate the ring of Jacobi forms modulo multi-
plication by modular forms and

E
(N)
2 (τ) =

12i

π(N − 1)
∂τ [ln η(τ)− ln η(Nτ)] = 1 +

24

N − 1

∑
n1,n2≥1

n1 6=0 modN

n1e
2πin1n2τ ,

are the weight two Eisenstein series at level N and ϑi(τ, z) in the above equations
are the Jacobi theta functions. The modular form ψ(τ, z) generates the Borcherds
product for Φ2(Z) that we constructed through the additive lift.

In order to use the theorem, we list the various cusps along with their heights
as well as relevant Fourier coefficients in table 7.1. This provides the data that we
need to apply the above theorem for our situation.

The Fourier expansions of ψ(τ, z) at all the cusps given in table 7.1 are obtained
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Cusp ∞ 0
1

1
3

1
2

h 1 6 2 3

Ne 1 6 2 3

c(0, 0) −2 2 2 2

c(0,±1) 2 0 0 0

Table 7.1: Relevant data for the Jacobi form of Γ0(6)

from the expansions of the following Jacobi forms as follows:

ι∞ :6F 0,1
6 (τ, z) :=

1

6
φ0,1(τ, z)−

(
1

6
E

(2)
2 (τ) +

1

2
E

(3)
2 (τ)− 5

2
E

(6)
2 (τ)

)
φ−2,1(τ, z)

=
(

2
r
− 2 + 2r

)
+ q

(
− 2
r2 + 6

r
− 8 + 6r − 2r2

)
+ · · ·

0 :6F 1,0
6 :=

1

6
φ0,1(τ, z)− 1

12

(
E∗2(τ) + E∗2( τ

2
) + E∗2( τ

3
)− E∗2( τ

6
)
)
φ−2,1(τ, z)

= 2 +
(
−2
r

+ 4− 2r
)
q1/6 + · · ·

1

2
:6F 2,1

6 :=
1

6
φ0,1(τ, z)− 1

12

(
E∗2(τ) + 4E∗2(2τ) + E∗2( τ+1

3
)− 4E∗2(2τ−1

3
)
)
φ−2,1(τ, z)

= 2 + e4πi/3
(

2
r
− 4 + 2r

)
q1/3 + · · ·

1

3
:6F 3,1

6 :=
1

6
φ0,1(τ, z)− 1

12

(
E∗2(τ) + E∗2( τ−1

2
) + 9E∗2(3τ)− 9E∗2(3τ−1

3
)
)
φ−2,1(τ, z)

= 2 +
(
−2
r

+ 4− 2r
)√

q +
(

2
r2 − 4

r
+ 4− 4r + 2r2

)
q + · · ·

where E∗2(τ) = 1− 24
∑∞

m=1 σ1(m)qm = 12i
π
∂τ [ln η(τ)] is the holomorphic part of

the weight two non-holomorphic modular form of SL(2,Z).

Using the Fourier expansion, we see that A = B = C = 1 and k = 2 consistent
with the Siegel modular form Φ2(Z) that we have seen in the previous chapter. The
Borcherds product formula provides us with explicit formula for the multiplicity of
the positive roots of BKM Lie superalgebra. Since ∇1(Z) is given by the square-
root of Φ2(Z) , we need to take one-half of the exponent (or equivalently the Jacobi
form that is the seed for the Borcherds product). For instance the root associated
with r−1 has its multiplicity given by 1

2
c∞(0,−1) = 1, the roots qr and sr have

multiplicities given by 1
2
c∞(0, 1) = 1. This is consistent with the simple real roots

appearing with multiplicity one. We have not proved that all multiplicities are
even but that should follow from the integrality properties of the Eisenstein series.
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APPENDIX A

Code Listings

A.1 Sage Script - Expansion for Φ2,1

1 # CYCLE SHAPE 1^2.2^2.3^2.6^2
2

3 # Parameters
4 num_truncate = 15 #Truncate the expansions num_truncate
5 n_max = 10 #Truncate the summation for Lift at n_max
6

7 q = var(’q’)
8 r = var(’r’)
9 s = var(’s’)

10

11 # To remove the fractional exponents
12 qh = var(’q_h’)
13 rh = var(’r_h’)
14 sh = var(’s_h’)
15

16 #######################
17 # Generate the seed #
18 #######################
19

20 # Generate the expansion for \theta_1
21 def theta1_qexpansion(num_truncate=10):
22 i = var(’i’) #Dummy index
23 theta1_term = (-1)^i*(r^(i+1/2))*q^(((i+1/2)^2)/2)
24 theta1_series = sum(theta1_term, i, -num_truncate, num_truncate)
25 return theta1_series
26

27 # The seed is a modular form of the group \Gamma_0(N)
28 N=6
29

30 # Need to divide the eta functions, PowerSeries works better than
31 # SymbolicExpression as it is faster and also keeps track of the order
32 # of the series.
33 q1 = qexp_eta(QQ[[’q’]], num_truncate)
34 q1_prec = q1.prec()
35 qt = qexp_eta(QQ[[’q’]], num_truncate).truncate(num_truncate)
36

37 # Power Series Ring over the field of Rational Numbers QQ in the
38 # variable q
39 S = PowerSeriesRing(QQ, q)
40



41 q2 = qt.subs(q=q^2); q2 = S(q2).O(2*q1_prec)
42 q3 = qt.subs(q=q^3); q3 = S(q3).O(3*q1_prec)
43 q6 = qt.subs(q=q^6); q6 = S(q6).O(6*q1_prec)
44

45 qpp = q2*q3*q6/q1^2
46

47 qp = qpp.truncate(num_truncate)
48 qp = q^(3/8)*qp
49

50 eta_product_exp = qp.expand()
51 eta_product_prec = qpp.prec()
52 ###
53

54 # Generate the theta series only uptil the order of the eta product
55 # expansion. The higher terms are useless, and it seems to be
56 # difficult to truncate a symbolic expression later.
57 theta1_num_truncate = ceil((sqrt(3*eta_product_prec)-1)/2)
58 theta1_exp = theta1_qexpansion(num_truncate=theta1_num_truncate)
59 theta1_exp = theta1_exp.simplify_exp().expand()
60

61 # This is valid only upto order
62 # Min(Order(theta1_exp^2),Order(eta_product_exp))^2. Need to find a
63 # way to truncate it, to get rid of the higher order junk
64 phi_two_one = (theta1_exp*eta_product_exp)^2
65

66 phi_two_one = phi_two_one.simplify_exp()
67 phi_two_one = phi_two_one.expand()
68

69 # Information about \phi_{2,1}
70 weight = 2
71 index = 1
72

73 ###################
74 # Additive Lift #
75 ###################
76

77 # The additive lift in this case is straightforward and the character
78 # is trivial.
79 # Reference: [S. Govindarajan] [2009] [arXiv: 0907.1410] Equation 3.22
80 # Phi_2(Z) = \sum_{(n,l,m)>0} \sum_{d|(n,l,m) \\ d=1,5 mod 6} d^(k-1)
81 # a(mn/d^2,l/d) q^n r^l s^m
82 # where (n,l,m)>0 means n,m > 0 and 4nm-l^2>0
83

84 def phi_two_one_coeff(m,n):
85 if m==0:
86 x=flatten(phi_two_one.coeffs(q))
87 for i, exp in enumerate(x[1::2]):
88 if exp==0:
89 return x[2*i].coeff(r^n)
90 if n==0:
91 x=flatten(phi_two_one.coeffs(r))
92 for i, exp in enumerate(x[1::2]):
93 if exp==0:
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94 return x[2*i].coeff(q^m)
95

96 return phi_two_one.coeff(q^m).coeff(r^n)
97

98 def additive_lift(n_max = 10):
99

100 Phi=0
101 for n in range(1,n_max+1,1):
102 for m in range(1,n+1,1):
103

104 gcd_mn = gcd(n,m)
105

106 lmax = floor(2*sqrt(n*m))
107 l_list = range(-lmax,lmax+1)
108

109 for l in l_list:
110

111 g = gcd(gcd_mn,l)
112 d_list = [d for d in divisors(g) \
113 if d in union(range(1,g+1,6),range(5,g+1,6))]
114

115 for d in d_list:
116

117 fc = phi_two_one_coeff((n*m)/(d^2), l/d)
118

119 if not fc==0:
120 term_coeff = d^(weight-1)*fc
121 if (n==m):
122 term_vars = q^(n)*r^(l)*s^(m)
123 else:
124 term_vars = \
125 q^(n)*r^(l)*s^(m) + q^(m)*r^(l)*s^(n)
126 Phi += term_coeff*term_vars
127 return Phi
128

129 Phi_2 = additive_lift(n_max)
130

131 # vim: ft=python
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A.2 Sage Script - Character Table

The following Sage code enumerates all balanced cycle shapes of M12 and then
checks the first few coeffecients to determine if they are multiplicative. This was
used to generate the character table 5.1.

1 # Author: Hersh Singh [hershdeep@gmail.com]
2 # Date: April 18, 2014
3

4 N=12
5

6 plists = Partitions(N).list()
7

8 # Takes a Partition object and checks if it is balanced.
9 def CheckBalancedCycle(plist):

10 M = plist[0]*plist[-1]
11

12 if not M%lcm(plist) == 0:
13 return False, 0
14

15 plist_new = [M/i for i in plist]
16 plist_new.sort()
17 plist_new.reverse()
18

19 if plist_new == plist:
20 return True, M
21 else:
22 return False, 0
23

24 balanced_cycles=[]
25 def GetAllBalancedCycles(k=0):
26 # If k=0, return the complete table
27 # Else, return the table only for that value of k
28

29 number_balancedcycles = 0
30 if not k==0:
31 for plist in [plist for plist in plists if len(plist)==2*k]:
32 is_balanced, M = CheckBalancedCycle(plist)
33 if is_balanced:
34 number_balancedcycles = number_balancedcycles + 1
35 balanced_cycles.append(plist)
36 print plist.to_exp_dict()
37 else:
38 for k in range(1,N+1):
39 print "k =",k
40 for plist in [plist for plist in plists if len(plist)==k]:
41 is_balanced, M = CheckBalancedCycle(plist)
42 if is_balanced:
43 number_balancedcycles = number_balancedcycles + 1
44 balanced_cycles.append(plist)
45 print plist.to_exp_dict()
46 print "\nTotal number of balanced cyles = ", number_balancedcycles
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1 N=12
2

3 plists = Partitions(N).list()
4

5 num_truncate = 500 # Max order of stuff
6

7 # The eta product expansion is valid only till order
8 # num_truncate*min(plist)
9 n_max = num_truncate

10

11 # Generate a list of all pairs of coprimes such that their product is
12 # less than n_max
13 coprimes = [[x,y] for x in range(1,n_max) for y in range(1,x) \
14 if gcd(x,y)==1 and x*y<n_max]
15

16 # Eta expansion
17 q = var(’q’)
18 q1 = qexp_eta(ZZ[[’q’]], num_truncate).truncate(num_truncate)
19 eta_exp = q1*q^(1/24)
20

21 # Get the coeff
22 def etacoeff(i):
23 return etaproduct.coeff(q^(i))
24

25 # Number of possible multiplicative functions
26 num_multiplicative = 0
27

28 # Loop over all balanced cycles
29 for plist in balanced_cycles:
30

31 # Generate the eta product expansion, valid only till order
32 # num_truncate*min(plist)
33 etaproduct = 1
34 for num in plist:
35 etaproduct = etaproduct * eta_exp.subs(q=q^num)
36 etaproduct = etaproduct.simplify_exp().expand()
37

38 # Check the first few coefficients
39 is_multplicative=1
40 for [x,y] in coprimes:
41 if not etacoeff(x)*etacoeff(y) == etacoeff(x*y):
42 is_multplicative=0
43 break;
44

45 if is_multplicative==1:
46 print "Could be..", plist
47 num_multiplicative += 1
48 else:
49 print "\tNope!", plist
50

51 print "No of possible multiplicative functions =", num_multiplicative
52

53 # vim: ft=python
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