
IMPROVED GESTURE API FOR ANDROID

PLATFORM

A Project Report

submitted by

YENNETI GOPI VENKATA DINESH

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2013

THESIS CERTIFICATE

This is to certify that the report titled IMPROVED GESTURE API FOR ANDROID

PLATFORM, submitted by YENNETI GOPI VENKATA DINESH, to the Indian In-

stitute of Technology, Madras, for the award of the degree of Bachelor of Technology,

is a bona fide record of the project work done by him under our supervision. The con-

tents of this report, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Dr.T.G.Venkatesh
Project Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 23th May 2013

ACKNOWLEDGEMENTS

I wish to express my deep sense of gratitude to my project guide Dr.T.G.Vekatesh, As-

sistant Professor in Department of Electrical Engineering, for his most valuable guid-

ance, discussions, suggestions and encouragement, from the conception to the comple-

tion of this project.

I would like to thank MS and PhD students under the guidance of Dr.T.G.Vekatesh

for their help and support throughout the project.

I would also like to thank my professors and friends from my undergraduate studies

while at Indian Institute of Technology, Madras. The preparation and experience I

gained were invaluable.

Finally, I would to like to thank my family for their unconditional love and moral

support, which will allow me to achieve what I have and will.

i

ABSTRACT

KEYWORDS: Android, Gestures, Character Recognition

Interacting with devices using multi-touch gestures is gaining popularity after the era

of smart phones has started. Among various smart phone Operating systems, Google

owned Android has the major market share and is known for its open source policy.

This project aims at improving the Gesture API for Android to include features that

allows user to define their own gestures.

In this project, an API that uses touch input to detect gestures has been developed.

Later, the line gesture detection API provided by Android has been improved to allow

users to define their own gestures. This API has been extended to detect characters

drawn on the screen which is configurable according to the user’s handwriting. Finally,

this API has been used to develop an application for blind users which can be used to

store contacts, search for contacts, make calls and send messages using Gesture Input

on Screen.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

1 Introduction 1

1.1 Smartphones . 1

1.2 Programming in Android Platform 1

1.2.1 Activities in Android . 1

1.2.2 Life cycle of an Activity 2

1.2.3 Manifest file . 2

1.2.4 User-interface of an Android application 3

1.3 Gesture API on Android . 3

1.4 Line gesture API on Android . 4

1.5 Limitations of Google API for Gestures 5

1.6 The solution provided by this project 5

1.7 Platform and Version . 5

1.8 Organization of this project . 6

2 Simple gesture detector 7

2.1 Introduction . 7

2.2 Functioning of the API . 7

2.3 Architecture . 9

2.3.1 GestureManager . 9

iii

2.3.2 TouchManager . 10

2.3.3 OnGestureManagerListener 11

2.3.4 GestureManagerEvent . 12

2.3.5 GestureEventType . 13

2.4 Use cases . 14

2.4.1 Case 1: Using existing Gestures 14

2.4.2 Case 2: Adding New Gestures 14

2.4.3 Example methods for detecting gestures 15

2.5 Results . 16

2.6 Conclusion . 17

3 Line gesture Detector 18

3.1 Introduction . 18

3.2 A brief history of Gestures on Touch Screen 18

3.3 Functioning of the API . 19

3.4 Architecture . 20

3.4.1 GestureRecorderActivity 20

3.4.2 GestureDetectorActivity 22

3.5 Use Cases . 23

3.6 Results . 24

3.7 Conclusion . 28

4 Character Recognizer and Trainer 29

4.1 Introduction . 29

4.2 Functioning of the API . 29

4.2.1 Character Recognizer . 29

4.2.2 Character Recognizer Trainer 30

4.3 Architecture . 30

4.3.1 CharacterRecognizer . 30

4.3.2 OnCharacterRecognizedListener 32

4.3.3 CharacterRecognizerTester 34

4.4 Use Cases . 35

iv

4.4.1 CharacterRecognizer . 35

4.4.2 CharacterRecognizerTrainer 36

4.5 Results . 36

4.6 Conclusion . 39

5 Contacts Application based on Gestures for people without vision 40

5.1 Introduction . 40

5.2 Smart phone applications for blind people 40

5.2.1 Slide Rule . 41

5.3 About this application . 41

5.4 Class definitions . 42

5.4.1 Master . 42

5.4.2 ContactsInterface . 43

5.4.3 SpeechEngine . 45

5.4.4 ContactsDB . 46

5.5 Use Cases . 48

5.5.1 Configuring the gestures 48

5.5.2 Searching for a contact . 48

5.5.3 Editing and Deleting a Contact 49

5.5.4 Calling and sending an SMS 49

5.6 Standard Gestures defined in the Application 49

5.7 Functioning of the Application . 51

5.8 Conclusion . 51

6 Conclusion and Scope for Future work 52

6.1 Conclusion . 52

6.2 Scope for Future Work . 52

6.2.1 New Gestures . 52

6.2.2 New Applications . 53

LIST OF TABLES

1.1 Table showing the distribution of Android versions 6

5.1 Table showing some of the gesture defined in the application by default 50

vi

LIST OF FIGURES

2.1 A flow chart showing the structure of Gesture API 8

2.2 A screenshot of an application that uses this API 16

3.1 A flow chart showing the functioning of GestureRecorderActivity and
GestureDetectorActivity . 19

3.2 A screenshot the initial screen of the Application 24

3.3 A screenshot of the GestureRecorderActivity 25

3.4 A screenshot of GestureRecorderActivity after entering the name and
the gesture . 25

3.5 A screenshot of GestureRecorderActivity with a toast message showing
that the gesture has been saved . 26

3.6 A screenshot of the GestureDetectorActivity 26

3.7 A screenshot of GestureDetectorActivity showing a gesture drawn on
screen . 27

3.8 A screenshot of GestureDetectorActivity showing the prediction it made
in the form of a toast message . 27

4.1 A flow chart showing the functioning of the Character Recognizer and
CharacterRecognizerTester . 30

4.2 A screenshot of the trainer application 36

4.3 A screenshot of the trainer application with a character drawn on screen 37

4.4 A screenshot of the tester application 37

4.5 A screenshot of the tester application with a charcter drawn on screen 38

4.6 A screenshot of the trainer application with the predicted character en-
tered into the text box . 38

5.1 A flow chart showing the state-machine of the Application 51

vii

ABBREVIATIONS

TTS Text To Speech

IR Infra Red

SMS Short Message Service

SD Card Secure Digital Card

SDK Software Development Kit

viii

CHAPTER 1

Introduction

1.1 Smartphones

The term ’Smartphone’ is defined as a mobile phone built on a mobile operating system

with advanced computing system. In the year 1974, the first basic smart phone was

patented by Greek scientist Theodore Paraskevakos. In the year 2000, the first smart-

phone operating system, Symbian was released. The first smartphones combined the

functions of a personal digital assistant. In the year 2008, the Android OS released by

and quickly became the most used smart phone Operating system in the world, with the

market share of 70.1%. The second most used OS is the iOS by Apple Inc. which has

a market share of 21.0%. Both of these combined covers 91.1% of market share.

1.2 Programming in Android Platform

The Android Platform is built on a Linux Operating System with Android applications

running on it. Android applications are written in the Java programming language. The

Android SDK tools compile the code along with any data and resource files into an

Android package, an archive file with an .apk suffix. All the code in a single .apk file

is considered to be one application and is the file that Android powered devices use to

install the application.

1.2.1 Activities in Android

Each android application consists of various Activities. An activity represents a single

screen with a user interface (1). For example, an email application might have one

activity that shows a list of new emails, another activity to compose an email, and

another activity for reading emails.

1.2.2 Life cycle of an Activity

Each activity has standard methods that the system can call to change the state of the

activity. Some of these methods are:

onCreate()

Called by the system to begin an activity. This is similar to a constructor on a normal

java application. This is used to initialize all the variables and set the layout of the

application.

onPause()

The system calls this method as the first indication that the user is leaving the activity.

This doesn’t mean that the activity is getting destroyed. This is usually where any

changes should be committed that should be persisted beyond the current user session.

OnDestroy()

This method is called when the android system is destroying the current application.

This is the final call that the activity will receive. An activity can be destroyed either by

the system or by the application by calling the ’finish()’ method. This is where all the

temporary data should be stored.

The life-cycle of an activity is called the time-span between onCreate and onDestroy

are called.

1.2.3 Manifest file

Before the Android system can start an application component, the system must know

that the component exists by reading the application’s AndroidManifest.xml file (the

"manifest" file). An application must declare all its components in this file, which must

be at the root of the application project directory.

2

1.2.4 User-interface of an Android application

All user interface elements in an Android app are built using View and ViewGroup

objects. A View is an object that draws something on the screen that the user can

interact with. A ViewGroup is an object that holds other View (and ViewGroup) objects

in order to define the layout of the interface.

User interface in Android can be programmed in two ways:

• Declare UI elements in XML. Android provides a straightforward XML vocabu-
lary that corresponds to the View classes and subclasses, such as those for widgets
and layouts.

• Instantiate layout elements at runtime. The application can create View and View-
Group objects (and manipulate their properties) programmatically.

1.3 Gesture API on Android

Android has defined API for gestures which are commonly used on smart phones such

as double tap, single tap, fling, long press and scroll in a class called GestureDetec-

tor(android.view.GestureDetector) which is discussed in (2). This API provides the

following methods:

onDoubleTap(MotionEvent e)

Notified when a double-tap occurs.

onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY)

Notified of a fling event when it occurs with the initial on down MotionEvent and the

matching up MotionEvent. A fling event is said to be occurred when the user moves

pointer from one point to another point on screen with velocity greater than a limit.

3

onLongPress(MotionEvent e)

Notified when a long press occurs with the initial on down MotionEvent that trigged it.

onScroll(MotionEvent e1, MotionEvent e2, float distanceX, float distanceY)

Notified when a scroll occurs with the initial on down MotionEvent and the current

move MotionEvent.

1.4 Line gesture API on Android

Android provides API to detect line gestures using android.gesture package as shown

in (3). This API has the following components:

Gesture

A gesture is a hand-drawn shape on a touch screen. It can have one or multiple strokes.

Each stroke is a sequence of timed points. A user-defined gesture can be recognized by

a GestureLibrary.

GestueOverlayView

A transparent overlay for gesture input that can be placed on top of other widgets or

contain other widgets.

GestureStore

This class maintains gesture data and makes predictions on a new gesture.

GestureUtils

This class contains static methods which are utilities for sampling a given gesture.

4

OnGesturePerformed

This is an interface whose method ’onGesturePerformed’ is called when the gesture is

performed by the user.

1.5 Limitations of Google API for Gestures

Although the API provided by Google contains methods for detecting Gestures, all

these methods depend on hard-coded Gesture data that is stored in the resource file

in the application. There is no API for allowing the users to add their own gestures

while using the application. Such an API is required because the gestures added by the

users will offer better detection rate and better convenience than those gestures already

defined and hard-coded by the developer in the application.

1.6 The solution provided by this project

The above problem in the Google API is solved in this project by extending the API to

allow users to define their own gestures. Initially in this project, detecting basic finger

made gestures is discussed. Then, an API is developed that can detect line gestures as

well as allow user to define their own gestures. Later, this was extended to detect hand

written characters, where users can tune detection data according to their handwriting.

These APIs are finally used to develop a gesture based contacts application for blind

users.

1.7 Platform and Version

The device used to test this project is Spice MI 350 Android smart phone. The Android

Platform version is Gingerbread Android 2.3. Any program working for this version

will work on 90.3 % of Android devices that are currently in use (4).

5

Table 1.1: Table showing the distribution of Android versions

Version Percentage
Donut 0.001
Eclair 0.017
Froyo 0.037

GingerBread 38.5
HoneyComb 0.1

IceCreamSandwich 27.5
JellyBean 28.4

1.8 Organization of this project

This project is organized into four chapters.

The first chapter discusses about the API that detects the finger gestures like fling,

scroll, double tap, etc. and how new such gestures can be added to the developed API

in the future.

The second chapter discusses about the improved line gesture detection API that

allows user to define own gestures.

The third chapter discusses about the character recognition and user training API

that detects characters and lets users define gestures for characters.

In the fourth chapter, the contacts application designed for blind users is described.

The program is explained and details about the usage are given.

In all the above chapters, each chapter begins with an introduction. Then, it ex-

plains the classes present in the API and their functions. Later, the usage of the API is

explained through various use-cases. Finally, the results are shown and a conclusion is

given.

In the final chapter, the conclusion and the scope for possible future work is dis-

cussed.

6

CHAPTER 2

Simple gesture detector

2.1 Introduction

This chapter discusses about the API that allows the developer to define his own gestures

and add them to their applications. This API takes the touch input from the user and

delivers it to the respective gesture detection methods that the developer defines. Later

in this chapter, a case study of demonstration of usage of this API is shown in this

chapter.

2.2 Functioning of the API

The API has a main class and an interface.The gestures are detected from the touch input

given by the touch library of Android. Any class implementing the OnTouchListener

is delivered touch events continuously by the android API. These events are analyzed

to detect whether a particular gesture has been given as input by user.

For example, the angle of rotation is detected from the MotionEvent as follows:

double delta_x = (event.getX(0) - event.getX(1));

double delta_y = (event.getY(0) - event.getY(1));

double radians = Math.atan2(delta_y, delta_x);

double degrees = Math.toDegrees(radians);

The above code is used to deliver events to the main activity, whenever the angle of

the two fingers placed on the screen changes.

Whenever touch events occur, the android API notifies the GestureMAnager.

These events are delivered to the detectors which are specified in the main class. These

detectors perform calculations to detect if that event has occurred. If the event has

occurred, they compute the parameters related to the Gesture performed. The computed

parameters are stored in ’GestureManagerEvent’ object. This object is used to notify

the registered OnGestureManagerListener. This flow of events is as shown in

the figure below:

Figure 2.1: A flow chart showing the structure of Gesture API

8

2.3 Architecture

2.3.1 GestureManager

This class is the main class which takes the touch inputs from the user. This class

implements ’OnTouchListener’ interface, which allows it to take the touch inputs. This

class also manages the list of gesture detectors that are registered by the developer.

Each of the detector should implement ’OnTouchListener’ interface so that whenever

an event occurs, all the detector objects present in the list will be notified by passing the

’android.view.MotionEvent’ to the ’OnTouch’ of the detector.

GestureManager(OnGestureManagerListener mContext)

This is the constructor which takes the object which implements ’OnGestureManagerLis-

tener’ interface.

9

register(View mView,int options)

This method is used by the developer to describe on which view the gesture needs to be

detected. By using the ’options’ parameter, the user selects which detectors are used.

This parameter ’options’ is an integer in which each bit corresponds to each gesture

detector.

For example: Scale gesture is defined as

public static final int ON_SCALE = 1<<2.

Rotate gesture is defined as

public static final int ON_ROTATE = 1<<3.

Hence, to select both scale and rotate gesture detectors, options parameter should

be set as ON_SCALE + ON_ROTATE.

The register method checks each bit of the ’options’ parameter and creates the ob-

jects of the detectors for each bit set in it.

2.3.2 TouchManager

This class is instantiated by the GestureManager. This class takes the MotionEvents

from the GestureManager and interprets the events. If it finds that the locations of

10

pointers has changed, it notifies the corresponding detector events. This class imple-

ments ’OnTouchListener’ interface. Whenever a touch event is delivered to it, it com-

pares this event with the previous touch event that has occurred. If there is any change

in the event, it notifies the registered gesture detectors.

TouchManager(OnGestureManagerListener mContext,View mView)

The constructor for this class. This class takes an ’OnGestureManagerListener’ as a pa-

rameter so that whenever an event has occurred, it will notify it. The ’mView’ parameter

tells on which ’View’(android.view.View) object the event has occurred.

2.3.3 OnGestureManagerListener

This is an interface which needs to be implemented by the class which wants to be

notified when a gesture is detected.

onGestureManager(GestureManagerEvent event)

This method is called by the gesture detector when a gesture has been detected. An

object of ’GestureManagerEvent’ will be passed to it, which contains the data of the

gesture that has been detected.

11

2.3.4 GestureManagerEvent

An object of this class holds the data of the gesture that has been detected by a gesture

detector. When a detector detects a gesture, it creates an instance of this class and stores

the gesture information in it. This object is passed as an argument to the ’onGestureM-

anager’ method of a class that implements ’OnGestureManager’ interface.

12

2.3.5 GestureEventType

This is an enumeration which contains the type of the gestur that has been detected.

This is a variable present in the ’GestureManagerEvent’ class.

Types of events

• NULL_EVENT: Default value if no event is set

• POINTER_DOWN: Pointer is just down on screen

• POINTER_UP: Pointer is lifted up from screen

• POINTER_MOVE: Pointer moved on screen

• FLING: Pointer moved at high speed on the screen

• ROTATE: Rotate gesture event

• SHOW_PRESS: Pointer is down at single point for more than 0.5 seconds

• LONG_PRESS: Pointer is down at single point for more than 0.5 seconds

• SCALE: Scale gesture event

• DOUBLE_TAP: Pointer is down twice with short gap in between

13

2.4 Use cases

2.4.1 Case 1: Using existing Gestures

• Implement an OnGestureManagerListener class and create a method called
onGestureManagerListener in it.

• Make an object of the GestureManager class by passing the OnGesture
ManagerListener created above as its argument.

GestureManager gManager = new GestureManager(listener);

• Call the registermethod on the GestureManager by passing 2 arguments.
The first argument is the View on which the user inputs gesture which needs to
be detected. The second is the set of gestures for which the manager notifies the
listener.

gManager.register(image,GestureManager.ON_TOUCH +
GestureManager.ON_GESTURE);

• The onGestureManagerListener method is called every time the user in-
puts a gesture and is detected by the detector.

2.4.2 Case 2: Adding New Gestures

In this case, a new class has to be created, which implements ’OnTouchListener’ inter-

face. The constructor of this class should follow the following structure:

ClassName(OnGestureManagerListener, View)

In the ’OnTouch’ method of the class, the routine that computes the parameters of

the detected gesture should be calculated. Then, a new ’GestureManagerEvent’ object

should be created and the data related to this event should be stored in it. This object

should be used as a parameter to call the ’onGestureManagerListener’ method on the ’

OnGestureManagerListener’ class. This completes the cylce of gesture detection.

This gesture detector should be added to the ’GestureManager’ class by creating a

new static variable for it and adding it to the ’register’ method.

Thus, whenever an event occurs, the GestureManager passes the event to the de-

tector. The detector computes the parameters, creates an ’GestureManagerEvent’ and

passes it to the ’OnGestureManagerListener’.

14

2.4.3 Example methods for detecting gestures

As shown in (8), various techniques have evolved to detect gestures given touch input.

Two of them are described below.

Scale

When the user places two fingers on the screen and pinches or spreads the fingers, this

event is said to be occurred. To detect this gesture, the following conditions needs to be

met: a) There should be only two pointers on the screen. b) One or both the pointers

should change positions.

When these conditions are met, the scale factor is calculated as the ratio of new

distance between the pointers to the previous distance between the pointers.

For example: previous positions are: (100, 50) and (130, 90) new positions are:

(101,50) and (130,88), the scale factor is 0.956, which indicates that the pointers moved

closer and the pinching gesture has been performed.

Rotate

When one of the pointers remained static and the other pointer moves, this gesture is

said to be performed. This can be simplified as when the angle that the line joining the

two pointer makes with the horizantal changes, this gesture is said to be performed. To

compute this, the angle made by the two pointers with the horizantal is computed and

when a change is detected in this angle, the gesture is said to be performed.

For example, If the pointer positions are (x1,y1) and (x2,y2), the angle made by

them is arcTan((y2-y1)/(x2-x1)).

15

2.5 Results

Figure 2.2: A screenshot of an application that uses this API

The figure 2.2 shows the screenshot of an application that uses this API. The application

has an image on which the gestures are performed. These feedback for these gestures

are displayed on screen and are added to the log file.

The following text is the sample log file that has been recorded by a class that

implements this API.

05-20 09:29:12.570: Registered for ON_GESTURE

05-20 09:29:12.571: Registered for ON_SCALE

05-20 09:29:58.074: POINTER_DOWN at 110.0, 169.0

05-20 09:29:58.140: SHOW_PRESS at 110.0, 169.0

05-20 09:29:58.641: LONG_PRESS at 110.0, 169.0

05-20 09:30:01.049: POINTER_DOWN at 90.0, 216.0

05-20 09:30:01.117: SCROLL from 90.0, 216.0 to 111.0, 199.0

05-20 09:30:01.134: SCROLL from 90.0, 216.0 to 126.0, 188.0

05-20 09:30:01.186: SCROLL from 90.0, 216.0 to 168.0, 159.0

05-20 09:30:01.204: SCROLL from 90.0, 216.0 to 174.0, 156.0

05-20 09:30:01.240: FLING from 90.0, 216.0 to 174.0, 156.0

16

05-20 09:32:50.196: SCALE Scale Factor = 0.9693622

05-20 09:32:50.213: SCALE Scale Factor = 0.97668684

05-20 09:32:50.231: SCALE Scale Factor = 0.9708189

05-20 09:32:50.266: SCALE Scale Factor = 0.9765371

05-20 09:32:50.284: SCALE Scale Factor = 0.97422564

2.6 Conclusion

This chapter explains how using the API structure that has been developed, new gestures

can be defined and added to it. Altough this API can be used to define basic finger

made gestures, an advanced API is required to detect the line gestures that are drawn

on screen, since they need to be compated to the set of line drawings that are defined.

This is discussed in the next chapter.

17

CHAPTER 3

Line gesture Detector

3.1 Introduction

This chapter talks about the detection of user defined line gestures. The google API pro-

vides methods for recognizing a given gesture from a set of previously defined gesture

data. But, this API doesn’t provide methods that developer can use to let user define his

own gestures. Instead, the gestures are hard-coded into the application and are stored

as an application resource. To overcome this, an API is developed that developer can

use to allow user to define his own line gestures in the application. In this chapter,

the description of API is discussed. Later in this chapter, the usage of this API is also

described with an example use-case.

3.2 A brief history of Gestures on Touch Screen

The first pen-based hypertext browser for input device, the Rand tablet, was funded

by ARPA Sketchpad used light-pen gestures(1963)(5). Ever since then, both academia

and corporate researchers did research on improving the human-computer interaction

experience through gestures on touch screen devices. Teitelman developed the first

trainable gesture detector in the year 1964. Since 1970s, the gestures are used in CAD

systems, but these came to public notice only through Apple Newton in the year 1992.

Although various other methods of interaction have been developed, the touch screen

gestures again became an important area of research in the 2000s with the advent of

smart phone era.

3.3 Functioning of the API

The recorder activity displays a GestureOverlayView on the screen on which ges-

tures are drawn. When the user finishes drawing the gesture, onGesturePerformed

method is called, with the recoded gesture passed as an argument to this gesture. This

gesture is stored in gesture array. At the same time, the string name entered in the text-

box by the user is stored in the string array. When this activity exits, these arrays are

parceled in a Bundle and are passed to the main activity.

When the detector activity is called, this bundle is passed to the detector activity.

This the data from this bundle is extracted by the detector activity and is stored in a

GestureLibrary. When the user enters a gesture, the GestureLibrary has a

recognizer which compares the user input gesture with the gesture data and returs the

name of the gesture with the best possible match.

Figure 3.1: A flow chart showing the functioning of GestureRecorderActivity and Ges-

tureDetectorActivity

19

3.4 Architecture

3.4.1 GestureRecorderActivity

This class extends the class ’android.gesture.GestureOverlayView’. This class lets the

user define his own gestures. The ’GestureOverlayView’ takes the gesture data and

handles it to ’OnGesturePerformed’ method in this class. This data is stored in an Ar-

raylist(java.util.ArrayList) of gestures. This class needs an EditText(android.widget.EditText)

widget into which the user has to type the name of the gesture that he wants to define.

This can be set using ’setTextBox’ method.

When the name is entered and a gesture is drawn, the name is added to the an

ArrayList of Strings and the Gesture is added to an ArrayList of Gestures, both with the

same index.

When the Activity exits, these two ArrayList objects are stored in Bundle(android.os.Bundle).

This Bundle is added as an extra to an Intent(android.content.intent). This intent calls

20

back the Activity from which this activity has been called. Thus, it passes the Ges-

ture data it has recorded from the user back to the main activity which needs to data to

recognize new gestures.

initiate()

This method is called inside the constructor. This method builds the layout and initial-

izes the variables. This is analogous to the constructor on normal java applications.

onGesturePerformed(GestureOverlayView overlay, Gesture gesture)

This method is called by the GestureOverlayView when the user completes drawing a

gesture. This method stores the gesture data passed to it as an argument in Arraylists.

When the user didn’t enter any name for the gesture, this method displays a toast saying

that the name field is empty.

21

3.4.2 GestureDetectorActivity

This class extends ’GestureOverlayView’ class. This class detects the gestures drawn

by user on the screen. For this purpose, it uses the gesture data given by the Gestur-

eRecorderActivity. This data is set using the arguments in the constructor. This data is

stored in a GestureStore(android.gesture.GestureStore) object.

This GestureOverlayView takes the gesture drawn by the user and delivers it to

this activity. This activity uses the ’recognize’ method present in ’GestureStore’ class

to recognize the gesture. The recognize method gives an ArrayList of names of the

gestures that match with this gesture. Lower the index of the gesture in the list, better

the match. The activity displays the name of the first name present in the list using a

Toast(android.widget.Toast).

22

setInnerView(Context, int)

This method can be used to add inner views to the GestureOverlayView. This method

also sets the layout of the current activity as the current GestureOverlayView.

onGesturePerformed(GestureOverlayView overlay, Gesture gesture)

This method is called by the GestureOverlayView when the user completes drawing a

gesture. This method uses the ’gesture’ argument in the ’recognize’ method of ’Ges-

tureStore’ to get the list of predicted names and displays the name of the first gesture

using Toast.

3.5 Use Cases

For recording gestures, the recorder activity needs to be invoked first. This is done by

calling the GestureRecorderActivity from the main activity.

Intent intent = new Intent(thisContext,

GestureRecorderActivity.class);

startActivity(intent);

When the recorder activity finishes recording gestures, it returns to the main activ-

ity. While returning, it transfers a extras with the name two items. An arraylist of

gestures with the name glist and an arraylist of strings which contain the names for

these gestures in the same order with the name namelist. These can be extracted

from the bundle as follows:

gList = extras.getParcelableArrayList("gList");

nameList = extras.getCharSequenceArrayList("nameList");

For using the detector, the GestureDetectorActivity should be invoked

with gesture array included in the extras in the same format as returned by the recorder.

23

Intent intent = new Intent(thisContext,

GestureDetectorActivity.class);

bundle.putParcelableArrayList("gList", gList);

bundle.putCharSequenceArrayList("nameList",nameList);

intent.putExtra("bundle", bundle);

startActivity(intent);

This calls the GestureDetectorActivity which uses the gesture list pro-

vided to it to detect the names of the gestures input by the user on the screen.

3.6 Results

The follwing screenshots shows the application which uses this API:

Figure 3.2: A screenshot the initial screen of the Application

In figure 3.2, the initial screen of the application is shown. It has two buttons. Se-

lecting the ’Recorder’ opens ’GestureRecorderActivity’ while selecting the ’Detector’

opens ’GestureDetectorActivity’.

24

Figure 3.3: A screenshot of the GestureRecorderActivity

In the figure 3.3, the GestureRecorderActivity is shown.

Figure 3.4: A screenshot of GestureRecorderActivity after entering the name and the

gesture

In the figure 3.4, the name of the gesture is entered and the gesture is drawn on

screen.

25

Figure 3.5: A screenshot of GestureRecorderActivity with a toast message showing that

the gesture has been saved

In the figure 3.5, a toast message is shown saying that the gesture is saved.

Figure 3.6: A screenshot of the GestureDetectorActivity

In the figure 3.6, the GestureDetectorActivity is shown after its initialization.

26

Figure 3.7: A screenshot of GestureDetectorActivity showing a gesture drawn on screen

In the figure 3.7, a gesture is drawn on screen.

Figure 3.8: A screenshot of GestureDetectorActivity showing the prediction it made in

the form of a toast message

In the figure 3.8, the system predicts the name of the gesture drawn on screen and

displays it as the toast message.

27

3.7 Conclusion

Thus the problem of letting the user define his own line gestures is solved by using this

API. This concept in used in the next chapter to build an API that lets the user type

characters into a ’TextBox’ using line gestures and lets the user define his own gestures

to represent each character, so that the accuracy of character detection will be improved.

28

CHAPTER 4

Character Recognizer and Trainer

4.1 Introduction

In the previous chapter, an API has been developed that the developer can use to let the

user define his own gestures. This concept of detecting line gestures can be extended to

detecting characters drawn on screen. This is undertaken in this chapter. This chapter

describes an API which uses the line gesture detection method to detect characters

entered on screen. This idea is inspired from (6).

The API that can be used to let users define their own gestures is extended in this

chapter to let users define their own gestures for each character. Thus, the gesture data

used to detect characters is trained according to the user’s hand-writing, which improves

the character detection efficiency.

4.2 Functioning of the API

4.2.1 Character Recognizer

The character recognizer takes in, the data from the file or raw source and stores the data

in GestureLibrary. Whenever the user inputs a character, the data is taken by the

GestureOerlayView and is passed on the the recognizer. This recognizer uses this

data and compares it with the data present int the GestureLibrary. The character

with the best match is appended to the TextView or is passed as an argument to the

OnCharacterRecognizedListener.

4.2.2 Character Recognizer Trainer

The trainer promtps the user too enter a particular character. When the user enters a

character, the GestureOerlayView takes the data and passes it to the trainer. This

data is stored in a GestureLibrary. When all the characters are entered, this data

is stored into a file on the SD card.

Figure 4.1: A flow chart showing the functioning of the Character Recognizer and Char-

acterRecognizerTester

4.3 Architecture

4.3.1 CharacterRecognizer

This class extends ’GestureOverlayView’(android.view.GestureOverlayView) class. Hence,

this class can be directly used as a View in the layout. This class contains methods to

load gesture data present in a file on SD-Card or from a resource file present in the

application. This class can be used in two ways.

The first way is to let the class append the detected character to the string present

30

in a TextView. This is done by setting the ’textView’ varible present in this class. The

second way is to let this class notify another class when a character has been recognized.

This is done by defining a class which implements ’OnCharacterRecognized’ interface

and setting the ’ cListener’ variable present in this class.

CharacterRecognizer(Context context, int mRawSource)

When the gesture data is present in the resources folder as a raw file, this constructor

needs to be used. The resource id of the raw file is passed as the second argument.

CharacterRecognizer(Context context, String path)

The ’path’ argument represents the path of the file on the SD-Card which contains the

gesture data. The file present in this path is used to extract the gesture data.

CharacterRecognizer(Context context, File file)

The ’file’ argument represents the file object which contains the gesture data. This file

is used to extract the gesture data.

31

setInnerView(Activity mContext, int layoutId)

This method is used to add an inner view to the ’GestureOverlayView’, which is a part

of this class. This method takes the resouce id of the inner view, inflates it and adds it

to as an inner view.

setTextView(TextView textView)

This method is used to set the TextView(android.widget.TextView) to whose string the

new character that is detected needs to be appended.

setOnCharacterRecognizedListener(OnCharacterRecognizedListener mCListener)

This method is used to set the listener which needs to be notified once a character is

detected.

4.3.2 OnCharacterRecognizedListener

This is an interface that needs to be implemented by a class that needs to be notified

when a character has been detected by the ’CharacterRecognizer’ class. An object of

the class that implements this interface is passed as an argument to the ’setOnCharac-

terRecognizedListener’ method of ’CharacterRecognizer’ class.

32

onCharacterRecognized(char recognizedChar)

This method is called when the character is recognized. The argument ’recognizedChar’

represents the character that has been recognized by the ’CharacterRecognizer’ class.

CharacterRecognizerTrainer

This is an activity that lets the user define his own gestures for individual characters.

This is a standalone activity and doesn’t depend upon any other resources. Its layout is

built by itself from the java code written in it. Its layout contains TextView(android.view.TextView)

which prompts the user to input a character. At the bottom, it has ’Next’ and ’Previous’

buttons which lets the user switch to next and previous characters. All the remaining

portion is filled with ’GestureOverlayView’ which takes the gesture input from the user

and delivers it to the activity.

33

buildLayout()

This method builds the layout of the application. This happens by defining the required

TextViews and Buttons, setting their parameters and adding them to the GestureOver-

layView. All these are then, finally added to a relative layout. The position parameters

of widgets are given as relative layout parameters.

ChangeButtonsAndText()

This method is called when one of the buttons are pressed. This method changes the

text at the top of the layout from previous character to the current character. It also

disables the buttons if the end of the character set is reached.

storeGesture()

This method first checks if the the length of the gesture drawn is more than the toler-

able length. This is to avoid storing the gesture if the user didn’t draw any gesture. If the

length is above tolerable level, the gesture is added to a GestureStore(android.gesture.GestureStore)

object and saves it to a file on SD-Card.

4.3.3 CharacterRecognizerTester

34

This is an activity that demonstrates the usage of the ’CharacterRecognizer’ API. Its

layout has a TextView and a GestureOverlayView. Whenever a character is drawn on

screen, it is detected by the CharacterRecognizer API and is appended to the text view’s

string.

onCreate

This method makes an instance of ’CharacterRecognizer’. It uses its ’addInnerView’

method to add its layout as inner view of the GestureOverlayView of the CharacterRec-

ognizer. Then, it uses ’setTextView’ of the CharacterRecognizer to set the recognizer’s

target text view, so that newly detected characters are appended to its string.

4.4 Use Cases

4.4.1 CharacterRecognizer

To use the detector, the following steps needs to be followed:

• An instance of CharacterRecognizer class needs to be created.

• The constructor of the above class takes two arguments. The first argument is the
context of the application. The second argument is the location of the data file.

• Instead of file input, a rawSource can also be given by including the data file
in the resources folder of the application.

• The interface OnCharacterRecognizedListener needs to be implemented,
which requires implementing the method onCharacterRecognized by the
class. An instance of such class is set in the CharacterRecognizer using
the setOnCharacterRecognizedListener method.

• Whenever a character is recognized, the method onCharacterRecognized
is called with the recognized character as the argument.

• Instead of implementing the interface, the TextView which should be filled on
recognizing the character can be set using the setTextView method. When a
character has been recognized, the recognizer automatically appends the charac-
ter at the end of the text view.

35

4.4.2 CharacterRecognizerTrainer

To use the API to re-configure the data file, the following steps needs to be followed by

the developer. Following these steps allows user to input their own gestures in place of

the gestures predefined in the application.

• An option should be created for the user to initialize the trainer activity in the
form of a button or a menu item.

• When this option has been executed, the CharacterRecognizerTrainer
should be called as follows:

Intent intent = new Intent(context,
CharacterRecognizerTrainer.class);

startActivity(intent);

The trainer is a stand-alone activity which doesn’t use any resource files to build its

layout. Instead, its layout is built from the java code present in the activity.

4.5 Results

The following screenshots are of the CharacterRecognizerTester and CharacterRecog-

nizerTrainer applications:

Figure 4.2: A screenshot of the trainer application

36

In the figure 4.2, a screenshot of the CharacterRecognizerTrainer has been shown.

Figure 4.3: A screenshot of the trainer application with a character drawn on screen

In the figure 4.3, a screenshot of the CharacterRecognizerTrainer has been shown

with a character drawn on screen.

Figure 4.4: A screenshot of the tester application

In the figure 4.4, a screenshot of the CharacterRecognizerTrester has been shown.

37

Figure 4.5: A screenshot of the tester application with a charcter drawn on screen

In the figure 4.5, a screenshot of the CharacterRecognizerTrester has been shown

with a charcter drawn on screen.

Figure 4.6: A screenshot of the trainer application with the predicted character entered

into the text box

In the figure 4.6, A screenshot of the trainer application with the predicted character

entered into the text box is shown.

38

4.6 Conclusion

Thus, the API for user configurable line gesture recognition has been extended to user

configurable character recognition API. These API are used in the next chapter to de-

velop a demonstration application, which allows blind users to use the basic features

of a phone like searching for contacts, making calls and sending messages. The input

for this application is through gestures which are configurable to their hand-writing by

using the API developed in this chapter.

39

CHAPTER 5

Contacts Application based on Gestures for people

without vision

5.1 Introduction

Recent advances in touch screen technology have increased the prevalence of touch

screens and have prompted a wave of new touch screen-based devices. However, touch

screens are still largely inaccessible to blind users due to interaction techniques that

require the user to visually locate objects on the screen.

To address this problem, in this chapter, the API developed in the previous chapters

is used to build an application for blind users to use the basic features of a phone like

making calls, searching for contacts and sending messages. This application takes input

from the blind user in the form of line drawing gestures on the screen. The output is

given using Text-To-Speech engine. In this chapter, we look into some of the previ-

ous and current work that is being done that lets blind users use smart phones. Then,

the description of the application is given, which is followed by guidelines to use the

application. Finally, results and conclusion are discussed.

5.2 Smart phone applications for blind people

According to the World Health Organization, 285 million people are visually impaired

worldwide: 39 million are blind and 246 have low vision (9). Smart phones have be-

come incredibly powerful tools for these people. A phone’s camera can identify money

and read text, and GPS navigation tells blind users where they are and what’s nearby.

Most of these applications depend upon speech recognition, text-to-speech, sound and

vibration feedbacks.

Trinetra (10) is a set of three applications that solves the problem of finding gro-

ceries in stores, using an RFID tags and smart phones.

Talkback is an application provided by Google that reads back the contents on the

screen for helping the visually impaired.

5.2.1 Slide Rule

Slide rule (11) is a device designed with the similar purpose as this chapter. It takes

the input from the blind users in the form of a gesture. In a user study conducted by its

designers, 7 out of 10 people preferred this application to a button based application.

However, users made more errors when using Slide Rule than when using the more

familiar button-based system.

5.3 About this application

This application uses the line drawing gestures for taking the input from the blind user.

Some of the standard operations performed on an application are predefined in this

application like

• left button or ok

• right button or back or cancel

• alphabets

• numbers

• special characters

• backspace

• scroll keys

These can be re-configured with the help of a menu present in the application. The

output is given with the help of a Text-to-speech engine. This engine takes a string or a

character as an input and speaks it through the phone’s speaker.

41

5.4 Class definitions

5.4.1 Master

This is the main class which extends the android activity(android.app.Activity). This

class makes an instance of ’CharacterRecognizer’ present in the previous chapter. It

implements the ’OnCharacterRecognizerLisener’ interface discussed in the previous

chapter. This interface is set as as the target of the CharacterRecognizer, so that the

method ’onCharacterRecognized’ will be called, whenever a character has been recog-

nized. In this method, the ’process’ method on ’ContactsInterface’ which processes the

input and performs the corresponding actions.

onCreate

This method makes an instance of CharacterRecognizer and sets its target. It also initial-

izes the ’SpeechEngine’ obejct which is required to deliver the Text-to-speech output.

42

OnDestroy

This method shuts down the speech engine to prevent memory leaks and exits the ap-

plication.

5.4.2 ContactsInterface

This class processes the input given by the user. The state machine present in this

application proceeds to the next stage according to the given character input. It has an

enumeration ’State’ defined in it which tells in which state, the application currently is

in.

43

process(char c)

This method is the main method which is called by the ’Master’ class of this application.

This method has a switch case which calls the corresponding processing function for

the given state and passes the character input to that processing function.

Enum State

This is an enumeration for the states in which the current the state machine in the appli-

cation can exist. These states are explained as below:

• START_PAGE: This is the starting page of the application. When the application
starts, the state machine is going to enter this state. Also, if a particular operation
is complete, the application again returns to this state.

• NEW_CONTACT_NAME: In this state, the user is prompted to enter the name
of the new contact. This state is preceeded by the start page and is succeded by
the new contact number state.

• NEW_CONTACT_NUMBER: In this state, the user is prompted to enter the
number of a new contact he wishes to save in his phone. After saving the contact,
the state of the application returns to state page.

• SEARCH_CONTACT: In this state, the user enters the first few characters of the
name of the contact he wishes to search. The speech engine reads out the names
of the contacts that start with these characters. The user can also scroll up and
down to go to next or previous contact in a list of contacts that start with these
characters.

• USE_CONTACT: When a contact is selected from a list using search feature, this
state is entered. In this state, the user is prompted to enter a gesture that suggests
whether the users wants to call the selected contact, send a message, edit or delete
the contact.

• EDIT_CONTACT: This state in entered when the user enters gesture to edit the
contact in the use contact state. In this state, the user is prompted to enter the new
number of the old contact. After this, the contact is saved with the new contact
and the state returns to the start page.

• EDIT_MESSAGE: When the user enters gesture to send a message in the use
contact state, this state is entered. In this state, the user enters the text message
that he wants to send to the contact. After entering ’ok’ gesture, the message is
sent to the contact and the state returns to the start page.

44

Processing functions

Each of the processing function has the following basic properties: It has a switch case

which decides which operations to perform on receiving which input.

• ?: At any time inside the application, drawing a ’?’ leads to help option, which
tells the user the possible gestures he can draw and the outcomes of these gestures.
For example, if the application is in the state ’USE_CONTACT’, drawing a ’?’
will result in speech output ’Draw C for call, M for message, E for edit contact
and D for delete contact’.

• Back: When this gesture is performed, the application returns to its previous state.
This gesture is represented by the character ’&’. This is similar to the ’back’ key
or on the phone.

• Ok: This is used to go to next state in the application. This is similar to the
’Select’ key on the phone. This is represented by the character ’*’.

• characters a to z , 0 to 9: In the states which require user to enter name or number,
the processing method takes the input and stores it in a string buffer. When ’ok’
gesture is performed, the string buffer is extracted into a string and is used for
storing or searching.

• Backspace: When this character is received as argument, the last character from
the string buffer is removed. This character is represented by the character ’#’.

5.4.3 SpeechEngine

45

This class has methods for interfacing with the text-to-speech engine present in the

android API. These methods can be used to initialize the engine, deliver string to the

engine to speak and shutdown the engine.

SpeechEngine(Context)

This method is used to initialize the speech engine.

speak

The string delivered to this method as an argument is delivered to the engine to speak.

shutdown

This method shuts down the speech engine. This method has to be performed before

the application exits.

5.4.4 ContactsDB

46

This class is used as an API to interact with the contacts database of the Android system.

The android system stores the contacts in the form of a SQLite database. Each contact

contain the following fields:

• First Name

• Last Name

• Home

• Mobile

• e-mail

• Description

The methods present in this class can be used to search for a contact, edit a contact

and delete a contact.

saveContact(String name, String number)

This method stores a contact with the given name and number in the database.

seekName(String key)

This method gets the name of the first contact in a list of contacts whose names start

with the given key.

SeekNext()

This method gives the next name in the list of contacts whose names start with the key

set previously using seekName method. It returns null if the list is empty or the list has

reached its end.

SeekPrev()

This method gives the next name in the list of contacts whose names start with the key

set previously using seekName method. It returns null if the list is empty or the list has

reached its beginning.

47

GetNumber()

This method gives the number of the contact that was previously returned by any of the

three methods given above.

saveContact(String name, String number)

This method updates a contact with the give name and number in the contacts database.

deleteContact(String name)

This method deletes the contact with the give name.

5.5 Use Cases

5.5.1 Configuring the gestures

• After starting the application, enter ’C’ to configure. The speech engine prompts
the user to enter a certain character starting from a to z.

• Once the user enters the gesture, double tap to proceed to the next character.

• When the user wants to skip a character, double tap to proceed to the next gesture.
The gesture that is already there in the database remains unchanged.

5.5.2 Searching for a contact

• In the start page, enter ’S’ to enter search mode.

• In the search mode, enter the first letter of the required contact. The application
reads out the name of the first contact with that letter as its first letter in the name.

• Use ’scroll up’ and ’scroll down’ gestures to move up or down among the contacts
named with the given letter.

• Enter more letters to form a string. The application reads out the name of the
contact whose name starts with the string.

• When the required contact has been reached, enter ’ok’ gesture to select the given
contact.

48

5.5.3 Editing and Deleting a Contact

• Once a contact has been selected, enter ’E’ to edit the contact.

• Enter the new number for the contact.

• Once the number has been entered, draw ’ok’ gesture.

• In the same way, entering ’delete’ gesture after selecting the contact deletes the
contact.

5.5.4 Calling and sending an SMS

• Once a contact has been selected, enter ’C’ to call the contact.

• Enter ’M’ to enter message mode.

• After entering message mode, enter the message text and draw ’ok’ gesture to
send message to the contact.

5.6 Standard Gestures defined in the Application

Some of the standard gestures that are pre-defined in the application are shown in the

table 5.1.

49

Table 5.1: Table showing some of the gesture defined in the application by default

OK

BACK

BACKSPACE

UP

DOWN

HELP

50

5.7 Functioning of the Application

Figure 5.1: A flow chart showing the state-machine of the Application

A state-machine is designed which advances to a particular state based on the character

input recognized by the API. For example, this state machine initially is in START_PAGE

state advances to SEARCH_CONTACT state on receiving an input of ’S’ from the user.

The flow of the state machine is shown in the figure 5.7.

5.8 Conclusion

This the API developed in the previous chapters has been used to develop an application

that lets the blind people use basic features of the phone using gestures and also re-

configure the gestures according to their handwriting. In the next chapter, we describe

some of the improvements that can be done along with the scope for the future work.

51

CHAPTER 6

Conclusion and Scope for Future work

6.1 Conclusion

In this project, an API that uses touch input to detect gestures was developed. Later, the

line gesture detection API provided by Android was improved to allow users to define

their own gestures. This API has been extended to detect characters drawn on the screen

which is configurable according to the user’s handwriting. Finally, this API was used

to develop an application for blind users which can be used to store contacts, search for

contacts, make calls and send messages using Gesture Input on Screen.

Thus, the problem of Google API which is the lack of user configurability has been

rectified by extending the API and the developed API has been put into use through an

application.

6.2 Scope for Future Work

This project can be further extended by adding new gestures and developing more ap-

plications using the API. Some of the ideas are stated as follows:

6.2.1 New Gestures

Some of the other forms of gestures can be included in the framework developed in

first part of the project, like gestures based on accelerometer sensors, gestures based

on IR sensor present on the front face of the phone, etc. For example, some of the

accelerometer gestures are shaking the phone, flipping the phone, etc.

6.2.2 New Applications

More new applications can be developed based on gestures using gesture API developed

in this project. One example of such application is to control a PC using gestures on

phone or tablet, where the phone serves as a remote and a substitute for keyboard and

mouse.

53

REFERENCES

[1] Android Activity http://developer.android.com/reference/

android/app/Activity.html

[2] Android Gesture Detector API http://developer.android.com/

reference/android/view/GestureDetector.html.

[3] Android Line Gesture Detection Package http://developer.android.

com/reference/android/gesture/package-summary.html.

[4] Android Versions http://developer.android.com/about/

dashboards/index.html.

[5] Brad A. Myers A brief history of human-computer interaction technology 1998.

[6] Emilio Raymond Reeves & Alan Ryan Wick Associating gestures on a touch

screen with characters 2010.

[8] Daniel W. Hillis Bounding box gesture recognition on a touch detecting interac-

tive display 2006.

[8] Jakub Plichta System and method for developing and classifying touch gestures

2009.

[9] World Health Organization Report on Blindness http://www.who.int/

blindness/Vision2020_report.pdf

[10] Priya Narasimhan, Rajeev Gandhi & Dan Rossi Smartphone-based assistive

technologies for the blind 2009.

[11] Shaun K. Kane, Jeffrey P. Bigham & Jacob O. Wobbrock Slide rule: making

mobile touch screens accessible to blind people using multi-touch interaction

techniques 2008.

54

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/view/GestureDetector.html
http://developer.android.com/reference/android/view/GestureDetector.html
http://developer.android.com/reference/android/gesture/package-summary.html
http://developer.android.com/reference/android/gesture/package-summary.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.who.int/blindness/Vision2020_report.pdf
http://www.who.int/blindness/Vision2020_report.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Smartphones
	Programming in Android Platform
	Activities in Android
	Life cycle of an Activity
	Manifest file
	User-interface of an Android application

	Gesture API on Android
	Line gesture API on Android
	Limitations of Google API for Gestures
	The solution provided by this project
	Platform and Version
	Organization of this project

	Simple gesture detector
	Introduction
	Functioning of the API
	Architecture
	GestureManager
	TouchManager
	OnGestureManagerListener
	GestureManagerEvent
	GestureEventType

	Use cases
	Case 1: Using existing Gestures
	Case 2: Adding New Gestures
	Example methods for detecting gestures

	Results
	Conclusion

	Line gesture Detector
	Introduction
	A brief history of Gestures on Touch Screen
	Functioning of the API
	Architecture
	GestureRecorderActivity
	GestureDetectorActivity

	Use Cases
	Results
	Conclusion

	Character Recognizer and Trainer
	Introduction
	Functioning of the API
	Character Recognizer
	Character Recognizer Trainer

	Architecture
	CharacterRecognizer
	OnCharacterRecognizedListener
	CharacterRecognizerTester

	Use Cases
	CharacterRecognizer
	CharacterRecognizerTrainer

	Results
	Conclusion

	Contacts Application based on Gestures for people without vision
	Introduction
	Smart phone applications for blind people
	Slide Rule

	About this application
	Class definitions
	Master
	ContactsInterface
	SpeechEngine
	ContactsDB

	Use Cases
	Configuring the gestures
	Searching for a contact
	Editing and Deleting a Contact
	Calling and sending an SMS

	Standard Gestures defined in the Application
	Functioning of the Application
	Conclusion

	Conclusion and Scope for Future work
	Conclusion
	Scope for Future Work
	New Gestures
	New Applications

