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ABSTRACT

KEYWORDS: GMM; SGMM; Phone CAT; MLLR

In this thesis, a new acoustic modeling technique, the Transform-based Phone CAT Model,

for Speech Recognition is proposed. The technique is inspired from the Transform-based Clus-

ter Adaptive Training (CAT) technique used for rapid speaker adaptation of Gaussian Mixture

Models (GMMs). Analogous to the CAT, a compact canonical model is adapted through piece-

wise linear transformations to a set of cluster models representing the phones. The parame-

ters of the distributions in the tied context-dependent phone states are modeled as weighted

linear interpolation of the phone cluster models. Thus the tied-state GMM parameters lie in

a subspace defined by the linear transformations of the canonical model, and can be conve-

niently generated using low-dimensional state vectors, which capture the phone context in-

formation. The model has significantly lower number of state-specific parameters than the

conventional Continuous Density Hidden Markov Model (CDHMM) and outperforms the con-

ventional model by 14.1% relative Word Error Rate (WER) improvement for Resource Man-

agement Task. This modeling technique is similar to the Subspace Gaussian Mixture Model

(SGMM), and hence offers scope for similar applications and model improvements.
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) is a prominent field that aims at conversion of sponta-

neous speech into machine understandable text. It is a difficult problem because of the different

kinds of variability in speech due to changes in speaker and environment. Statistical parametric

models like HMM are generally used to model the production of speech sounds. The perfor-

mance of the speech recognition systems entirely depends on the how good the modeling is and

how well the parameters of the model can be estimated using the available training data. There

is a lot of focus on using compact modeling techniques that can be easily trained with limited

resources. This is of particular interest in the context of Indian languages, many of which have

considerably less data resources than English and other European languages.

In conventional CDHMM systems that are typically used in speech recognition applica-

tions, the p.d.f. of each HMM state is a Gaussian Mixture Model (GMM). A lot of parameters

(means, variances and weights) are required to define these GMMs, thus demanding a large

amount of training data. A relatively new acoustic modeling technique, known as SGMM, was

introduced in Povey (2009), which takes advantage of the high correlation between the state’s

distributions to generate the GMM parameters indirectly using only a small number of state-

specific parameters. The state GMM parameters are constrained to lie in a low dimensional

subspace of the total parameter space. The parameters that are used to define this subspace are

shared among all the states and thus can be estimated robustly using limited amount of data

and even out-of-domain data. This has been verified through several multilingual experiments

(Burget et al. (2010), Mohan et al. (2012)).

In this thesis, a new acoustic modeling technique, the transform-based Phone CAT, is de-

veloped. The model is based on the same principle as the SGMM – to use a compact subspace

model that can generate the GMMs using few state-specific parameters. It is inspired from

the CAT technique for rapid speaker adaptation (Gales (2000)) and models the phone models

in a way analogous to the speaker models in CAT. It consists of a compact canonical model



that is adapted through piece-wise MLLR transforms to the phone models. The tied context-

dependent phone state models are expressed as a linear combination of these phone models.

The idea of using the phone models to define the subspace was introduced in Srinivas et al.

(2013).

Chapter 2 describes the basic theory on which the new model is based on. Sections 2.2 and

2.3 outline the basic HMM-based speech recognition procedure and the conventional HMM-

GMM system. Sections 2.4 and 2.5 describe the SGMM and the CAT techniques from which

the new model is inspired from. Chapter 3 describes in depth the modeling technique and

the estimation procedure of the transform-based Phone CAT models. Chapter 4 describes the

results of some of the experiments conducted using this model. Chapter 5 gives the conclusions.
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Chapter 2

Speech Recognition - A Review

2.1 Introduction

Information in the real world is communicated in the form of signals. Most of these signals

(like speech signals) are generated continuously in time and are analog in nature (can take

continuous values). But in all practical applications, we can extract only a finite number of

samples of the signal and they need to be quantized to take only a finite number of values. The

statistics of signals such as speech vary over time and hence are non-stationary. But they can

be assumed to be stationary over a short observation window (25ms) and fall into a category of

pseudo-stationary signals. This allows us to model the signals with efficient parametric models.

The models used to characterize signals can be broadly classified into deterministic and sta-

tistical models. Signals like speech can be modeled as the outcome of a random process and the

parameters of this process can be estimated accurately. For temporal pattern recognition appli-

cations like speech recognition, stochastic models known as Hidden Markov Models (HMM)

are widely used. It is called “hidden” because the underlying states are not observed; but only

the output of the states are observed. The output is conventionally modeled to be generated

from a Gaussian Mixture Model (GMM). This is referred to as the HMM-GMM system.

Section 2.2 gives a brief introduction to the speech recognition problem and the HMM-

based speech recognition system. Section (2.3) describes the conventional HMM-GMM sys-

tem. The subsequent sections reviews more complex approaches to modeling and adapting the

GMM-based systems. Section 2.4 describes the Subspace Gaussian Mixture Model (SGMM)

based system. Section 2.5 describes the Cluster Adaptive Training (CAT) of GMM models.
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Figure 2.1: Typical left-to-right Hidden Markov model with 3 emitting states used in Speech
Recognition.

2.2 HMM-based Speech Recognition

The pseudo-stationary property of speech signals allows the speech signal to be divided into

25ms observation windows. The statistical properties of the signal can be assumed to be con-

stant over this window. The data in this window is converted into discrete parameter vectors.

This process of conversion of continuous speech signal into a sequence of discrete vectors is

known as Feature Extraction. These vectors are also known as feature vectors or observa-

tion vectors. One of the most widely used features is the Mel Frequency Cepstral Coefficients

(MFCC). The objective of the speech recognition system is to convert this sequence of obser-

vations into a sequence of symbols (or words) that can be “understood” by a machine.

The observation sequence can be modeled as to be generated by a sequence of states as

defined by a HMM. A typical acoustic modeling uses a 3-state left-to-right HMM topology

(Fig. 2.1) to model the features generated by a single phonetic unit. A first order Hidden

Markov process is assumed meaning that the transition into a particular state depends only on

the previous state and that the observation depends only on the current state. The following

characterizes the HMM:

• N , the number of states in the model. The set of states in the model is defined by S =
{S1, S2..., SN}. The state at the observation window or frame t is denoted as qt. For the
model of a basic phonetic unit such as a phoneme, we typically use N = 3.

• A, the state transition probability distribution. A = {aij} where

aij = P [qt = Sj|qt−1 = Si]1 ≤ i, j ≤ N. (2.1)

4



For speech systems, we use a left-to-right topology, which implies that aij = 0 for j < i.

• π, the initial state distribution. π = {πi} where

πi = P [q0 = Si] ,1 ≤ i ≤ N. (2.2)

The model of a basic phonetic unit such as phoneme has πi = 0 for i 6= 1.

• The observation probability distribution in state j. In the case of a discrete HMM with
output vectors v1, v2, ..., vk, the probability of observing vkin the state j is given by

bj (k) = P [vk at t|qt = Sj] ,1 ≤ j ≤ N, 1 ≤ k ≤M . (2.3)

The observation vector, ~x(t), can assumed to be generated from a continuous distribution.
The probability density function (p.d.f.) can be modeled as a mixture of Gaussians or a
GMM:

bj (x(t)) = P
[
x(t)|qt = Sj,µji,Σji

]
=

I∑
i=1

wjiN
(
x(t);µji,Σji

)
,1 ≤ j ≤ N,

(2.4)
where I is the number of Gaussians in the GMM; µji,Σji are the means and the covari-
ance matrix of the Gaussian component i of state j; and wjiis the Gaussian prior or the

Gaussian weight with the constraint
I∑

i=1

wji = 1.

The parameters of the HMM can be put together as a parameter set λ.

2.2.1 The HMM-based solutions

We try to solve three basic problems in HMM-based systems. These problems have been

discussed in details in Rabiner Tutorial (Rabiner (1989)). A brief overview of the problems is

given in this section.

Problem 1

Given the observation sequence x = x(1)x(2)x(3) . . .x(T ) and model parameters λ, how do

we compute P (x|λ) i.e. the probability of the observation sequence given the model?

To get this probability, we need to marginalize over all state sequences. Given the state

sequence and the parameters, the probability of the observation sequence P (x|Q, λ) is just the

5



product of the observation probabilities at every t.

P (x|Q, λ) =
T∏
t=1

bqt (x(t)) . (2.5)

The state sequence Q is simply a Markov chain with the probability,

P (Q|λ) = πq0

T∏
t=1

aqt−1qt (2.6)

P (x|λ) =
∑
all Q

P (x, Q|λ)

=
∑
all Q

P (Q|λ)P (x|Q, λ)

=
∑
all Q

πq1bq1 (x(1)) aq1q2bq1 (x(1)) . . . aqT−1qT bqT (x(T )) (2.7)

= max
all Q

πq1bq1 (x(1)) aq1q2bq1 (x(1)) . . . aqT−1qT bqT (x(T )) (2.8)

Actual implementation of (2.7) is through the efficient Forward Backward algorithm. The

summation over all Q can be further pruned to the most likely sequences for efficiency. The

limiting case (2.8) is where only the sequence of the highest probability is chosen. This is the

famous Viterbi algorithm that can be implemented easily in real time.

Problem 2

Given the observation sequence x = x(1)x(2)x(3) . . .x(T ) and model parameters λ, how do

we find the state sequence Q = q1q2 . . . qT that best explains the observation sequence?

We need to find arg maxQ P (Q|x, λ). This can be computed as

6



arg max
Q

P (Q|x, λ) = arg max
Q

P (Q|λ)P (x|Q, λ)

P (x|λ)

= arg max
Q

P (Q|λ)P (x|Q, λ) . (2.9)

This equation (2.9) is just the same Viterbi search algorithm as in (2.8). This is the problem that

is solved when attempting the recognize the word sequence that can best recognize the speech

frames.

Problem 3

How do we find the model parameters λ that can best explain the observations?

If O is the sequence of all observations, we need to maximize P (O|λ). This is done us-

ing Baum-Welch algorithm, which is a specific case of the Expectation Maximization (EM)

algorithm.

2.2.2 Linguistic units

The basic linguistic unit that we model is the phoneme (also referred to as monophones or

just phones). There are around 40 phones in English language. Using only these gives a very

simplistic model. For large vocabulary recognition, we need to look at the left and the right

context of the phone; i.e. we need to model the co-articulation in vocal tract by considering the

phones uttered before and after the phone in consideration. Such a model is called a triphone

model. There are as many as 403 triphones possible, but many of them are not used or are not

observed in the training data. The GMMs used to model the triphones have many parameters

to be estimated. We require a large amount of data to get a good estimate of the parameters.

So, we “tie” similar triphones using a decision-tree based top-down clustering approach. The

decision tree based clustering has been described in detail in Young et al. (1994). At the end of

such a clustering process, we get a few thousand triphone models.

7



2.3 HMM-GMM system

HMM-GMM system, also known as CDHMM system, is the conventionally used system for

speech recognition. It models each context-dependent phone (usually the triphone) with a

generative model based on a left-to-right three state HMM topology. The total number of

context-dependent phonetic states after tree-based clustering is of the order of a few thousands.

Each state is denoted by the index j with 1 ≤ j ≤ J . The observation vector is assumed to be

generated within each HMM state j from a GMM:

P (x|j) =

Mj∑
i=1

wjiN
(
x;µji,Σji

)
, (2.10)

where x is the observation vector, wji,µji and Σji are the prior, mean and covariance matrix

of the ith Gaussian component and Mj is the number of Gaussians in the jth state.

2.4 Subspace Gaussian Mixture Model (SGMM)

SGMM is similar to the GMM-based system, but the model parameters for each state are spec-

ified by a single state vector vj . Thus µji lies in a state-independent subspace defined by the

columns of Mi. The covariance is shared across all states, so that we have a state-independent

Σi. The basic model can be expressed as:

P (x|j) =
I∑

i=1

wjiN
(
x;µji,Σi

)
(2.11)

µji = Mivj (2.12)

wji =
exp

(
wT

i vj

)
I∑

i′=1

exp
(
wT

i′vj

) , (2.13)

where vj ∈ RS is the state projection vector, x is the feature vector, Mi and wi define the

subspaces in which the means and the unnormalized log weights respectively lie and Σi is

8



the shared covariance. j is the index of the context-dependent state (1 ≤ j ≤ J) with J in

the order of a few thousands. i is the Gaussian index in the GMM of I mixtures (usually

200 < I < 2000). vj is the only state specific parameter. Mi,wi,Σi are “shared” parameters.

The basic strategy of the SGMM is to reduce the number of state specific parameters and

increase the number of shared (global) parameters. The intuition is that the means of the tied

state models span a smaller subspace of the entire acoustic space. This allows us to reduce

the number of state specific parameters. Also, since the global parameters do not depend on

a specific phone, there is a lot of data available to train the parameters. It is possible to train

these parameters using out-of-domain data even from other languages as shown in Povey et al.

(2011a).

2.4.1 Training procedure

The training of the SGMM system begins with the traditional HMM-GMM system. First, a

large GMM consisting of all the gaussians in the HMM-GMM system is built. This is typically

in the order of tens of thousands. The gaussians are repeatedly merged to get a desired number

of gaussians with diagonal covariances. The actual procedure of doing this can be found in

Povey et al. (2011a). These gaussians are trained with around 8 iterations of EM algorithm

for full covariance re-estimation. The resulting model is called a Universal Background Model

(UBM). The UBM can be viewed as a compact model representing all kinds of speech from

all speakers. The UBM need not necessarily be built from a specific HMM-GMM system;

any generic UBM can be used. This UBM is used to initialize the SGMM model. This is

done in such a way that the initial p.d.f. of all states is equal to the UBM. The HMM-GMM

system provides the Viterbi alignments for the initial SGMM parameter re-estimation iterations.

Once the SGMM parameters are estimated by EM algorithm to a sufficient extent, the SGMM

training can be continued with self-alignment (alignments from the SGMM itself).

9



2.5 Cluster Adaptive Training (CAT)

CAT is a very popular method for speaker adaptive training of speech models. Having one

GMM model (for each context-dependent state) to model the variability across all the speakers

and environments, known as Speaker Independent (SI) models, results in models having a high

variance. These models have lower discriminatory capabilities for specific speakers when com-

pared to models, known as Speaker Dependent (SD) models, that are trained for that specific

speaker. SD models are practically not feasible considering the large amount of data required

from the user of speech recognition system. To overcome this difficulty, speaker adaptation

was introduced to adapt the models to specific speakers during testing time (Woodland (2001)).

Speaker adaptive training takes a step ahead to apply the adaptation techniques during the train-

ing stage (Anastasakos et al. (1996)). It builds a compact canonical model to model the average

variability of the training speakers. It maps the compact model to speaker dependent models

using speaker adaptation techniques.

Section 2.5.1 gives an overview of the model. A detailed description of the model can be

found in Gales (2000).

2.5.1 Model-based CAT

The basic model consists of a set of P speaker clusters, each having a cluster dependent mean

for each Gaussian component in the HMM model. The speaker dependent model for the Gaus-

sian component is a linear combination of the P cluster means with the interpolation weights

λ =
[

λ1 . . . λP

]
. Sometimes the speaker independent characteristics are represented

with the P th cluster as the bias cluster having the weight λP = 1. The interpolation weights λ

are different for different Gaussian components. This model is shown in Fig. 2.2.

A regression class tree based clustering can be done on the Gaussian components to cluster

them intoR disjoint cluster weight classes, M (1)
w toM (R)

w , so that a different set of interpolation

weights λ(sr) is used for each regression class r. For a particular Gaussian component m ∈

10
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Figure 2.2: Cluster Adaptive Training

M
(rm)
w , the model mean for speaker 1 ≤ s ≤ S is given by

µ(sm) = M(m)λ(srm), (2.14)

where M(m) is the matrix of P cluster means for component m,

M(m) =
[
µc

(m1) . . . µc
(mP )

]
(2.15)

λ(srm) =
[
λ

(srm)
1 . . . λ

(srm)
P

]
(2.16)

where µc
(mp) is the mean of the Gaussian component m associated with the speaker clus-

ter p, λ(srm) is the cluster weight vector for speaker s and rm is the cluster weight class to

which Gaussian component m belongs. Thus the model-based CAT parameters are the model

parametersM =
{{

M(1) . . . M(M)

}
,
{

Σ(1) . . . Σ(M)

}}
, where Σ(m) is the co-

variance of Gaussian component m and cluster weight vector parameters Λ =
{
λ(sr)

}
, 1 ≤

r ≤ R, 1 ≤ s ≤ S.

The re-estimation of the CAT parameters can be done in the Maximum Likelihood (ML)

framework. The training procedure aims at maximizing the likelihood of the training data given

the model parameters. Similar to the HMM training, the EM algorithm is used to estimate the

parameters. An iterative training scheme is followed:

11
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Figure 2.3: Transform-based Cluster Adaptive Training

1. Estimate the cluster weight vectors Λ fixing the canonical model parameters.

2. Estimate the canonical model parametersM fixing the cluster weight vectors.

3. Repeat until convergence.

2.5.2 Transform-based CAT

In the transform-based CAT, the cluster-specific means are not directly specified, but are ob-

tained as cluster-specific linear transformations of the canonical means. The MLLR transform

(Leggetter and Woodland (1995)) is generally used for this. The Gaussian components are

clustered into Q transform classes, M (1)
t to M (Q)

t based on regression tree clustering. Each

transform class q has a transform Wc
(pq) associated with each cluster p, where Wc

(pq) =[
Ac

(pq) bc
(pq)

]
. The model is as shown in Fig. 2.3.

The cluster-specific mean of the Gaussian component m ∈M (tm)
t associated with cluster p

is given by

µc
(mp) = Ac

(ptm)µa
(m) + bc

(ptm) = Wc
(ptm)ξa

(m), (2.17)

where µa
(m) is the canonical mean of the Gaussian component m, ξa(m) =

[
µa

(m) 1
]T

is

the extended mean vector of the canonical mean, 1 ≤ tm ≤ Q is the transform class of the

12



Gaussian component m. The mean for a particular speaker can be obtained similar to 2.14,

µ(sm) =

(
P∑

p=1

λ(srm)
p Wc

(ptm)

)
ξa

(m). (2.18)

Thus the transform-based CAT has the same cluster weight vector parameters as in model-based

CAT; but the model parameters consist of the transform parameters

T =
{

Wc
(pq)
}
, 1 ≤ p ≤ P, 1 ≤ q ≤ Q and the Canonical model parameters M̃ ={{

µa
(1) . . . µa

(M)

}
,
{

Σ(1) . . . Σ(M)

}}
.

The re-estimation procedure for the transform-based CAT is similar to the model-based

CAT. But unlike the model-based version, the model parameters need to be estimated in two

stages for T and M̃ respectively. The training process is as follows:

1. Estimate the cluster weight vector parameters Λ given the model parameters
{
T M̃

}
.

2. Estimate the MLLR transform parameters T given the cluster weight vectors Λ and the
Canonical model parameters M̃.

3. Estimate the Canonical model parameters M̃ given the cluster weight vectors Λ and the
transform parameters T .

4. Go to 2 until convergence.

5. Go to 1 until convergence.

The auxiliary function, the sufficient statistics and the update equations for both the model-

based and transform-based CAT are given in detail in Gales (2000).

13



Chapter 3

Transform-based Phone CAT

Phone CAT (Srinivas et al. (2013)) is an acoustic modeling technique inspired from the Clus-

ter Adaptive Training (CAT) (Gales (2000)) for rapid speaker adaptation, which was described

in Section 2.5. While the CAT adapts a speaker independent model to different clusters of

speakers, the Phone CAT adapts a Universal Background Model (UBM) to a set of clusters

representing the phones (monophones). The context-dependent phone (triphones) states are

modeled as linear weighted interpolations of the phone cluster models, just as in the case of

CAT where the model means for a speaker are obtained as a linear weighted interpolation of the

cluster means corresponding to different speakers. The context information of the phone is cap-

tured in the form of a linear interpolation weight vector. This technique has many similarities

to the SGMM (Povey et al. (2011a)), described in Section 2.4.

In this thesis, a new technique inspired from the transform-based CAT is introduced. This

technique exploits the correlations in the acoustic space between the distributions of the context-

dependent phone states and gives a very compact representation using a UBM and several

MLLR transforms.

Section 3.1 briefly describes the model-based Phone CAT technique. Section 3.2 introduces

the Transform-based Phone CAT model. Sections 3.3 and 3.4 describe in detail the initialization

of the model and the training procedure. Section 3.5 describes the extensions possible to the

basic model.

3.1 Model-based Phone CAT

The model-based Phone CAT consists of a set of P clusters corresponding to the P monophone

models. Each cluster p has a cluster-specific mean µ(p)
i for each Gaussian component 1 ≤

i ≤ I . Each state j corresponding to a context-dependent HMM state is expressed as linear



combination of the P cluster means with the interpolation weights vj , which is called as the

state vector. Thus the mean of the ith Gaussian of the jth state is modeled as follows:

µji = Mivj, (3.1)

where vj =
[

v
(1)
j v

(2)
j

. . . v
(P )
j

]
is the state vector, and Mi =

[
µ

(1)
i µ

(2)
i . . . µ

(P )
i

]
is the matrix obtained by stacking the ith mean of all the P phone clusters, where µ(p)

i is the

mean of the ith Gaussian of the pth cluster.

The Model-based Phone CAT has 2 distinct model sets. At the lower level, there is a

set of P monophone models. The monophone models cannot model the context. So, at the

higher level, there are J triphone model states. The Model-based Phone CAT assumes that

each of these tied states has a strong relation to the P monophone models; that it lies in a

subspace spanned by the monophone models. (3.1) represents this relation. The monophone

means µ
(1)
i

, µ
(2)
i

, . . . , µ
(P )
i

form the basis vectors of this subspace. During the training

process, both the basis vectors and the interpolation weights are re-estimated; with the model

in effect learning a better subspace.

3.2 Transform-based Phone CAT

In the transform-based Phone CAT, the means of the P clusters, corresponding to the P mono-

phones1, are not specified directly, but as linear transformations of the means of a canonical

model. In the basic model, there is an MLLR transform, Wp, associated with each cluster p.

The cluster-specific mean µ(p)
i for Gaussian component i is specified as:

µ
(p)
i = Wpξi = Wp

[
µi 1

]T
, (3.2)

where ξi is the extended canonical model mean
[
µi 1

]T
with µi being the canonical mean

of the ith Gaussian. The mean for the ith Gaussian of the context-dependent state j is expressed

1This is a typical mapping. But the P clusters may not necessarily correspond to P monophones.
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Figure 3.1: Transform-based Phone CAT

as a weighted linear interpolation of the cluster-specific means given in (3.2):

µji =
[
µ

(1)
i . . . µ

(P )
i

]
vj,

=
[
µ

(1)
i . . . µ

(P )
i

]
v

(1)
j

...

v
(P )
j

 ,
=

P∑
p=1

µ
(p)
i v

(p)
j ,

=

(
P∑

p=1

v
(p)
j Wp

)
ξi, (3.3)

where vj =
[
v

(1)
j ... v

(P )
j

]T
is the state vector. The model is as shown in Fig. 3.1.

The Transform-based Phone CAT model has 3 distinct model sets. At the lowest level,

there is a compact canonical model representing the average variability of all the speech data.

At the intermediate level, there is a set of P clusters representing the P phone models. These P

models are linear transformations, represented by (3.2) , of the canonical model. At the highest

level, there is a set of J tied states, whose models are obtained as linear interpolation of the P

models in the clusters.
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3.2.1 Model description

The transform-based Phone CAT model has a GMM as the generative model in each context-

dependent state. But the means are not specified directly, but with a mapping from the the P

dimensional state vector vj . The covariance matrix Σi is diagonal and shared across all the

context-dependent states. The weights are expressed through a subspace model similar to the

SGMM (2.13). The model can be expressed as:

P (x|j) =
I∑

i=1

wjiN
(
x;µji,Σi

)
, (3.4)

wji =
exp

(
wT

i vj

)
I∑

i′=1

exp
(
wT

i′vj

) , (3.5)

where x ∈ RD is the feature vector, 1 ≤ j ≤ J is the state index of the context-dependent

state, wi is the weight projection vector, µji is obtained as in (3.3) and I is the number of

Gaussian components in the GMM. The number of Gaussians I is typically 400 to 4000. In

the SGMM, typically a 400 mixture full-covariance matrix is used. Here, since the number of

global parameters is lower, the number of mixtures can be higher. If the weights are modeled

directly as wji rather than using (3.5), the number of parameters in the model will be dominated

by the weights, which is undesirable. The only state-specific parameters are the state vectors

vj . The rest wi,Σi,µi,Wp are global parameters and are independent of state. Hence there is

a large amount of data to estimate these parameters.

3.2.2 Overview of the Training procedure

The model training starts with a traditional HMM-GMM system. This provides the pho-

netic context information (the decision trees), a set of Gaussian mixtures to build a UBM as

the canonical model and the Viterbi state alignments for the initial training iterations. The

model is initialized using these and trained for a few iterations using the alignments obtained

from the HMM-GMM system. In the next phase of training, the alignments are obtained

from the transform-based Phone CAT system itself. There are three distinct parameter sets
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as in the case of CAT. The state vector parameters Λ = {vj} , 1 ≤ j ≤ J , canonical

model parameters M =
{{

µ1 . . . µI

}
,
{

Σ1 . . . ΣI

}}
and the subspace parame-

ters S =
{{

w1 . . . wI

}
,
{

W1 . . . WP

}}
. The training scheme followed is analo-

gous to the case of transform-based CAT:

1. Re-estimate the state vector parameters Λ using {M,S} and the pre-update value of Λ.

2. Re-estimate the subspace parameters S given {∗,M} and the pre-update value of S.

3. Re-estimate2 the canonical model parametersM given {S, ∗} and the pre-update value
ofM.

4. Go to 2 until convergence.

5. Go to 1 until convergence.

The pre-update values are used to calculate the Gaussian posteriors. These values are usu-

ally accumulated in the form of statistics. Also practically, this scheme does not have to be

followed strictly and different sets of parameters can be updated simultaneously to attain con-

vergence in fewer iterations.

The structure of the model allows efficient pruning of the gaussians that are used for likeli-

hood computation in each frame: only the top few gaussians in the UBM that give the highest

likelihood for the frame are selected and used. The statistics accumulated and the update equa-

tions are described in Section 3.4.

3.3 Model initialization

First the UBM is trained and it is then used to initialize the transform-based Phone CAT model.

The UBM is initialized by a bottom-up-clustering algorithm as in the case of SGMM (Povey

et al. (2011a)). The set of diagonal Gaussians in all the states of the HMM-GMM system

is clustered to create a mixture of diagonal Gaussians. This is done by repeatedly merging

Gaussians that would result in the least log-likelihood reduction. This mixture of Gaussians is

further trained by EM algorithm using all the speech data to get the final UBM.

2The canonical means ξi must be updated first, and the updated means are used to re-estimate the covariances.
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The transform-based Phone CAT model is initialized such that the GMM in each state is

identical to the UBM. The MLLR transforms are all set to identity matrices with 0 bias so that

all the cluster-specific means are initially identical to the UBM means. The state vectors vj is

assigned a vector giving a weight 1 to only one cluster depending on a mapping function C and

0 to every other cluster. Therefore the initialization is:

Wp =
[

ID×D 0D×1

]
, 1 ≤ p ≤ P (3.6)

µi =µ
(UBM)
i , 1 ≤ i ≤ I (3.7)

Σi = Σ
(UBM)
i , 1 ≤ i ≤ I (3.8)

vj = ek ∈ RP , 1 ≤ j ≤ J, k = C (j) (3.9)

wi = 0 ∈ RP , 1 ≤ i ≤ I (3.10)

where ID×D is a D×D identity matrix with D being the dimension of the feature vector, 0D×1

is a vector of D zeros, µ(UBM)
i , Σ

(UBM)
i are the mean and the covariance matrix of the ith

Gaussian component of the UBM, ek is a P dimensional unit vector with the kth dimension as

1 and every other dimension 0 and C : {1, . . . , J} → {1, . . . , P} is a mapping from the state j

to cluster p.

In the simplest case, the mapping function can be defined such that C (j) = p, where p is the

index of the central phone of the context-dependent state j. Instead, it is possible to take into

account the state in the HMM topology to which j belongs to. If the context-dependent phone

has 3 states, the context-dependent states corresponding to each of the 3 states can a mapped

to different clusters. If every context-dependent phone has 3 states, then with this mapping the

model will end up having P = 3K clusters, where K is the number of phones. Similarly, there

can be more complex mapping functions taking into account other context information.

3.4 Training of the model

This section describes the accumulation and the update stages of the training of the model.
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3.4.1 Expectation Maximization (EM) algorithm

The auxiliary function to be optimized is similar to ones used in CAT:

Q =
∑
j,i,t

γji (t)

[
log (wji)−

1

2
|Σi| −

1

2

(
x (t)− µji

)T
Σ−1

i

(
x (t)− µji

)]
, (3.11)

where γji (t) = P (j, i|t) is the posterior probability of the jth state, ith Gaussian component

at time t, x (t) is the feature vector at time t and wji and µji are expressed according to (3.3)

and (3.5). The rest of the symbols are as defined in Section 3.2.1. The update equations for

each of the parameters vj,Wp,wi,µi,Σi are obtained by optimizing Q with respect to the

parameter keeping the other parameters fixed. The update equations along with the required

accumulations are described in the subsequent sections.

3.4.2 Estimation of Cluster Transforms

Gales (2000) gives an efficient method for re-estimation of an entire row of a cluster transform

matrix Wp. The update equation for the kth row of Wp is given by

W (k)
p = k(k)

p

[
G(k)

p

]−1
, (3.12)

where the accumulates k
(k)
p and G

(k)
p are given by

k(k)
p =

I∑
i=1

1

σ
(i)2
kk

[{
k

(i)
pk −

P∑
l 6=p

g
(i)
lp W

(k)
l ξi

}
ξTi

]
, (3.13)

G(k)
p =

I∑
i=1

g
(i)
pp

σ
(i)2
kk

ξiξ
T
i (3.14)

with g(i)
pq , k

(i)
pk being sufficient statistics defined as

G(i) =
[
g(i)
pq

]
1≤p,q≤P =

∑
j,t

γji (t) vjv
T
j , (3.15)

K(i) =
[
k

(i)
pk

]
1≤p≤P, 1≤k≤D

=
∑
j,t

γji (t) vjx (t)T . (3.16)
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From (3.13), we see that the accumulate for k
(k)
p depends on the set of other cluster trans-

forms {W l 6=p}. Therefore, each time a transform is to be updated, the k
(k)
p must be recomputed

with the latest updated values of the other cluster transforms. The process is iterative and

converges in a few iterations.

The derivation of the update equation (3.12) is given in Appendix A.1.

3.4.3 Estimation of State Vectors

The auxiliary function for state vectors vj consists of two parts, one related to the mean and

one to the weights. The dependency of the weights on vj through (3.5) makes the auxiliary

function more complex to optimize. However, by making several approximations, as in Povey

(2009), it is possible to get closed-form expression for the update of vj .

The update equation for vj is given by

vj = G−1
j kj, (3.17)

where the accumulates Gj and kj are given by

kj = yj +
I∑

i=1

wi

(
γji − γjwji + max (γji, γjwji) wT

i vj

)
, (3.18)

Gj =
I∑

i=1

γjiHi + max (γji, γjwji) wT
i vj, (3.19)

where Hi = MT
i Σ−1

i Mi and yj , γji, γj are sufficient statistics defined as

yj =
∑
t,i

γji (t) MT
i Σ−1

i x (t) , (3.20)

γji =
∑
t

γji (t) , (3.21)

γj =
∑
i

γji (3.22)

with Mi =
[
W1ξi . . . WPξi

]
.
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The derivation of the update equation (3.17) is given in Appendix A.2.

3.4.4 Estimation of Canonical model parameters

The canonical model parameter estimation is done exactly like transform-based CAT (Gales

(2000)). The update equations for the mean and covariance of the ith Gaussian component are:

µi =

[
P∑

p=1

P∑
q=1

g(i)
pq AT

p ΣiAq

]−1 [ P∑
p=1

AT
p Σ−1

i

(
k(i)T
p −

P∑
q=1

g(i)
pq bq

)]
, (3.23)

Σi = diag


L(i) − 2

P∑
p=1

k(i)
p

(
M

(p)
i

)T
+

P∑
p=1

P∑
q=1

g(i)
pq M

(p)
i M

(q)T
i∑

j

γji


, (3.24)

where Ap and bp are the first D columns and the (D + 1)th column of Wp =
[

Ap bp

]
respectively, M

(p)
i = Wpξi, k

(i)
p is the pth row of the statistics (3.16), L(i) is the sufficient

statistics defined by

L(i) =
∑
j,t

γji (t) x (t) x (t)T . (3.25)

The estimation of µi depends of the current value of Σi and vice-versa. First, the means are

updated and the updated means are used to update Σi. The derivation of the update equations

(3.23) and (3.24) are given in Appendix A.3.

3.4.5 Estimation of weight projections

The weight projection used is exactly the same as in the case of SGMM (Povey et al. (2011a)).

The same update procedure is used here as well. It is an iterative process with the following
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being computed every iteration:

w
(n)
i = w

(n−1)
i + F

(n)−1
i g

(n)
i , (3.26)

F
(n)
i =

∑
j

max
(
γji, γjw

(n−1)
ji

)
vjv

T
j , (3.27)

g
(n)
i =

∑
j

(
γji − γjw(n−1)

ji

)
vj, (3.28)

where �(n) represents the value at the nth iteration.

3.5 Extensions to the model

The model described in Section 3.2.1 can easily be extended by incorporating techniques tried

out in similar models. Some of these extensions are described in this section.

3.5.1 Multiple transform classes per cluster

It is possible to use piece-wise linear transformation with multiple MLLR transforms. The I

Gaussians in the UBM are clustered into Q transform classes and a different MLLR transform

Wpq is used for each class q. The equations (3.12), (3.13) and (3.14) will be similar for this

case as well, but the summation of i will not be over {1, 2 . . . I} but over the set of Gaussians

in transform class q.

3.5.2 Full Covariance MLLR

The standard CAT for speaker adaptation is done with diagonal covariance. If full covariance is

used, then the update equations are quite complex and computationally very expensive, making

it practically infeasible. The equation (3.12) is valid only for diagonal covariance. MLLR for

full covariance models was introduced in Povey and Saon (2006). The re-estimation is done

using a second order gradient descent approach. The same technique can be implemented for

transform-based CAT as well. This technique is an iterative approach.
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In each iteration, the gradient of the auxiliary function Q (3.11) w.r.t. Wp is computed:

Lp =
∂Q
∂Wp

=
∑
j,i,t

γji (t) Σ−1

(
x (t)−

(∑
p

Wpv
(p)
j

)
ξi

)
ξTi v

(p)
j (3.29)

The second order gradient G(k)
p is also computed for the all dimensions 1 ≤ k ≤ D. Here it is

assumed that it is equal to the case when Σ−1 is diagonal. It is obtained as:

G(k)
p =

∂2Q
∂W (k)2

p

=
∑
j,i,t

γji (t)
v

(p)2
j

σ
(i)2
kk

ξiξ
T
i ,

=
∑
i

g
(i)
pp

σ
(i)2
kk

ξiξ
T
i (3.30)

where g(i)
pp is the pth diagonal element of (3.15) and σ(i)2

kk is the variance of the ith Gaussian.

Using (3.29) and (3.30), the entire kth row of Wp can be estimated,

Ŵ
(k)

p = W (k)
p + α

[
∂2Q

∂W (k)2
p

]−1
∂Q
∂Wp

,

= W (k)
p + αG(k)−1

p l(k)
p , (3.31)

where W (k)
p is the kth row of Wp, l(k)

p is the kth row of Lp and α is some learning rate.

The change in the auxiliary function Q (3.11) after update of all rows is computed using

∆Q = ∆
∑
j,i,t

(
γji (t) x (t)T Σ−1µji − 0.5γji (t)µT

jiΣ
−1µji

)
. (3.32)

Appendix A.4 shows how this change can be computed efficiently from the sufficient statis-

tics. If the auxiliary function has increased, we move on to the next iteration; otherwise, then

the learning rate is reduced by a factor of 1/2. W (k)
p is reset to its original value and Ŵ

(k)

p is

computed again for all k with the new learning rate. The auxiliary function is tested again for

increase and the process is repeated until an increase is observed or until a limiting learning rate
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value is reached. In the next iteration, the gradients and second gradients are computed again

using the new updated value of Wp. After completing the estimation of one MLLR transform

Wp, the next transform Wp+1 is estimated with (3.29) and (3.30) using the update value for

Wp.

In order to expedite the process, it might be possible to estimate all the D rows of Wp in

parallel, with all computations for one row in (3.31) done independent of the other rows.
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Chapter 4

Results

4.1 Experimental setup

The performance of the Transform-based Phone CAT model is tested on the Resource Manage-

ment (RM) (Price et al. (1993)) and the Aurora 4 tasks. Only the speaker independent training

set (RM1) of the RM task was used. It has a total of 3,360 recorded sentence utterances from

80 different speakers. The test material consists of 5 DARPA benchmark tests, each containing

300 test utterances. A combined test set containing utterances from all these 5 tests was used for

evaluating the models. The Aurora 4 database is derived from the Wall Street Journal (WSJ0)

task. It has 7138 continuous utterances for training, equivalent to nearly 15hrs of training data.

The test set consists of utterances with 14 different noise and channel effects. Only the 330

utterances of the clean set with no channel effect was considered for evaluating the models.

13-dimensional MFCC were used as features for parametrizing the speech waveforms. The

delta and acceleration of these features were augmented to get 39-dimensional features. Cep-

stral Mean Normalization (CMN) and Cepstral Mean Subtraction (CMS) were done to increase

the noise-robustness of features. The Kaldi toolkit (Povey et al. (2011b)) was used for training

and testing the acoustic models. Standard C++ programs in the Kaldi toolkit were used to build

the baseline HMM-GMM system to initialize the Phone CAT acoustic models. The SGMM

system used for comparison is also implemented using the standard programs in the toolkit.

Various libraries in the toolkit were used for the standard computations in the algorithms and

techniques implemented for the Transform-based Phone CAT model system.



4.2 Parameters

The baseline HMM-GMM system used for RM task had a total of 1428 tied states and 9000

Gaussians. The dictionary had a set of 48 phones. The silence was modeled as a context-

independent phone with a 5 state HMM, while all other phones were context-dependent with

3 state HMMs. This was used to initialize the Transform-based Phone CAT model, which had

1601 tied states. Since the feature vector used was of 39 dimension, full-MLLR matrices of

dimension 39× 40 was used for the cluster transforms. The UBM was initialized by a bottom-

up clustering approach by merging the Gaussians from the HMM-GMM system till I mixtures

were obtained. I was varied from 400 to 3200.

The baseline HMM-GMM system used for Aurora 4 task had a total of 2913 tied states

and 24000 Gaussians. CMU Sphinx Dictionary with 40 phones was used. The modeling of

the phones was similar to that in RM task. The Transform-based Phone CAT model initialized

from this system had 4036 tied states.

The SGMM system used for comparison with the Transform-based Phone CAT model had

a subspace dimension of 40.

4.3 Experiments and Discussion

Tables 4.1 and 4.2 show the results of experiments evaluating the Transform-based Phone CAT

models on the RM and Aurora 4 tasks respectively. The details of the experiments, along with

the motivation and the conclusions are described in the subsequent sections.

4.3.1 Baseline CDHMM system

The baseline CDHMM system in Expt. 0 is the conventional speech recognition system. It

used to initialize the Transform-based Phone CAT model and SGMM as described in Sections

3.3 and 2.4.1 respectively. All the other experiments are compared with this baseline system

in terms of accuracy and number of parameters. The CDHMM system has a huge number
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# Experiment Accuracy # Parameters
# State # Global

# Total
Parameters Parameters

0 CDHMM (9000 Gaussians) 96.53 711k 0 711k
A Transform-based Phone CAT (1591 tied states, 400 mix)
1 Basic without Canonical model update 96.07 713k 106k 819k
2 Basic with Canonical model update 96.38 713k 106k 819k
B + With Gaussian weights tied to the cluster
1 400 mix, 48 clusters 95.62 76k 125k 202k
C + With state-dependent Cluster map
1 400 mix, 146 clusters 96.36 232k 317k 550k
D + Increased tied states (2386)
1 400 mix, 146 clusters 96.42 348k 317k 666k
E + With Weight Projection (1591 tied states)
1 400 mix, 48 clusters 96.65 76k 125k 202k
2 800 mix, 48 clusters 96.84 76k 176k 252k
3 1600 mix, 48 clusters 96.9 76k 276k 353k
4 3200 mix, 48 clusters 96.88 76k 478k 554k
5 400 mix, 146 clusters 96.77 232k 317k 550k
6 800 mix, 146 clusters 96.78 232k 407k 639k
F + With Multiple Transform Classes per cluster (1591 tied states)
1 1600 mix, 48 clusters, 2 Classes 96.92 76k 351k 428k
G + Full Covariance MLLR (1591 tied states, 1 Transform class)
2 400 mix, 48 clusters 97.02 76k 406k 482k
S SGMM (1591 tied states, 40 dimensional subspace)
1 400 mix Diagonal Covariance 96.3 64k 656k 719k
2 400 mix Full Covariance 97.5 64k 952k 1.016M

Table 4.1: RM Experiment Results
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# Experiment Accuracy # Parameters
# State # Global

# Total
Parameters Parameters

0 CDHMM (24000 Gaussians) 86.34 1.9M 0 1.9M
A Transform-based Phone CAT (4036 tied states)
B + With weights tied to the center phone
1 400 mix, 42 clusters 81.86 170k 114k 283k
2 800 mix, 42 clusters 82.74 170k 162k 331k
3 1600 mix, 42 clusters 83.04 170k 258k 428k
C + With state-dependent Cluster map
1 400 mix, 132 clusters 84.23 533k 290k 823k
2 800 mix, 132 clusters 85.3 533k 374k 907k
3 1600 mix, 132 clusters 85.67 533k 542k 1.075M
D + Increased tied states (5422 tied states)
1 800 mix, 42 clusters 84.12 228k 162k 390k
2 800 mix, 132 clusters 85.69 716k 374k 1.090M
E With Weight Projection
1 1600 mix, 132 clusters, 4036 tied states 88 533k 542k 1.075M
S SGMM (4036 tied states)
1 400 mix Diagonal Covariance 85.3 161k 656k 817k
2 400 mix Full Covariance 90.1 161k 1.248M 1.410M

Table 4.2: Aurora 4 Clean Case Experiment Results
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of parameters (0.7M and 1.8M in RM and Aurora 4 respectively), which demands huge data

resources. Our objective is to develop better models to achieve a similar or better performance

using significantly less number of parameter.

4.3.2 Basic Transform-based Phone CAT model

The experiments in the Set A use a basic model with only the cluster transforms and a canonical

model; but without the weight projection (3.5). The Gaussian weightswji are specified directly;

hence they have a huge number of state parameters. For RM Task, Expts. A-1 and A-2 in Table

4.1 show a significant drop in performance for the baseline CDHMM even though the number

of parameters are quite similar. It should be noted that 636k of the 711k state parameters

are Gaussian weights. Such a model that is dominated by the weights is undesirable. The

corresponding experiments were not attempted with Aurora 4 as they would have even more

state parameters.

Updating the canonical model gives a significant rise in accuracy by 0.31%. This shows

that updating canonical model is crucial.

4.3.3 Tying Gaussian weights to clusters

In the Set B of experiments, the weights were tied to the cluster to reduce the number of

Gaussian weight parameters. As a result, each state j had wpi for each state j, where p is

the cluster corresponding to the state j. All the experiments again show a significant drop in

accuracy from the baseline performance. Expt. B-1 for RM and Aurora 4 have accuracy nearly

1% and 5% respectively below the baseline. However, the number of parameters have been

significantly reduced. This allows us to increase the number of Gaussians from 400 to even up

to 3200. Expts. B-2 and B-3 for Aurora 4 show slightly better performances, but still lower

than CDHMM. Doubling the number of Gaussians in Expt. B-3 compared to B-2 has only

resulted in small 0.3% improvement. So merely increasing the Gaussians is not the answer.
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4.3.4 State-dependent cluster map

The experiments in Set C attempt to increase both the state and global parameters by increasing

the number of clusters. The HMM in each tied triphone has 3 states (or 5 in the case of silence

and noise models). Each of these states in the tied triphone can be assigned to distinct clusters.

This results in one cluster for every state in the HMM topology of all the phones. This gives

146 clusters in RM task (3 clusters from each of the 47 non-silence phones and 5 from the

silence phone) and 132 clusters in Aurora 4 task (3 clusters from each of the 39 non-silence

phones and 5 clusters each from the silence, unknown and noise phones).

For RM task, using Expt. C-1 shows nearly 0.8% improvement over Expt. B-1. For Aurora

4 task, the experiments in Set C show a 2.5% improvement over the corresponding experiments

in Set C.

4.3.5 Increasing the number of tied states

The number of tied states is increased by choosing the tied states by going further down the

context-dependency decision tree. This increases only the state parameters keeping the number

of global parameters the same. Expt. D-1 in Aurora 4 shows a good 1.5% improvement over

Expt. B-2. This is only because the number of parameters in that model is very less. Expt. D-2

in Aurora 4 shows only a 0.4% improvement over the corresponding Expt. C-2 and Expt. D-1

in RM shows only a 0.06% improvement over the corresponding Expt. C-1.

Increasing the number of tied states increases the state parameters only by a little. And

there are serious limitations to increasing the number of tied states, as we may not have enough

data to estimate some tied state parameters. There is not much improvement possible on this

front, but optimizing the number of tied states for the model might still be required to get the

best system.
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4.3.6 Weight Projection

Weight projection (3.5), when used in SGMM gave significant improvement. It also gave the

model a good structure, making the unnormalized logarithm of weights a linear function of vj .

By tying the Gaussian weights to the clusters, we were severely restricting them. But using

the same number of parameters as before, we can get significant improvement with weight

projection.

Expt. E-1 in Aurora 4 performs nearly 2.5% better than the model with tied Gaussian

weights (Expt. D-2). At 88% accuracy, this shows 1.5% absolute improvement over the base-

line CDHMM, while using only half the number of parameters. Even in RM task, the weight

projection gives great improvement with even the simplest 400 mixture model with a mere 1/4
th

of the number of CDHMM parameters outperforming the baseline system (Expt. E-1).

When the number of clusters is low (48), we can afford to increase the number of Gaussians.

Doubling the number of Gaussians to 800 increases the accuracy significantly by 0.2% (Expt.

E-2). But further increasing it does not help much with Expt. E-3 showing only a further

improvement of 0.06%. The accuracy even falls on increasing the Gaussians to 3200, probably

due to poorer estimates of the parameters.

When the number of clusters is high (146), increasing the number of mixtures does not

give much improvement (Expt. E-5 and Expt. E-6). Although at 400 mixtures, using a higher

number of clusters gives a better performance (Expt. E-5 vs Expt. E-1), at 800 mixtures, the

performance drops on using higher number of number of clusters (Expt. E-6 vs Expt. E-2),

possibly again due to poorer estimates of the increased number of parameters.

4.3.7 Multiple MLLR Transform Classes

In Expt. F-1, the set of 1600 Gaussians in the UBM was divided into two transform classes

using a bottom-up clustering algorithm. Until only two Gaussians are left, all the Gaussians in

the UBM are repeatedly merged such that the decrease in the data likelihood is the least. The

sets of Gaussians that have been merged into each of the two Gaussians form the two transform

classes. A separate MLLR transform is used for each class. This however gave only a slight
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improvement of 0.02% over using a single MLLR for all Gaussians (Expt. E-3). Increasing

the number of transform classes is one way to relieve the linear transformation constraint in the

transform-base Phone CAT model that is not present in the SGMM. There is a lot of scope of

experimenting with this in the future.

4.3.8 Full covariance MLLR

In Expt. G-1, a full covariance matrix is used instead of the diagonal one. This gives achieves

an accuracy of 97.02% for RM task, which is a 0.5% absolute improvement or a 14.1% relative

improvement in WER. With 400 Gaussians, this uses far less parameters than the CDHMM

model and also some of the other Transform-based Phone CAT model with higher number of

Gaussians. However, the update equation for the MLLR matrices is quite complicated and

computationally expensive. There is a need for parallelization of computations to estimate the

model in a duration close that of the SGMM.

4.3.9 SGMM

Comparing with SGMM with 400 Gaussians and diagonal covariance (Expt. S-1), the Transform-

based Phone CAT with the same number of Gaussians (Expt. E-1) performs better for the RM

task, while using less number of parameters. The same trend is expected in Aurora 4 as well be-

cause the Expt. E-1 with a similar number of parameters as the diagonal SGMM performs sig-

nificantly better. This verifies that the MLLR transforms defines a good structure in the speech

models. However, the SGMM full covariance still outperforms the Phone Transform-based

CAT model for the same number of Gaussians. However the number of global parameters used

is still lower in the Transform-based Phone CAT. So there is scope for more experimentation

and improvement.
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4.4 Observations

The experiments in Section 4.3 show that the Transform-based Phone CAT model in general

performs better than the conventional HMM-GMM system. The higher discriminatory capabil-

ity of this model can be attributed to modeling the tied state parameters as vectors in a subspace

of the total parameter space. This works because the tied state can be better discriminated in

the subspace. The model is similar to SGMM in many aspects. But, instead of learning the

subspace directly as in the case of SGMM, the structure of the subspace is defined in the form

of linear transformations of a canonical mean model. Rather than using a lot of state specific

parameters, introducing global parameters to define this subspace results in better performance

of the system. This is verified from the experiments in the previous section.

Apart from better performance, we look to capture intuitive phone-context information us-

ing the interpolation weights vj . From the analysis of the plots of vj for different triphone

states, we see that vj does capture intuitive context information and in some cases it can be

observed easily. These are the observations from the plots:

• In all the plots in the figures 4.1, 4.2 and 4.3, the central phone carries a high weight.

• The three states of the HMM – state 0, 1 and 2 – are all affected differently by the
context of the surrounding phones. The states 0 and 1 of the triphone /dx/-/aa/+/r/ are not
affected greatly by the right context of the phone /r/. But state 2 of /dx/-/aa/+/r/ is largely
influenced by the phones /r/ and /ar/ (Fig. 4.1).

• In some cases, the central phone may not have the highest weight and the highest weight
goes to some phone very similar to the central phone. In the state 0 of /iy/-/ax/+/sil/ (Fig.
4.2a), the phones /ax/, /eh/ and /ae/, which are all similar, have high weights. Similarly
the state 2 of /dx/-/aa/+/r/ (Fig. 4.1c), which is also tied to the state 2 of /dx/-/aa/+/er/, is
influenced by both /r/ and /er/ phones.

• Some consonants like the stop consonants have less context effect than other phones. The
phones /dx/ in Fig. 4.1 and /p/ in Fig. 4.3 does not affect the context much.

• Some phones like fricatives, which are much different from other phones, have a very
high influence on the triphone. For the triphone X-/s/+/p/ where X is tied across many
phones (Fig. 4.3), the central phone /s/ has a high and dominating weight.

These observations only show that vj is capable of capturing context information; but it

should not be relied on for all context information. Only in the initial iterations, the clusters
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Figure 4.1: Analysis of vj for /dx/-/aa/+/r/
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Figure 4.2: Analysis of vj for /iy/-/ax/+/sil/
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Figure 4.3: Analysis of vj for X-/s/+/p/
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strictly represent the monophone models. Since, many monophones themselves are similar,

the training procedure may learn to use the same cluster model for the similar monophones,

leaving the other cluster models open to new eigen-directions of the parameters space.
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Chapter 5

Conclusions and Future Work

A new kind of acoustic model, the Transform-based Phone CAT model, is introduced. Un-

like, the conventional HMM-GMM system, this model does not specify the parameters of the

distribution directly, but generates the parameters of the distribution. This allows to represent

complex GMM distributions in a compact way. By restricting the dimensions in the total pa-

rameter space of the distribution to a compact subspace, the discriminatory capability of the

speech models is improved. The use of shared, global parameters instead of the conventional

state-specific parameters, allows a better modeling of the speech sounds for similar parameter

count. The global parameters also allow the possibility of using out-of-domain data and hence

the model can be efficiently trained on less in-domain data than in CDHMM models. The struc-

ture of the model allows to train and evaluate the models efficiently. The compact canonical

model allows efficient pruning of Gaussians evaluated in each frame.

The experiments conducted on Resource Management (RM) Task and Aurora 4 Task con-

firm that the model gives better results than the conventional HMM-GMM system. On the RM

task, the Transform-based Phone CAT model shows an improvement of 0.5% absolute, which

is a 14.1% relative improvement in Word Error Rate (WER). The observation that this model

performs better than a similar SGMM system with 400 mixture diagonal covariance shows that

the addition of the MLLR transformations gives the model a good structure and hence improves

the performance of the system. Being very similar to the SGMM, this model offers scope for

similar modeling improvements. Use of piece-wise MLLR with multiple transform classes per

cluster, full covariance cluster adaptive training and multiple substates per state offers possi-

bility for further improvement with this model. It also allows the possibility of further using

speaker adaptation techniques like CMLLR and VTLN, in a similar way as in SGMM. In addi-

tion to providing improvements over the conventional system, this model also gives an intuitive

way of representing phone context information. The linear interpolation weights of the clusters

in the models are shown to capture this context information.



Appendix A

Estimation of Parameters

A.1 Cluster Transforms

The term µji in (3.11) can be expressed using (3.3) as

µji =
[
W1ξi W2ξi . . . WPξi

]
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(3.11) needs to be optimized with respect to H =
[
W1 W2 . . . WP

]
. Using (A.1)

and differentiating (3.11) with respect to H, we get:

∂Q
∂H

=
∑
j,i,t

γji (t) Σ−1
i (x (t)−Hbji) bT

ji = 0 (A.2)

A closed-form expression for re-estimation of H can be obtained for the case of a diagonal

Σi (Gales (1998)). This allows an entire row of H to be estimated at once. The detailed steps

follow:

∑
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T
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The LHS and RHS of (A.3) can be simplified for diagonal Σi as

LHS =
∑
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where xk (t) is the kth dimension of x (t), Hk is the kth row of H and σ(i)2
kk is the kth element

in the diagonal covariance Σi. Equating the kth row in (A.4) and (A.5), we get

k(k) = HkG
(k), (A.6)

where

k(k) =
∑
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vT
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∑
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1

σ
(i)2
kk

vjv
T
j ⊗ ξiξTi ,

and ⊗ is the Kronecker product. (A.6) can be solved to Hk by inverting the P (D + 1) ×
P (D + 1) square matrix G(k). This is a very expensive process. A more efficient way makes
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an approximation that only one of the elements in vj is dominating and estimates one cluster

transform at a time. The RHS of (A.6) can be expressed as
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Using (A.7) in (A.6), we get
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For estimation of Wp, vT
j can be approximated to

[
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]
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this in (A.13), we get
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The update equation for W (k)
p can be written as

W (k)
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where
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with k(i)
pk and g(i)

lp being sufficient stats defined by (3.16) and (3.15).

A.2 State vectors

The auxiliary function (3.11) can be expressed in two parts; one,Q1, containing the terms from

the means µji and the other, Q2, containing the terms from the weights. Q1 is given by

Q1 = −1

2

∑
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where K is some constant independent of vj and Hi = MT
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i Mi.

Q2 is given by
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Using the inequality 1 − (x/x̄) ≤ − log (x/x̄) with x corresponding to
∑I
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)
and x̄ corresponding to its pre-update value (which is a constant with respect to the auxiliary

function), we get
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1 + (x− x0) + 0.5 (x− x0)2). Neglecting the terms independent of x as constants,

we get

exp (x) ' K + exp (x0)
(
x (1− x0) + 0.5x2

)
(A.15)

. Expanding exp
(
wT

i′vj

)
using (A.15), we get

Q′′2 = K ′ +
∑
i,t

γji

(
wT

i vj−

I∑
i′=1

(
wT

i′vj

(
1−wT

i′ v̄j

)
+ 0.5

(
wT

i′ v̄j

)2
)

exp
(
wT

i′ v̄j

)
I∑

i′=1

exp (wT
i′ v̄j)

)
, (A.16)

which can be simplified using w̄ji =
exp

(
wT

i v̄j

)
I∑

i′=1

exp (wT
i′ v̄j)

as

Q′′2 = K
′′

+
∑
i,t

γjiw
T
i vj − γj

I∑
i′=1

wji′

(
wT

i′vj

(
1−wT

i′ v̄j

)
+ 0.5

(
wT

i′ v̄j

)2
)
. (A.17)

The final auxiliary function for state vector update is the sum of (A.14) and (A.17). There-
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fore the final auxiliary function Q and the update equations are given by

Q = K + vT
j kj − 0.5vT

j Gjvj, (A.18)

v̂j = G−1
j kj, (A.19)

kj = yj +
I∑

i=1

wi

(
γji − γjwji + max (γji, γjwji) wT

i vj

)
, (A.20)

Gj =
I∑

i=1

γjiHi + max (γji, γjwji) wT
i vj, (A.21)

where yj ,γji and γj are sufficient stats defined by (3.20), (3.21) and (3.22) respectively, v̂j is

the updated state vector.

A.3 Canonical model

For canonical mean estimation, the auxiliary function (3.11) can be written as,

Q = −1

2

∑
j,i,t

γji (t)

[
x (t)−

∑
p

(Apµi + bp) v
(p)
j

]T
Σ−1

[
x (t)−

∑
p

(Apµi + bp) v
(p)
j

]
.

(A.22)

Differentiating (A.22) w.r.t. µi and equating to 0, we get

∂Q
∂µi

=
∑
j,t

γji (t)

(∑
p

Apv
(p)
j

)T

Σ−1

[
x (t)−

∑
p

Apµiv
(p)
j +

∑
p

bpv
(p)
j

]
= 0.

This can be simplified as

P∑
p=1

AT
p Σ−1

[(∑
j,t

γji (t) v
(p)
j x (t)

)
−

P∑
q=1

(∑
j,t

γji (t) v
(p)
j v

(q)
j

)
bq

]
=

[
P∑

p,q=1

(∑
j,t

γji (t) v
(p)
j v

(q)
j

)
AT

p Σ−1Aq

]
µi

(A.23)

or

µi =

[
P∑

p,q=1

g(i)
pq AT

p Σ−1Aq

]−1 [∑
p

AT
p Σ−1

(
k(i)T
p −

∑
q

g(i)
pq bq

)]
, (A.24)

where g(i)
pq is the sufficient statistics defined in (3.15), k

(i)
p is the pth row of the sufficient statistics
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3.16 and
[

Ap bp

]
= Wp is the MLLR transform of the cluster p.

For covariance update, the standard covariance update equation can be modified:

Σi =

∑
j,t

γji (t)
(
x (t)− µji

) (
x (t)− µji

)T
∑
j,t

γji (t)
, (A.25)

=

∑
j,t

γji (t) x (t) x (t)T −
∑
j,t

γji (t) x (t)µT
ji −

∑
j,t

γji (t)µjix (t)T +
∑
ji

γji (t)µjiµji∑
j,t

γji (t)
.(A.26)

The term
∑
j,t

γji (t) x (t)µT
ji can be computed as

∑
j,t

γji (t) x (t)µT
ji =

∑
j,t

γji (t) x (t)

(∑
p

Wpv
(p)
j ξi

)T

,

=
∑
p

∑
j,t

γji (t) x (t) v
(p)
j (Wpξi)

T ,

=
∑
p

k(i)
p (Wpξi)

T , (A.27)

where k(i)
p is the ith row of the sufficient statistics (3.16). The term

∑
j,t

γji (t)µjix (t)T is just

the transpose of this.

The term
∑
j,t

γji (t)µjiµ
T
ji can be computed as

∑
j,t

γji (t)µjiµ
T
ji =

∑
j,t

γji
∑
p

Wpv
(p)
j ξiξ

T
i

∑
q

WT
q v

(q)
j ,

=
P∑

p=1,q=1

g(i)
pq (Wpξi) (Wqξi)

T , (A.28)

where g(i)
pq is the sufficient statistics defined in (3.15).
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Therefore (A.26) can be expressed as:

Σi =

Li −
∑
p

k(i)
p (Wpξi)

T −
[∑

p

k(i)
p (Wpξi)

T

]T
+

P∑
p=1,q=1

g
(i)
pq (Wpξi) (Wqξi)

T

∑
j

γji
,

(A.29)

where Li and γji are sufficient statistics defined in (3.25) and (3.21). For a diagonal covariance

re-estimation, only the diagonal is retained in (A.29).

A.4 Auxiliary function change for Full covariance Transform-

based Phone CAT

The change in the auxiliary function Q after update (3.32) can be computed as

∆Q = ∆
∑
j,i,t

(
γji (t) x (t)T Σ−1µji − 0.5γji (t)µT

jiΣ
−1µji

)
,

= ∆
∑
j,i,t

(
γji (t) x (t)T Σ−1

(∑
p

Wpv
(p)
j

)
ξi

−0.5γji (t) ξTi

(∑
p

WT
p v

(p)
j

)
Σ−1

(∑
q

Wqv
(q)
j

)
ξi

)
. (A.30)

Since only the pth cluster has been updated the summation over p reduces to a single term

involving the pth cluster. Using this (A.30) can be simplified as:

∆Q =
∑
i

k(i)
p Σ−1 (∆Wp) ξi − 0.5g(i)

pp ξ
T
i ∆
(
WT

p Σ−1Wp

)
ξi

−0.5
∑
q 6=p

g(i)
pq ξ

T
i

(
∆WT

p

)
Σ−1Wqξi

−0.5
∑
q 6=p

g(i)
pq ξ

T
i WT

q Σ−1 (∆Wp) ξi. (A.31)

where g(i)
pq is sufficient statistics defined in (3.15), k(i)

p is the pth row of sufficient statistics in

(3.16) and ∆Wp is the change in Wp after update.
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