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ABSTRACT

We analyse tumor invasion as a travelling wave solution to the set of state equations that govern

the interaction of transformed and the normal cells. At first, we survey some mathematical

models for the initial stages of tumour progression, mainly the phenomenological models for

prevascular growth. After that, we present a detailed description of the simplest kind of reaction

diffusion equations. Based on that, we finally look into the stability of the travelling wave

solution and its implications on the key biological quantities appearing as key parameters in the

model equations.

KEYWORDS: Mathematical Modeling, Lotka Volterra equations, Tumor host interaction

iv



TABLE OF CONTENTS

CERTIFICATE i

ACKNOWLEDGEMENTS ii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vi

1 INTRODUCTION 1

1.1 Introduction to Tumor Modeling . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Phenomenological Models . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Lotka Volterra Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 REACTION DIFFUSION EQUATIONS 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fisher–Kolmogoroff Equation and Propagating Wave Solutions . . . . . . . 5

2.3 Asymptotic Solution of the Fisher–Kolmogoroff Equation . . . . . . . . . . 9

3 ANALYSIS OF TUMOR INVASION 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



LIST OF FIGURES

1.2.1 Comparison of the logistic, von bertalanyffy (with λ= 2/3 and µ = 1) and Gom-
pertz functions for tumour growth . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Prey/Predator v/s Time and Phase plane plots of a conservative system . . . 4

1.3.2 Prey/Predator v/s Time and Phase plane plots of a dissipative system . . . . 4

2.2.1 Phase plane trajectories of the travelling wave solution . . . . . . . . . . . 7

vi



CHAPTER 1

INTRODUCTION

1.1 Introduction to Tumor Modeling

Cancer is a leading cause of cause of death worldwide, accounting for nearly 8 million deaths

per year. Experts predict that deaths globally will continue rising, with an estimated 9 million

people dying from cancer in 2015 and 11.4 million succumbing in 2030. Thus, cancer poses

major public health questions. Cancer is a generic term for a large class of diseases that can

affect any part of the body; malignant tumors and neoplasms are often used as synonyms. A

characteristic feature of cancer is the rapid creation of abnormal cells growing beyond their

usual boundaries and often invading adjoining parts of the body, spreading to other organs. In

this chapter, I will investigate several mathematical models of tumor growth. I will also present

a brief introduction to Lotka Volterra equations.

1.2 Phenomenological Models

An ideal model of tumor growth for a real world situation should satisfy several criteria:

1. The model should have a physiological basis;

2. The model should improve general understanding at microscopic as well as macroscopic
level of tumor growth.

3. The model should have breadth, in the sense that it should be applicable to different
patients or animals with the same type of tumor.

A tumour, at least in its early stages, has a sigmoid growth curve, first accelerating and then

decelerating to an apparent limit. The logistic equation

dN

dt
= rN(1− N

K
) (1.2.1)



has been used a model for tumour growth. Here, N is the size of the tumour, usually

measured as a number of cells or as a volume. N(t) → K in this model. Generalising this

model, von Bertalanffy used the equation

dN

dt
= f(N) = αNλ − βNµ (1.2.2)

to represent tumour growth, where α, β, λ and µ are positive parameters with µ > λ.

A particular case of von Bertalanffy equation is the surface rule model, which states that

growth is proportional to surface area (since nutrients have to enter through the surface) and

decay is proportional to size. Then for a tumor of constant shape we recover 1.2.2 with λ =

2/3 and µ = 1.

Now define a = α − β, b = β(µ − λ) = β(1 − λ). Then von Bertalanffy equation 1.2.2

becomes

dN

dt
= aNλ − bNλ(

N1−λ − 1

1− λ
) (1.2.3)

Now taking limit as λ→ −1, we obtain

dN

dt
= aN − bNlogN = −bNlogN

K
(1.2.4)

where K = exp(a/b). This is known as Gompertz equation.

1.3 Lotka Volterra Equations

The Lotka Volterra equations are first introduced by Volterra in 1931. Assuming that there is

only one quadratic interaction between the different species, a general syatem that gives the

population of n different species is given by the following set of n differential equations:
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Figure 1.2.1: Comparison of the logistic, von bertalanyffy (with λ= 2/3 and µ = 1) and Gom-
pertz functions for tumour growth

xj
t

= εjxj +
n∑
k=1

ajkxjxk , (j = 1, ....n). (1.3.1)

In this mode, xj is the number of individuals of species j, the εj’s are the growth rates and

the ajk’s are the interaction coefficients of the species. We introduce the interaction matrix

A = (ajk), of which the elements are the interaction coefficients.

When we take as initial data for system 1.3.1 that all xj’s except for one (say for j = 1)

are zero, we get the single species logistic growth model:

dx

dt
= εx− ax2. (1.3.2)

The dynamics of this model (for both ε and a positive) are well understood. For small x,

the quadratic term is negligible and the population grows almost exponentially. However as it

gets larger, the quadratic term becomes significant, limiting the growth and providing an upper

bound x = ε
a
.

The Lotka Voterra equations allow for interactions between several coexisting species and

are much more realistic then the single-species logistic model. We can classify the various

3



systems by its interaction matrix A.

The main classes are

1. cooperative (resp. competitive) if ajk ≥ 0 (resp. a ≤ 0) for all j 6= k,

2. conservative if there exists a diagonal matrix D > 0 such that AD is skew-symmetric,

Figure 1.3.1: Prey/Predator v/s Time and Phase plane plots of a conservative system

3. dissipative if there exists a diagonal matrix D > 0 such that AD ≤ 0.

Figure 1.3.2: Prey/Predator v/s Time and Phase plane plots of a dissipative system
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CHAPTER 2

REACTION DIFFUSION EQUATIONS

2.1 Introduction

The logistics equation is a first-order differential equation that is widely used to model the

growth of a population as described above. The heat equation, a second order differential

equation is used to describe the diffusion of heat over time. The combination of these two

equations, logistics and diffusion, describes a reaction-diffusion which accounts for diffusion

and growth. The Fisher Kolmogoroff equation has been analysed in detail in this chapter.

2.2 Fisher–Kolmogoroff Equation and Propagating Wave So-

lutions

The classic simplest case of a nonlinear reaction diffusion equation is

∂n

∂t
= kn(1− n) +D

∂2n

∂x2
(2.2.1)

where kis a positive parameter and can be physically interpreted as the natural growth rate

as well as the carrying capacity of n in the absence of t. Rescaling the variables,

t∗ = kt , x∗ = x(
k

D
)1/2 (2.2.2)

we get the equation in the following form:



∂n

∂t
= n(1− n) + ∂2n

∂x2
(2.2.3)

In the spatially homogeneous situation, the steady states are n = 0 and n = 1, which are

respectively unstable and stable. This suggests that we should look for travelling wavefront

solutions for which 0 ≤ n ≤ 1; negative n has no physical meaning. If a travelling wave

solution exists it can be written in the form

n(x, t) = N(z) , z = x− ct (2.2.4)

where c is the wavespeed.

Substituting this travelling waveform, N(z) satisfies

N
′′
+ cN

′
+N(1-N) = 0, (2.2.5)

where primes denote differentiation with respect to z. A typical wavefront solution is where

N at one end, say, as z → −∞, is at one steady state and as z → ∞ it is at the other. So here

we have an eigenvalue problem to determine the value, or values, of c such that a nonnegative

solution N exists which satisfies

limz→∞N(z) = 0 , limz→−∞N(z) = 1

Studying the above euqation for N in the (N , M ) phase plane where

N
′
=M , M

′
= −cM −N(1−N) (2.2.6)

which gives the phase plane trajectories as solutions of

6



dM

dN
=
−cM −N(1−N)

M
(2.2.7)

This has two singular points for (N,M), namely, (0, 0) and (1,0). A linear stability analysis

shows that the eigenvalues λ for the singular points are

(0, 0) : λ± =
1

2
[−c ± (c2 − 4)

1
2 ] ⇒ stable node ifc2 > 4, stable spiral if c2 < 4

(1, 0) : λ± =
1

2
[−c ± (c2 + 4)

1
2 ] ⇒ saddlepoint.

Figure 2.2.1: Phase plane trajectories of the travelling wave solution

In terms of the original dimensional equation, the range of wavespeeds satisfies

c ≥ cmin = 2(kD)1/2. (2.2.8)

A key question at this stage is what kind of initial conditions n(x, 0) for the original

Fisher–Kolmogoroff equation will evolve to a travelling wave solution and, if such a solution

exists, what is its wavespeed c.
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If

n(x, 0) = n0(x) ≥ 0 , n0(x) = 1 if x ≤ x1 ; n0(x) = 0 if x ≥ x2 (2.2.9)

where x1 < x2 and n0(x) is continuous in x1 < x < x2, then the solution n(x, t) evolves to

a travelling wavefront solution N(z) with z = x − 2t. That is, it evolves to the wave solution

with minimum speed cmin = 2.

The dependence of the wavespeed c on the initial conditions at infinity can be seen easily

from the following simple analysis. Consider first the leading edge of the evolving wave where,

sincen is small, we can neglect n2 in comparison with n. The above equation is linearised to

∂n

∂t
= n+

∂2n

∂x2
(2.2.10)

Consider now

n(x, 0) ∼ Ae−ax as x→∞ (2.2.11)

where a > 0 and A > 0 is arbitrary and travelling wave solutions in the form

n(x, t) = Ae−a(x−ct) (2.2.12)

Substitution of the last expression into the linear equation gives the dispersion relation, that is,

a relationship between c and a,

ca = 1 + a2 ⇒ c = a+
1

a
(2.2.13)

We see that cmin = 2 the value at a = 1. For all other values of a(> 0) the wavespeed

c > 2. For all other values of a(> 0) the wavespeed c > 2.

Now consider min[e−ax, e−x ] for x large and positive (since we are only dealing with the
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range where n2 � n ). If

a < 1⇒ e−ax > e−x, (2.2.14)

and so the velocity of propagation with asymptotic initial condition behaviour like 2.2.11

will depend on the leading edge of the wave, and the wavespeed c is given by 2.2.13. On the

other hand, if a > 1 then e−ax is bounded above by e−x and the front with wavespeed c = 2.

We are thus saying that if the initial conditions satisfy 2.2.11, then the asymptotic wavespeed

of the travelling wave solution of is

c = a+
1

a
, 0 < a ≤ 1 , c = 2 , a ≥ 1. (2.2.15)

The Fisher–Kolmogoroff equation is invariant under a change of sign of x, as mentioned

before, so there is a wave solution of the form n(x, t) = N(x + ct) , c > 0, where now

N(−∞) = 0 , N(∞) = 1.

2.3 Asymptotic Solution of the Fisher–Kolmogoroff Equa-

tion

Travelling wavefront solutions N(z) for satisfy the following equation:

N
′′
+ cN

′
+N(1−N) = 0 (2.3.1)

and monotonic solutions exist, with N(−∞) = 1 and N(∞) = 0, for all wavespeeds c > 2.

The phase plane trajectories are the solutions of the following equation:

dM

dN
=

-cM -N(1-N)

M
(2.3.2)

9



There is a small parameter in the equations, namely, ε = 1/c2 6 0.25, which suggests we

look for asymptotic solutions for 0 < ε < 1. Since the wave solutions are invariant to any shift

in the origin of the coordinate system (the equation is unchanged if z → z + constant), let us

take z = 0 to be the point where N = 1/2. We now use a standard singular perturbation tech-

nique. We use the following transformation in order to find the solution as a Taylor expansion

in the small parameter ε:

N(z) = g(ξ) , ξ =
z

c
= ε1/2z. (2.3.3)

With the above equation and the equation satisfying the solutions of N(z), together with

the boundary conditions on N , becomes

ε
d2g

dξ2
+
dg

dξ
+ g(1− g) = 0

g(-∞) = 1 , g(∞) = 0 , 0 < ε ≤ 1

c2min
= 0.25, (2.3.4)

and we further require g(0) = 1/2.

The equation for g as it stands looks like the standard singular perturbation problem since

ε multiplies the highest derivative; that is, setting ε = 0 reduces the order of the equation and

usually causes difficulties with the boundary conditions. Now, we look for solutions of the

above equation as a regular perturbation series in ε; that is, let

g(ξ; ε) = g0(ξ) + εg1(ξ) + ... (2.3.5)

The boundary conditions at ±∞ and the choice of N(0) = 1/2, which requires g(0; ε) =

1/2 for all ε, gives the conditions on the gi(ξ) for i = 0, 1, 2, ... as

10



g0(−∞) = 1 , g0(∞) = 0 , g0(0) = 1/2 , gi(±∞) = 0 , gi(0) = 0 for i = 1, 2, .. (2.3.6)

On substituting 2.3.5 into 2.3.4 and equating powers of ε we get

O(1) :
dg0
dξ

= −g0(1-g0)⇒ g0(ξ) =
1

1 + εξ
(2.3.7)

O(ε) :
dg1
dξ

+ (1− 2g0)g1 = −
d2g0
dξ2

and so on, for higher orders in ε. The constant of integration in the g0-equation was chosen

so that g0(0) = 1/2 as required by 2.3.6. Using the first of 2.3.7, the g1-equation becomes

dg1
dξ
− (

g
′′
0

g
′
0

)g1 = −g
′′

0 , (2.3.8)

which on integration and using the conditions 2.3.6 gives

g1 = −g
′

0ln{4|g
′
0|] = εξ

1

(1 + εξ)2
ln[

4εξ

(1 + εξ)2
] (2.3.9)

In terms of the original variables N and z 2.3.3, the uniformly valid asymptotic solution

for all z is given by 2.3.5- 2.3.9 as

N(z; ε) = (1 + ez/c)−1 +
1

c2
ez/c(1 + ez/c)−2ln[

4ez/c

(1 + ez/c)2
] +O(

1

c4
), (2.3.10)

c ≥ cmin = 2.

Let us now use the asymptotic solution 2.3.10 to investigate the relationship between the

11



steepness or slope of the wavefront solution and its speed of propagation. Since the gradient

of the wavefront is everywhere negative a measure of the steepness, s say, of the wave is the

magnitude of the maximum of the gradient N ′
(z), that is, the point where N ′′

= 0, namely, the

point of inflexion of the wavefront solution. From 2.3.3 and 2.3.5, that is, where

g
′′

0 (ξ) + εg
′′

1 (ξ) +O(ε2) = 0 (2.3.11)

which, from 2.3.7 and 2.3.9, gives ξ = 0;that is, z = 0. The gradient at z = 0, using

2.3.10, gives

−N ′
(0) = s =

1

4c
+O(

1

c5
) , (2.3.12)

which only holds for c > 2. This results implies that the faster the wave moves, that is

the larger the c, the less steep is the wavefront. The above result can be generalised to single-

species population models where logistic growth is replaced by an appropriate f(u), so that we

get

∂u

∂t
= f(u) +

∂2u

∂x2
(2.3.13)

wheref(u) has only two zeros, say u1 and u2 > u1. If f ′
(u1) > 0 and f ′

(u2) < 0 then by a

similar analysis to the above, wavefront solutions evolve with u going monotonically from u1

to u2 with wavespeeds

c ≥ cmin = 2[f
′
(u1)]

1
2 (2.3.14)
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CHAPTER 3

ANALYSIS OF TUMOR INVASION

3.1 Introduction

The tumor host interface of an invasive cancer is morphologically a traveling wave in which

the tumor edge represents the wave front propagating into and replacing the surrounding nor-

mal tissue. Since observable, untreated cancers propagate into normal tissue, this mathematical

system must also yield solutions in which the tumor state and the normal tissue state are stable

in isolation but the latter is unstable in the presence of tumor and will therefore inevitably be

invaded by tumor. In this chapter, I have attempted to develop a simple mathematical frame-

work which focuses on the certain behavourial aspects of the tumor host interface, namely,

the advance of the tumor tissue into the the surrounding host tissues, and the key biological

parameters controlling this behaviour.

3.2 Methods

If we denote by N(x, t) and T (x, t) normal and tumor cell density, respectively, at time t

and spatial position x, then the existence of a constant speed traveling wave indicates that the

solution of the state equations must be written in the general form

N(x, t) = N(x± ct) , T (x, t) = T (x± ct), (3.2.1)

where c is the wave speed. Such a solution is a constant profile traveling wave moving in the

positive (with −c) or negative (with +c) x direction. The wave boundary is a transition region



from normal tissue to malignant tissue with the tumor front propagating into normal tissue at

speed c.

In a mixture of populations competing for space and substrate, the governing system that

will give rise to a traveling wave solution typically takes the form

∂n

∂t
= f [n] +D

∂2n

∂x2
(3.2.2)

where n is the vector whose components represent the population densities, f is the non-

linear population kinetics function, and D is a diagonal matrix of diffusion coefficients pre-

sumed to be greater than zero. The simplest conceptualization of the tumor-host interface is

that derived from a population ecology picture in which populations of tumor cells and normal

cells compete for the same spatial volume and nutritive substrate and interact with one another

through a variety of potentially complex mechanisms. Each population initially grows accord-

ing to a Malthusian growth law but is limited to some maximum carrying capacity, with the

growth rates and carrying capacities possibly being different for each population.

It is reasonable to assume that a variety of interactions between the cellular populations

have adverse effects on each population and can be included in lumped, phenomenological

competition terms. The simplest and most widely used of these models is of the Lotka-Volterra

type. For simplicity, we write the Lotka-Volterra with one dominant tumor population, T ,

interacting with one dominant native (normal) cell population, N :

∂N

∂t
= rNN(1− N

KN

− bNTT

KN

) +DN
∂2N

∂x2
(3.2.3)

∂T

∂t
= rTT (1−

T

KT

− bTNN

KT

) +DT
∂2T

∂x2
(3.2.4)

where rN and rT are maximum growth rates of normal cells and tumor cells KN and KT

denote the maximal normal and tumor cell densities; bNT and bTN are the lumped competition

14



terms; bTN is a lumped, phenomenological term which includes a variety of host defenses

including the immune response, and bNT is the negative effects of tumor on normal tissue such

as tumor-induced extracellular matrix breakdown and microenvironmental changes. DN and

DT are cellular diffusion (i.e., migration or invasion) coefficients.

This system in equations 3.2.3 and 3.2.4 can exhibit solutions of the form in equation

3.2.1 in which one population can invade the other. The equilibrium fixed poitns for the system

are

(0, 0) , (KN ,0) , (0,KT ) , (
KN − bNTKT

1− bNT bTN
,
KT − bTNKN

1− bNT bTN
)

Linearinzing the system, we get

 dN
dt

dT
dt

 =

 rN − 2rNN
KN
− rN bNTT

KN

−rN bNTN
KN

−rT bTNT
KT

rT − 2rTT
KT
− rT bTNN

KT


 N

T

 (3.2.5)

3.3 Results and Discussion

Specifically, the model yields the following final steady states:

1. N = 0 , T = 0: The Jacobian is given by

A =

 rN 0

0 rT


Given that both rN and rT are maximum growth rates are mentioned earlier and are hence

positive, since the eigenvalues are positive, this trivial solution is an unconditionally

unstable state and hence is biologically irrelevant.

2. N = KN , T = 0: this corresponds to normal, healthy tissue with no tumor cells present.

A =

 −rN −rNbNT

0 rT − rT bTNKN

KT


15



Regardless of the starting point, the system always evolves to this state if both bTNKN/KT >

1and bNTKT/KN < 1. If the starting point is sufficiently close to N = KN , T = 0 (as

would occur in early tumor development), only the former condition need be satisfied.

3. N = 0 , T = KT : this corresponds to complete tumor invasion with total destruction of

adjacent normal tissue.

A =

 rN − rN bNTKT

KN
0

−rT bTN −rT


Regardless of the starting point, the system always evolves to this state if both bTNKN/KT <

1 and bNTKT/KN > 1. If the starting point is sufficiently close to N = 0 , T = KT

(as would occur when tumor treatment is initiated), only the former condition need be

satisfied.

4. N = (KN − bNTKT )/(1 − bNT bTN) , T = (KT − bTNKN)/(1 − bNT bTN): this corre-

sponds to tissue composed of tumor and normal cells, for example, desmoplastic tumor.

A =

 −rN(−2KN−KT−bNTKT+bTNKN+bTN bNTKN

KN (1−bNT bTN )
) −rN bNT (KN−bNTKT )

KN (1−bNT bTN )

−rT bTN (KT−bTNKN )
KT (1−bNT bTN )

−rT (−2KT−KN−bTNKN+bNTKT+bTN bNTKT

KT (1−bNT bTN )
)


The system evolves to this state if both bNTKT/KN < 1 and bTNKN/KT < 1. One

limitation of this model is that if the carrying capacities KN and KT are limited only by

available space, this state of coexistence is biologically unphysicai because it violates the

spatial constraint sum-rule that N/KN + T/KT ≤ 1.

(5.4) is the euqation governing the tumor edge advancing as a propagating wave into normal

tissue and its speed is given by

cT→N ≥ 2

√
rTDT (1−

bTNKN

KT

) (3.3.1)

Furthermore, making the biologically plausible assumption that carrying capacities for nor-
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mal and tumor cells are not substantially different,the inequalities required for state 3 stability

will hold only if bNT is large, and bTN is small, i.e., the presence of tumor has a significantly

adverse effect on the normal cell population but not vice versa. The most obvious contribution

to bNT comes from the fact that tumor cells consume much more resources than do normal

cells. Equation 3.3.1 is in the form of an inequality because the actual velocity is dynami-

cally selected by the system based on the width of the tumor interface at the initial time, i.e.,

T (x,t = 0).

Fully successful tumor therapy requires the system parameters be changed to yield steady

state 2 instead of 3 or 4. This will essentially reverse the traveling wave so that normal tissue

(which in this case becomes the stable steady state) will propagate into tumor (now the un-

stable steady state) causing the latter to completely regress. Assuming that tumor has already

developed as a traveling wave, successful therapy will at minimum, require that

bTNKN

KT

> 1 (3.3.2)

Ensuring the complete eradication of the tumor will require that the state N = KN , T = 0 be

globally stable so that, in addition to 3.3.2, the condition for state 2 global stability must be

met as well

bTNKN

KT

< 1 (3.3.3)

If conditions 3.3.2 and 3.3.3 are met, the normal tissue would recover at a speed given by

cN→T ≥ 2

√
rNDN(1−

bNTKT

KN

) (3.3.4)

In considering successful therapeutic strategies, the above mathematical model of tumor-

host interaction focuses attention on four critical parameters: bTN andKT , the competition term

and carrying capacity of tumor, andbNT and KN , the competition term and carrying capacity

of the normal tissue surrounding the tumor. The model explicitly demonstrates that any ther-
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apy must be viewed in a context that includes measurements of effects on tumor and adjacent

normal cells. Therapeutic strategies, therefore, should include the following:

1. Reduce KT : A clear method for reducing the carrying capacity for the tumor population

is decreasing vascularity which explains the recent interest in anti-angiogenic drugs. Two

caveats, however, must be added. First, if the reduction in angiogenesis also affects

normal tissue, then the therapy may also reduce KN and the inequalities in equation

3.3.2 or 3.3.3 may not be satisfied. Second, if bNT � 1, then a several-fold reduction in

KT may be insufficient to suitably alter the stability of the steady states.

2. Reduce bNT and increase bTN : This demonstrates the need for experimental data that

quantifies the relative contribution of various mechanisms to the lumped competition

term bNT . Similar quantification of components of bTN (e.g., immunological response)

is also required. If we can estimate the value of bNT , both the identification of potential

therapeutic approaches and quantifications of their expected effect on the propagating

wave of tumor invasion can be obtained.

3. Increase KN : This is tumor therapy directed explicitly towards normal cells. The maxi-

mum density of normal cells is ordinarily dependent on cell-cell interactions rather than

substrate limitation. The mathematical model predicts that therapy that decreases con-

tact inhibition in normal cells by increasing KN could reverse the inequality in 3.3.1,

possibly resulting in tumor regression.
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