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ABSTRACT

KEYWORDS: Interference Mitigation, Gaussian Mixture Models, Expectation-

Maximization, Hierarchical clustering, Density based Clustering,

Spectral Clustering, MIMO-OFDM

With universal frequency reuse systems being ubiquitously adapted to allow more users

per unit area, co-channel interference mitigation has emerged as real necessity. The

interference profile and signal to interference ratio impose strong constraints on perfor-

mance. In this thesis, we focus on receiver techniques that are interference aware.

Linear Minimum Mean Square Error (LMMSE) is popularly deployed but is not

effective in scenarios with large interference as the interference plus noise profile is

not Gaussian. Other linear approaches such as the Minimum Bit Error Rate approaches

outperform LMMSE with non-Gaussianity but performance is seen to floor with hetero-

geneous interferers. The interference and noise can be modelled as a Gaussian Mixture

Model (GMM). The algorithm that is used to initialize a GMM requires the number of

components parameter which we can estimate only through clustering approaches.

Clustering or finding groups of points which are ’closer’ to each other may be

achieved through a variety of approaches. Three methods have been explored in this

thesis - Hierarchical clustering algorithms with clustering metrics, density based clus-

tering approaches and Spectral clustering. Alternate less computationally expensive

initializations of the GMM from the clustering are studied.

Finally, the non-linear receiver is extended to the multiple antenna case and differ-

ent methods of combining data from the two antennas or combining the results from

two clustering approaches are seen significantly improving the performance of MIMO-

OFDM systems.
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NOTATION

The following are the notations used in the thesis. Lower case alphabets with normal

font indicate scalars while old indicates vectors. Bold face alphabets in upper case

denote Matrices.

xi ith element of vector x
Xi,j ith row, jth column of matrix X
xᵀ Transpose of the vector
X−1 Inverse of the matrix
|S| Number of elements in set S
∥x∥2 Euclidean 2-norm
ℜ(.) Real part
ℑ(.) Imaginary part
E[.] Expectation operator
In Identity matrix of size n× n
CN (µ, σ2) Circular symmetric Complex Gaussian with mean µ and variance σ(2)
Ci ith cluster
C(i) Cluster containing the ith datapoint
d2(xi, xj) Squared Euclidean distance between ith and jth datapoints
Nϵ(p) Points in the ϵ neighbourhood of point p
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CHAPTER 1

Introduction

There is an ever increasing need in wireless communication standards to fit in more

users per unit area in the system. Hence, emerging technologies deploy universal fre-

quency reuse. As more users demand higher data rates, it is becomes imperative that

multiple links sharing common resources in frequency and time are active simultane-

ously. This leads to the problem of co-channel interference (CCI) and the signal to

interference ratio becomes a more limiting factor in achieving better throughput perfor-

mance or lower Bit Error Rates (BER) than simply the signal to noise ratio. Increasing

transmit power will not reduce the signal to interference and noise ratio (SINR) and

this necessitates the need for better interference mitigation techniques and architec-

tures. These techniques have the potential to significantly improve average throughput

at various levels of the entire system.

1.1 The System Model

We model a scenario where there are several single antenna transmitters T1, . . . , Tn

where n is not known and a receiver comprising of l antennas R1, . . . , Rl. This is shown

in Fig. 1.1. T1 transmits the desired message and the other transmitters are interferers

with an unknown modulation alphabet.

The communication system employed is a 10MHz Orthogonal Frequency Division

Multiplexing (OFDM) multi-carrier system (Cho et al., 2010). The guard interval is

adequate to eliminate out-of-band-radiation. The cyclic prefix is modelled to be larger

than the channel delay spread mitigating intersymbol interference (ISI). There are 1024

sub-carriers in the OFDM system out of which 600 are usable, the rest comprising the

guard interval. A single Physical Resource Block (PRB) is 12 sub-carriers wide in fre-

quency and 14 symbols long in time. Doppler effect is not included in the model. Thus,

a scenario where the channel is static in time over several resource blocks is modelled.

If Xi,l[k], Yl[k], Hi,l[k] and Zl[k] denote the kth subcarrier frequency components of the



Figure 1.1: The system model - one desired transmitter T1, other interferers T2, . . . , Tn

transmitting to one receiver with l antennas (Vaishnavi, 2012).

lth transmitted symbol , received symbol of the ith user, channel frequency response

and noise in the frequency domain,

Yl[k] = H1,l[k]X1,l[k] +
n∑

i=2

Hi,l[k]X2,l[k] + Zl[k], (1.1)

= H1,l[k]X1,l[k] + Z ′
l [k]. (1.2)

Here the noise is modelled to be Gaussian circular noise with zero mean. Z ′
l [k] is the

net interference plus noise.

The channel is modelled based on the Power Delay Profiles (PDP) of the ITU-

R Pedestrian outdoor channel A (Ped A), Pedestrian outdoor channel B (Ped B) and

vehicular test environment channel A (Veh A) (Jain, 2007). Fig. 1.2 shows a typical

channel realization in all three models. The transmitters use a single PRB or a few

sub-carriers.

1.2 Interference Mitigation Techniques

CCI interference mitigation techniques are mainly of two types depending on whether

the interference cancellation takes place at the transmitter or receiver (Vaishnavi, 2012).

Although this thesis is concerned with receiver based techniques, a short introduction

to transmitter based techniques is given.

2



Figure 1.2: Channels modelled - Ped A, Ped B and Veh A.
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1.2.1 Transmitter Techniques

Beamforming or precoding are the signal processes involved in interference mitiga-

tion at the transmitter (Tse and Viswanath, 2005). The transmit signals are aligned

and added in phase to maximize received SNR by allotting more power to the transmit

antenna with better gain. Maximal Ratio Transmission and Equal Gain Transmission

are such techniques. In Multiple Input Multiple Output (MIMO) systems, interference

alignment can use the spacial dimension such that users coordinate and have the inter-

ference signal lie in a reduced dimensional sub-space (Cadambe and Jafar, 2008). Other

techniques involve using the position of the users for Dynamic Channel Allocation (Cho

et al., 2010). These techniques require the complete knowledge of the Channel State

Information (CSI) at the transmitter which presents a large overhead in transmission of

these values from the receiver to the transmitter for beamforming.

1.2.2 Receiver Techniques

The traditional techniques used to detect the signal in the presence of interference are

now described:

1. Maximal Ratio Combining (MRC): Diversity combining technique in which
the signal at the receive antenna is weighted proportional to the amplitude of
the desired signal. This ensures that the SNR at the receiver is maximum but is
ineffective with interference. It is not an interference cancellation technique.

2. Decorrelation receiver: With l antennae in this method, l − 1 interferers can be
cancelled. The signal is projected onto the subspace perpendicular to the inter-
ferer’s channels. This method leads to loss in SNR and is optimal only at high
SNR.

3. Linear Minimum Mean Square Error receiver (LMMSE) : The signal at the
receive antenna are weighted such that the Mean Square Error (MSE) between
the actual symbol and the estimate is minimized. Effectively, MRC is done when
the desired signal is of low SNR and zero-forcing or decorrelation reception done
at high SNR.

These methods require complete CSI from all interferers which is not feasible. Min-

imizing MSE minimizes BER only when the interference plus noise signal space is

Gaussian which is not the case with strong interferers. Vaishnavi (2012) showed that

Linear Minimum BER (LMBER) methods significantly outperforms LMMSE in the

4



presence of non-Gaussian noise. LMBER involves estimating the probability distribu-

tion of the interference plus noise using Kernel Density Estimates and choosing the

beamforming weights such that the BER is minimized. It was shown that LMBER

techniques do not work as well with heterogeneous interferers.

1.3 Gaussian Mixture Models and Expectation Maxi-

mization

1.3.1 Introduction

In this section we show that the conditional pdf of the interference and noise is not

Gaussian and may be modelled by a mixture of Gaussians. We then introduce the

Maximum Likelihood non-linear detector that maximizes the probability of a correct

decision. When the conditional pdf is not Gaussian, the minimum distance measure

does not translate to minimum error rate. The expectation maximization and the k-

means algorithms are then introduced and the problems and parameters required by the

EM algorithm are explained.

1.3.2 Gaussian Mixture Models

In this thesis, we mainly use the conditional pdf of the interference and noise. This data

can be obtained from pilot signals where the desired signal is known after estimating

the CSI of the desired user. It may also be obtained in a bootstrapping procedure. i.e.

by estimating the desired signal using methods described earlier such as LMMSE to

generate the pdf of the interference and noise.

Consider a system with one receive antenna and an interferer. Let the parameter

vector θ = [h1, h2, χ1, χ2] be known to the receiver where h1 and h2 are the channels

of the user and interferer and χ1 and χ2 be the modulating alphabet of the user and

interferer.

y = h1x1 + h2x2 + n,

= h1x1 + ñ.

5



where n is the noise and ñ is the interference and noise. By jointly detecting x1 and x2,

we get,

(x̂1, x̂2) = argmax
χ1×χ2

py/θ(y/θ).

The conditional pdf py/θ(y/θ) is given by,

py/θ(y/θ) =
1

πσ2
n

exp


−
(
y −

2∑
i=1

hixi

)2

σ2
n

 .

We can now obtain the estimate for x1 by,

x̂1 = argmax
x1∈χ1

∑
x2∈χ2

py/θ(y/θ)px2(x2). (1.3)

The conditional pdf of the interference and noise is seen to be a Gaussian Mixture

Model by convolving the pn(n) and px2(x2) as,

p(ñ) =
1

|χ2|πσ2
n

∑
x2∈χ2

exp


−
(
y −

2∑
i=1

hixi

)2

σ2
n

 .

Let θ1 = [h1, χ1] be the parameters of the desired user. Clearly py/θ1(y/θ1) = p(ñ).

The estimate of x1 by the Maximum-Likelihood rule is given by,

x̂1 = argmax
x1∈χ1

py/θ1(y/θ1)

= argmax
x1∈χ1

∑
x2∈χ2

py/θ(y/θ)px2(x2). (1.4)

This can be extended to the case of multiple interferers. Thus the pdf of the interference

and noise is a GMM. ML detection on GMM is equivalent to performing joint detection

given that we know the parameters as is evident from equations (1.3) and (1.4).
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1.3.3 Expectation Maximization Algorithm

The EM algorithm is an iterative procedure for finding ML (or maximum a posteri-

ori) estimates of parameters in models. The EM algorithm can be used to estimate the

parameters (mean, variance and fraction) of the individual components of the GMM

(Bishop, 2006). The EM algorithm alternates between performing an expectation (E)

step which computes the expectation of the log-likelihood evaluated with the current pa-

rameters and the maximization step (M) which recomputes the parameters to maximize

the log-likelihood.

The GMM is given by:

p(x) =
k∑

i=1

ωiCN (x|µi,Ri),

where ωi, µi and Ri are the probabilities of component i and its mean and variance and

k is the number of clusters.

The steps of the EM algorithm are:

1. E-Step: Let γn,i represent the posterior probability that a point xn came from
component i. It also represent the the responsibility of component k is explaining
the data point.

γn,i =
ωiCN (xn|µi,Ri)∑
j

ωjCN (xn|µj,Rj)
.

2. M-Step: The parameters of the GMM model are re-evaluated from maximizing
the log-likelihood which is not shown here.

Ni =
∑
n

γn,i

µ∗
i =

1

Ni

∑
n

γn,ixn

R∗
i =

1

Ni

∑
n

γn,i(xn − µ∗
i )

ᵀ(xn − µ∗
i )

ωi =
Ni

N
,

where N is the total number of points.

We stop iterating if the log-likelihood ln p(X|µ,R, ω) is within a tolerance limit.
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K-means algorithm

The EM algorithm is slow to converge and converges to local maxima. To speed up

computation, it is often preceded by the k-means algorithm, an EM algorithm that per-

forms clustering. The E step in the k-means algorithm assigns points to clusters such

that the intra-cluster Sum of Squares Error (SSE) is minimized. This just translates to

assigning it to the mean closest to it. The M step is the re-calculation of means. Iter-

ations are stopped when the SSE is within a tolerance limit. The SSE is explained in

more detail in chapter 2. The k-means algorithm itself can be speeded up with proper

initializations of the means. The means may be randomly chosen amongst the points or

by the k-means++ algorithm (Arthur and Vassilvitskii, 2007). In this algorithm:

1. A seed is first chosen at random and the distances of the other points from it are
computed.

2. The next point is chosen from a distribution that is proportional to this distance.

3. These steps are now repeated till k seeds are obtained.

Thus, the kmeans++ algorithm attempts to seed the kmeans algorithm with points

that are more distant from each other.

Both the kmeans algorithm and EM algorithm are very sensitive to initialized pa-

rameters.

Parameter initialization

The EM algorithm that fits a GMM on the data requires the number of components k.

In cases where the interference channels are low, k = 1 is an optimal value. However

if the interferers are transmitting larger modulation alphabets (eg. 16 QAM), we need

to extract cluster-order from the data to determine the number of components. In this

thesis we explore methods of detecting the number of clusters in a data set. Several of

these methods also provide clustering and the initialization of the EM algorithm can be

done with parameters obtained from this clustering. Fig. 1.3 shows the clustering with

k = 16 done on a data set of 500 points from 3 QPSK interferers of magnitude 0db,

-3dB and -6dB on the Ped A channel with an SNR of 10. This is henceforth referred to

as the Ped A dataset. Accompanying the clustering is the pdf obtained by running the

EM algorithm initialized by this run of k-means.
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Figure 1.3: k-means clustering and EM to fit a GMM run on the Ped A dataset with
k = 16.

1.4 Scope of the Thesis

LMMSE based interference mitigation techniques assume that the pdf of the interfer-

ence plus noise is Gaussian which is usually not the case. There is interest in develop-

ing more effective receivers. We have introduced the non-linear Maximum Likelihood

(ML) which uses the Gaussian Mixture Model (GMM) to model the interference and

noise. The Expectation Maximization (EM) algorithm which is used to fit the GMM

on the data is explored and shortcomings have been listed. The EM algorithm requires

a parameter estimating the number of Gaussian mixtures. Chapters 2-4 look at tech-

niques to estimate the cluster-order and also initialize the EM algorithm with the means

and variances of individual clustering to hasten convergence. Chapter 2 looks at Hierar-

chical clustering and quality of clustering metrics. Chapter 3 introduces Density based

clustering techniques - DBSCAN and OPTICS while chapter 4 explores an emerging

method of clustering which is elegant and easy to implement, the Spectral Clustering

algorithms. Chapter 5 considers results of using the preceding algorithms in the de-

sign of a single receive antenna and also introduces methods of extending the clustering

algorithm methods to the case of multiple receive antennas.
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CHAPTER 2

Clustering Metrics and Hierarchical Clustering

2.1 Introduction

Determining the PDF of the the signal space can be done as we have seen through

the EM algorithm that fits a GMM on the data. However, the algorithm like other

approaches to clustering like Hierarchical clustering and k-means require an estimate

of the number of clusters in the data. One approach is the OPTICS algorithm or using

the Spectral properties of the data which are explored in later sections. In this chapter,

we focus on clustering metrics and methods which select the number of clusters based

on the quality of clustering.

2.2 Clustering Metrics

Clustering metrics are measures of ’quality’ or goodness of fit of a partition of clus-

ters. They can be used to validate the clustering. Measuring the appropriateness of an

instance of clustering is very dependent on the metrics chosen. In this section, some

commonly used metrics are presented, analysed and their performance shown. The

clustering metrics can therefore be used to choose the number of clusters in the data.

These measures of cluster validity are classified into two main types -

• External index - These measures compare how well cluster labels match exter-
nally supplied ones. These indices are not useful in the problem at hand because
we do not have externally classified labels.

• Internal index - They are used to measure goodness of fit without labels being
externally provided. The metrics presented in this chapter fall under this category.
They can be further divided into global and local methods. The former evaluating
the measure over the entire data set and finding the optimum with respect to the
number of clusters and the latter considering pairs of clusters and evaluating need
for amalgamation (Gordon, 1999).



2.2.1 Hartigan Index

Most clustering metrics compute and contrast Cluster Cohesion with Cluster Separa-

tion. Cluster cohesion is a measure of how similar or close objects in a particular cluster

are while cluster separation measures how far apart the clusters are.

A proposed within cluster dissimilarity metric is Sum of Squares Error (SSE) de-

fined as the sum of distance square of all points from the centroid of its cluster,

W (k) =
∑

j=1...k

∑
i∈Cj

d2(xi, x̄j), (2.1)

where k is the number of clusters. This metric results in a low value when the clustering

is good, i.e. for an appropriate number of clusters. However, it is monotonically non-

increasing as k increases by construction. Hartigan (1975) proposed a correction factor

which considers relative improvement in the SSE metric weighted by a factor depending

on the number of clusters as follows -

H(k) = γ(k)
W (k)−W (k + 1)

W (k + 1)
, (2.2)

γ(k) = (n− k − 1)−1,

where γ(k) is the Hartigan correction factor and n is the total number of points. Harti-

gan proposed that the number of clusters be increased if the measure was greater than

10 and hence the ideal number of clusters was the smallest k such that

H(k) ≤ 10. (2.3)

2.2.2 Silhouette Index

The Silhouette statistic as defined by Kaufman and Rousseeuw (1990) can use any

dissimilarity measure like the euclidean distance used in SSE (2.1). The statistic is

defined as follows
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ai =
1

|C(i)|
∑

j∈C(i)

d2(xj, xi),

bi = min
j, Cj ̸=C(i)

1

|Cj|
∑
l∈Cj

d2(xl, xi),

Sili =
bi − ai

max{ai, bi}
, (2.4)

Sil(k) =
1

n

∑
i=1...n

Sili. (2.5)

Here ai represents the cluster cohesion of a point, bi is a measure of cluster separa-

tion - it is the least dissimilarity measure between a point and points in another cluster.

Sili represents the statistic for each point. It is normalized and a maximum value of

1 represents good clustering and a minimum value of −1 indicates that the point may

be better placed in another cluster. Sil(k) represents the average silhouette statistic of

the data set. The optimal number of clusters k is chosen if Sil(k) is maximized, this

happens if the data is tightly grouped.

2.2.3 Modularity

Correlation is a metric which works out the correlation between two matrices - the

proximity or similarity matrix S and an ’Incidence’ matrix A. Both matrices have a

row and column for every data point. Both S and A are symmetric matrices. There are

a variety of similarity measures, one being the Gaussian kernel as defined below,

Si,j =

e−σd2(xi,xj) i ̸= j,

0 i = j.

(2.6)

where σ is a parameter that weights the distance measure - a larger σ would imply that

only points which are very close by are similar. Si,j can be regarded as a link between

data point (node) i and j. The incidence matrix A have elements defined as,

Ai,j =

1 C(i) = C(j), i ̸= j

0 C(i) ̸= C(j) ∨ i = j.

12



A high correlation between these two matrices is a crude indicator of how well the

clustering is. Another measure that uses matrix S is the Modularity measure which

compares the clustering to a random network or distribution of data points. The degree

of a data point or node ki is defined as the sum of link weights from node i to all other

nodes or,

ki =
∑

j=1...n

Si,j, (2.7)

ln =
∑

i=1...n

ki

= 2m,

where ln is the sum of degrees of all points and m is the average degree of a node. If we

were to generate a random network of the same degree distribution as our dataset, the

expected link-weight between node i and j would be kikj
2m

. Modularity Q is a measure

of how much the link weight between nodes in a community is more than the expected

link weight in a random network with the same degree distribution and is defined as,

Q =
1

2m

∑
i,j

[
Si,j −

ki × kj
2m

]
δ (C(i), C(j)) . (2.8)

δ (C(i), C(j)) =
∑
r

Ai,rAj,r,

Bi,j = Si,j −
ki × kj
2m

.

Hence,

Q =
1

2m

∑
i,j

∑
r

Bi,jAi,rAj,r =
1

2m
Tr(AᵀBA). (2.9)

The higher the modularity, the more pronounced the community structure is in the

dataset. Clustering may also be done through maximization of Q which involves a pro-

cess that can be written in terms of its eigenspectrum similar to the Spectral Clustering

approach described in chapter 4 (Newman, 2006). The modularity measure suffers from

a bias which can fail to resolve well defined small clusters is the network is large (Fortu-

13



Figure 2.1: Normalized modularity measure on a dataset obtained from the Ped A chan-
nel. The parameter σ is seen to scale the value but not the choice of the right
cluster order. 16 means Hierarchical clustering performed.

nato and Barthélemy, 2007). Fig. 2.1 shows the effect of the varying the σ parameter in

the Proximity matrix S. The normalized modularity appears to be scaled but the choice

of the best cluster number is the same in every case. Hence there is a wide choice of

parameter σ. This simulation was run on the Ped A dataset obtained from the Ped A

channel with 3 QPSK interferers at an SNR of 10.

2.2.4 Gap Statistic

Another clustering metric approach which uses a reference random scenario (or net-

work) is the Gap statistic proposed by Tibshirani et al. (2001). It also makes use of

the SSE metric in (2.1) and compares it to a reference random distribution. b Monte

Carlo samples X1, . . . , Xb with n points each are drawn from the reference uniform

distribution over the signal space. We can also perform Singular Value Decomposition

on the data set X to determine the principal components and generate the Monte Carlo

samples in this rotated frame.

We then perform clustering as was done with the dataset X and compute expected

value E [log (W ∗(k))] by taking the average of the quality metrics of each sample. Ad-

ditionally the standard deviation of the measure is also calculated. The Gap statistic is
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defined as,

Gap(k) =
1

b

b∑
log(W ∗

i (k))
i=1

− log(W (k)). (2.10)

The ideal number of clusters k̂ is computed as the smallest k such that,

Gap(k) ≥ Gap(k + 1)− sdk+1, (2.11)

where sdk+1 is the computed standard deviation of the quality measure among all sam-

ples. This measure is more computationally intensive than the earlier metrics because

multiple realizations of the reference uniform distribution are required for reliable re-

sults with Tibshirani et al. (2001) using b = 50 in simulations.

2.2.5 Other approaches

There are several other cluster metric approaches which use sum of squared distances

between clusters or within a cluster. A notable one is the metric proposed by Calinski

and Harabasz (1974) :

CH(k) =
B(k)

k − 1
× n− k

W (k)
,

where W (k) is defined as in (Hartigan Index) and B(k) is the between cluster sum of

squares.

Another approach is the internal use of external metrics. Ben-Hur et al. (2002)

proposes a stability approach that clusters the dataset X and a modified dataset X∗ with

a fraction of the points deleted. The similarities between the two resulting methods is

compared to give a measure of the quality of clustering.

2.3 Hierarchical Clustering

Hierarchical clustering is a connectivity based clustering approach. These algorithms

seek to group objects that are closer based on a distance measure. At every step of these
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algorithms, different clusters form which can be represented on a dendrogram shown

in Fig. 2.2. Algorithms mainly differ on the linkage criterion used and the metric for

distance.

Hierarchical algorithms are of two general types -

1. Agglomerative - Each observation starts in a different cluster and at each step
pairs of clusters merge based on a greedy linkage criterion.

2. Divisive - All data points are initially formed into one cluster and at every step, re-
cursive splits are performed. An exhaustive search in divisive clustering is O(2n)
which makes this method less favoured in our model.

Various metrics for distance measure include the euclidean distance, squared eu-

clidean distance, Manhattan distance which is the absolute difference between data

points, Mahanolobis distance which weights various dimensions, Hamming distance

or cosine similarity. The data points for our usage are only in two dimensions and

euclidean distance is an appropriate metric.

Linkage criterion determines the distance between a pair of clusters as a function of

pairwise distances between observations. Commonly used criterion include:

1. Complete Linkage clustering- The distance between two clusters is given by,

d(Ci, Cj) = max {d(xa, xb) : a ∈ Ci, b ∈ Cj} . (2.12)

An efficient implementation in O(n2) steps is presented in Defays (1977). Everitt
et al. (2009) showed that complete linkage clustering tends to find compact clus-
ters of nearly equal diameters.

2. Single Linkage clustering- The distance between two clusters is given by,

d(Ci, Cj) = min {d(xa, xb) : a ∈ Ci, b ∈ Cj} .

Single linkage suffers from the problem of chaining where clusters may be merged
together due to single elements in the two clusters being close to one another.

3. More computationally complex and general linkage criterion are described such
as centroid distance between clusters or minimum energy clustering which cannot
be done better than O(n3).

Dasgupta and Long (2005) have shown that it is possible to construct hierarchi-

cal clustering with a performance guarantee that the maximum radius of the resulting

clusters is at most eight times that of the optimal k clustering.
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Figure 2.2: Dendrogram from performing agglomerative complete-link hierarchical
clustering on the dataset from the Ped A channel.

Hierarchical clustering algorithm for cluster order estimation

The essential idea is that we insert a clustering metric (order O(n2)) in every stage of

the agglomerative complete link hierarchical algorithm. When the pre-set minimum

number of clusters is reached, the clustering id corresponding to the highest quality

measure is returned. The steps are as highlighted in Algorithm 1. This algorithm is of

order O(n3).

Algorithm 1 Hierarchical clustering algorithm for model order estimation.
n× n distance matrix D with Di,j = d(xi, xj) is given
ClusterID = 1, 2, . . . n assigned.
Loop till number of clusters = 1

1. Find least dissimilar pair of clusters a, b such that d(a, b) = min
i,j

d(i, j).

2. Update ClusterID such that the id of all points in b = a.

3. Update matrix D by deleting rows and columns corresponding to a and b
with distance of other clusters from the merged cluster given as d (k, (a, b)) =
max [d(k, a), d(k, b)] .

4. Calculate the quality of the cluster and if it is the best till now, ClusterIdOptimal
= ClusterId.
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Figure 2.3: Silhouette statistic on kmeans clustered dataset generated from Ped A chan-
nel, 3 QPSK inteferers (0, -3, -6 dB) with SNR 10

2.4 Results and discussion

2.4.1 What The Metrics Measure

Fig. 2.3 shows the silhouette statistic applied to all 16 clusters that a kmeans algorithm

has recognized. Although, the algorithm has not performed clustering very well (as can

be evidenced in the bottom left portion where two distinct clusters have been merged

into one), it receives a high silhouette score as kmeans seeks to minimize SSE, which

is what the statistic measures. This may not necessarily translate into a better quality

clustering. The performance evaluation measures are very sensitive to what we seek to

measure and are not entirely indicative of the quality of clustering. These measures are

suitable for only a particular choice of data. If we anticipate the presence of non-convex

shaped clusters or situations where one cluster envelops another, all the clustering in-

dices will give a poor score which is not truly representative of the scenario. Clustering

cohesion vs. separation is not the best comparison approach for all cases. Fig. 2.4

contrasts silhouette performance from the same dataset on kmeans clustering as well

as Hierarchical clustering. Although, silhouette scores for kmeans are higher and im-

ply that clustering is better, kmeans is unable to identify the ideal number of clusters

as 4 appears to be the best solution. Although, Hierarchical clustering receives lower

silhouette scores, 16 is correctly identified as the number of clusters.
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Figure 2.4: Silhouette statistic on kmeans and Hierarchical algorithms. Although, the
latter gets a lower evaluation, the right number of clusters is properly eval-
uated as 16 unlike kmeans.

2.4.2 Comparison of the Clustering Metrics

The Hierarchical algorithm for model order estimation was run on typical datasets that

arise from our channel. The first as described in the preceding section is a dataset ob-

tained from 3 QPSK interferers of 0, -3 and -6 dB power and an SNR of 10. The other

is obtained from 2 QPSK interferers (0 and -6 dB) on the Ped B channel with an SNR

of 12. It can be seen from Fig. 2.5 and 2.6 that the Silhouette and the Gap statistic out-

perform Modularity and Hartigan index. The Hartigan index results in very poor results

from the proposed cluster order heuristic mentioned in (2.3). The knee of the graph

or the portion of the graph where the Hartigan index decreases at a much lower rate

is the optimal clustering order and it is observed to match the true order in both cases

but automated order extraction is a challenge. The Gap statistic while yielding similar

results as the Silhouette statistic is much more memory and time intensive as it relies

on multiple realizations from a reference distribution and hence, we use the Silhouette

statistic as a less intensive metric in the Hierarchical cluster order extraction algorithm.

Table 2.1 lists what the heuristics from the metrics propose as the cluster order. Also,

from Fig. 2.5, we see that the Hierarchical clustering algorithm has identified the clus-

ter means more similarly to what we observe and expect than the kmeans model seen in

Fig. 2.3.
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Figure 2.5: Comparing the cluster validation metrics on the dataset from the Ped A
channel.

Figure 2.6: Comparing the cluster validation metrics on the dataset from the Ped B
channel

Clustering Metric Ped A channel Fig. 2.4 Ped B channel Fig. 2.5
Hartigan Index 16* 4*

Silhouette 16 4
Modularity 5 4

Gap Statistic 16 4

Table 2.1: Comparison of the model order estimated by using various clustering met-
rics. Hartigan index value is observed and not as predicted by the heuristic
in (2.3).
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Figure 2.7: Hierarchical clustering algorithm correctly estimating model order and clus-
tering configuration of a dataset from Ped A channel.

2.4.3 The Hierarchical Model Extraction Algorithm

Fig. 2.6 shows the algorithm performing on a more artificial dataset of a single 64

QAM interferer with an SNR of 22. The algorithm with the silhouette statistic built-in

has chosen 64 correctly as the cluster order.
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CHAPTER 3

Density Based Clustering

3.1 Introduction

We have in the preceding chapters encountered connectivity models, centroid models

and distribution models of clustering. In this chapter, we explore density based clus-

tering approaches OPTICS and DBSCAN for estimating cluster model order and for

modelling the PDF of the interference and noise in the signal space.

Density based clustering models use a ’density based notion’ of a cluster and are

capable of detecting clusters of arbitrary shape which none of the earlier clustering

techniques are capable of. The density-notion of clustering implies that the density

(Number of points in a given radius) of a point in a cluster is more than a certain thresh-

old.

Algorithms which perform density based clustering are introduced in the subsequent

section followed by a results and discussion section.

3.2 DBSCAN

Ester et al. (1996) presented DBSCAN and formalized the notion of density based clus-

ters and noise.

3.2.1 Definitions

An ϵ neighbourhood of a point p, Nϵ(p) is defined as,

Nϵ(p) = {q ∈ D | d(p, q) < ϵ} , (3.1)

where d(p, q) can be any distance metric between the points, euclidean distance is cho-

sen in our system. A core point is one in which |Nϵ(p)| > MinPts, with MinPts



being the minimum number of points for such a classification. ϵ and MinPts are the

parameters fed to the algorithm. A core point p is directly density-reachable from point

q if the latter is a core point and p ∈ Nϵ(q). A point p is density-reachable from point q

if there is a sequence of points p = p1, p2, . . . , pn = q such that pi is directly density

reachable from pi+1. Points p and q are density-connected if there exists point o such

that p and q are density-reachable from point o.

A cluster C is defined on database D as a non-empty subset of D such that:

1. ∀p, q if q ∈ C and p is density-reachable from q, then q ∈ C. This is the maxi-
mality condition

2. All points in a cluster are pairwise density connected. This is the connectivity
condition.

Noise points are those points which have not been classified into a cluster. Clearly,

every cluster has to have at least MinPts points as there needs to be a core point for the

members to be density-connected. Also, every point in the cluster is density-reachable

from a core point in the cluster.

3.2.2 Algorithm

DBSCAN starts with an arbitrary point p and finds Nϵ(p). If it is a core point, it is

assigned to a new cluster and all the density-reachable points from p are found and

added to the cluster. If p is not a core point, it may be a border point in the cluster or

a noise point and another arbitrary point is chosen and the procedure repeated. This is

detailed in algorithm 2.

3.2.3 Comments

The clustering is very sensitive to parameters ϵ and MinPts. In our system, ϵ can be a

function of the noise variance as each cluster can be regarded as a Gaussian PDF with

variance as the noise variance. In the subsequent section, a method to estimate ϵ from

the reachability plot is presented. As we have 500 points per dataset and do not expect

the number of clusters in most cases to exceed 30-50, MinPts of 10 can be chosen. The

algorithm presents the cluster order but requires two difficult to establish parameters.
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Algorithm 2 DBSCAN algorithm
Loop p through all unvisited points in database D

1. if |Nϵ(p)| > MinPts, mark point as visited and assign to new cluster. Start
Expand Cluster routine passing Nϵ(p) detailed below.

2. Else mark as noise and continue

Expand Cluster:
List= Nϵ(p)
Loop q through unvisited points in List

1. If q is a core point, add Nϵ(q) to List. Mark as visited and assign to C(p).

2. Else q is a border point. Mark as visited and assign to C(p).

The parameters are also global parameters for all clusters and hence clusters of varying

densities cannot be detected. A low MinPts value has the same chaining problem

of single-linkage Hierarchical clustering introduced in the previous chapter. A high

MinPts value will require a higher ϵ value else more points will be categorized as

noise but larger ϵ values limit the resolution of the clustering. Fig. 3.1 shows the effect

of the MinPts parameter with ϵ chosen such that the maximum fraction of noise points

is the same. The clustering resulting from lower MinPts value has more clusters of

smaller size which would otherwise be categorized as noise.

The complexity of the DBSCAN algorithm is limited mainly by the routine to find

the ϵ neighbourhood of a point. Without indexing, it takes place in O(n) steps. Since

every point is scanned only once for its neighbourhood, the algorithm runs at O(n2) and

can run at O(n log n) if there is an indexing structure for the neighbourhood query.

Another advantage of DBSCAN is that the clustering is relatively inert to the order

in which points are selected. Two border points in adjoining clusters may get swapped

if points are evaluated in a different order. This can be seen in Fig. 3.2.

3.3 OPTICS

Ankerst et al. (1999) presented the OPTICS algorithm as an extension to the DBSCAN

algorithm which had two main failings - estimation of the ϵ parameter and detection of

clusters of varying densities.

The OPTICS algorithm unlike the DBSCAN algorithm is not a clustering algorithm

24



Figure 3.1: Effect of parameter MinPts on DBSCAN. Ped A dataset is used. The ϵ
value used is such that the maximum fraction of noise points is 15%.

Figure 3.2: Effect of order of points on DBSCAN algorithms. In the case on the right,
after a cluster was chosen, the next point was not chosen randomly but a
point near another cluster centroid that was externally supplied.
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in the sense that it does not assign cluster labels to datapoints but the clustering can be

easily extracted from the reachability plot which the algorithm generates.

3.3.1 Definitions

The OPTICS algorithm also requires two parameters : ϵ, which is the maximum radius

to consider and MinPts, the minimum number of points that can form a cluster. The

core-distance of a point is defined only for points which have more than MinPts points

in its ϵ neighbourhood. For such points, it is the distance to the MinPts-th closest point.

Reachability distance of a point p from q is defined only if q is a core point with

respect to ϵ and MinPts. It is the maximum of the distance from point p to q and the

core distance of q. It cannot be smaller than the core distance of q because it would then

imply that q is not a core point.

For a given value of MinPts, and ϵ1 < ϵ2, DBSCAN produces clusters in the first

case which are completely contained in the second case. OPTICS extends this idea to

any ϵ∗ < ϵ, the generating distance. We can extract any DBSCAN based clustering pro-

vided the points are correctly ordered. Or the points that are density-reachable for the

lowest ϵ∗ values are processed first while expanding the cluster. The OPTICS algorithm

provides this order.

3.3.2 Algorithm

The OPTICS algorithm places those objects which are density-reachable for the small-

est values of ϵ∗ such that they are processed first after a core point is visited. The

algorithm chooses an unexplored point and if it is a core point with respect to ϵ, all

density-reachable points are explored. Those with the lowest reachability-distance are

placed in order first. This is described in more detail in algorithm 3.

3.3.3 Extracting Clusters

DBSCAN clusters of MinPts and any ϵ∗ < ϵ can be easily obtained from the reachability-

plot. The reachability plot is the plot of reachability-distances of the points in the or-
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Algorithm 3 OPTICS algorithm
Loop p over all unvisited points in database D

1. If |Nϵ(p)| > MinPts, add p is written in the ordered file, mark as visited, core-
distance is calculated and reachability-distance is left undefined. Expand Cluster
routine is called.

2. Else, continue and choose another point p

Expand Cluster:
List= Nϵ(p)
Reachability distance of d ∈ Nϵ(p) calculated.
Loop q through unvisited points in List with lowest reachability-distance

1. If q is a core point, its core distance is calculated. Nϵ(q) is added to list and
reachability distance of these neighbouring points are calculated and updated.

2. q is marked as visited and added to the ordered file.

dered file. We scan through the points in this order. If the reachability distance of the

point is undefined or more than ϵ∗, and the core-distance is less than ϵ∗, it is a core

point and added to a new cluster. If the core distance is more, it implies that it is a

noise point. Points whose reachability distances are less than ϵ∗ are added to the cluster.

As mentioned in the preceding section, the reachability distances of the points offers

a heuristic to estimating ϵ for DBSCAN. If we choose an ϵ value that is the 85 per-

centile value of the reachability distance, not more than 15% of the datapoints will be

classified as noise. This method of cluster extraction suffers from the same problem as

DBSCAN - being unable to extract clusters of different densities. Fig. 3.3 displays the

reachability-plot from the Ped A dataset. The red line indicates the ϵ value that can be

used in DBSCAN as described above. The valleys in the reachability-plot indicate that

these points belong to one cluster. These valleys typically start with a steep downward

region followed by points with low reachability points and end with a steep upward

region which is indicative of the next cluster.

A more sophisticated approach to automated cluster extraction from the reachability

plot is to recognize spikes or steep regions as they correspond to core points of new

clusters. A ξ-steep upward point is one whose reachability distance is ξ% lower than its

successor. The ξ-steep downward point is similarly defined. A ξ-steep region I = [s, e]

is defined when the following hold:

1. s, e are ξ-steep upward points

2. The reachability-distances of points are non-decreasing from s to e.
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3. I does not contain more than MinPts consecutive non-steep points. Else, this
region could be a separate cluster and should not be part of the steep region.

4. I is the maximal such interval.

Conceptually, a cluster starts at the last point with a high reachability value and

ends at the last point with a low reachability value. Using the notion of steep regions, a

ξ-cluster C = [s, e] can be defined as follows:

1. There exists a down-steep region containing s and an upward steep region con-
taining e.

2. e− s ≥ MinPts to satisfy the minimum number of points in a cluster constraint.

3. Reachability value of all points between the steep regions should be ξ% lower
than the starting point of the downward steep region and the last point of the
upward steep region.

4. If the terminal points of the steep regions are more than ξ% away from one an-
other, a point in the steep region with the higher terminal point is chosen to be the
start or end of the cluster as the case may be.

Algorithm 4 solves the problem of extracting clusters by recognizing steep regions.

Algorithm 4 Extracting clusters from the reachability plot
Scan index through points in the ordered file

1. If a steep downward region starts at index, add to list of steep downward regions
L. Update index to last point in the steep region

2. If a steep upward slope starts at index, then:
(a) For every downward steep region D in list L, verify if the intervening points

match the cluster requirements. If it does, then add points to a new cluster
after finding the start and end points.

(b) Update index to the last point in the steep region

3.3.4 Comments

The OPTICS algorithm is of the same complexity as the DBSCAN algorithm and can

run in O(n log n) steps if neighbourhood queries are indexed and O(n2) otherwise. The

cluster extraction algorithm performs a single scan through all the datapoints in the

order as given by the OPTICS algorithm.

The algorithm is not as sensitive as DBSCAN to parameters ϵ and MinPts. For

lower values of MinPts, the reachability plot is seen to be more jittery but the basic
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Figure 3.3: Reachability Plot from the Ped A dataset. The red line indicates the ϵ value
that is used in DBSCAN that results in less than 15% of the points being
classified as noise. The valleys are points in one cluster.

clustering structure can still be ascertained. ϵ should be chosen such that most points

are reachable from any point p. An ϵ value which is chosen thus will place most points

in one cluster and information of all the clustering levels can be extracted from it. This

can be seen in Fig. 3.4. Alternatively, the expected MinPts-th neighbour distance

when datapoints are randomly distributed can be used as a heuristic for ϵ. A low value

of ϵ does not allow for high reachability values and the reachability plot looks cut off.

A wide range of parameter values are empirically seen to offer the same results. As

the ξ parameter in the cluster extraction algorithm decreases, the number of clusters

detected is seen to increase. ξ = 1 is empirically seen to identify the correct number of

clusters in a number of cases although a wide range of ξ can suffice. Density clustering

algorithms require a change in density to detect a cluster which may not always be the

case.

3.4 Results

3.4.1 DBSCAN based Order of Clustering

As can be seen from Fig. 3.5 where the parameter ϵ was chosen as varying percentiles

the reachability-distances of the points, the resulting number of clusters and quality

of clustering is very dependent on the parameters. Estimating these parameters is a

challenge.
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Figure 3.4: Impact of parameters ϵ and MinPts on the reachability-plot. Ped A dataset
used.

Figure 3.5: Estimating the number of clusters with DBSCAN. Percentage of points that
are classified as noise and quality is also recorded. The Ped A dataset is
used.
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Figure 3.6: Impact of the ξ parameter on the extract clusters from OPTICS algorithm.
There is larger flexibility in choosing ξ as long as it is sufficiently small.
Larger ξ results in more points being categorized as noise. Ped A dataset
used.

3.4.2 OPTICS based Cluster-Extraction

Fig. 3.6 illustrates the impact of the ξ parameter in the extraction of clusters algorithm.

Increasing ξ decreases the number of resulting clusters and keeping it near 10−2 results

in the optimum number. Although more clusters may be detected from smaller values

of ξ, this will not impact the setting up of a Gaussian Mixture Model on this clustering

as clusters are not merged and stray points are not categorized as independent clusters.

Fig. 3.7 and Fig. 3.8 show the resulting clustering on the Ped A and Ped B datasets that

were described in the previous chapter.
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Figure 3.7: OPTICS cluster extraction with ξ = 2%. Noise points are not shown and
18 clusters are identified. Ped A dataset was used.

Figure 3.8: OPTICS cluster extraction performance and reachability plot for Ped B
dataset. 16 clusters have been identified.
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CHAPTER 4

Spectral Clustering Methods

4.1 Introduction

Spectral clustering algorithms are a family of algorithms which have emerged to be-

come widely used because of ease of implementation and performance benefits over

traditional clustering algorithms (Von Luxburg, 2007).

Spectral clustering approaches employ the spectrum of the Laplacian matrix con-

structed from the similarity or proximity matrix S introduced in the section on the

Modularity Metric. The spectrum is used to perform dimensionality reduction in S

and clustering is this in this reduced dimension space.

The subsequent sections introduce familiar spectral clustering algorithms Normal-

ized Cut Algorithm and PCCA followed by an analysis.

4.2 Normalized Cut Algorithm

The mathematics behind the Normalized Cut algorithm is first introduced followed by

the description of the algorithm and notes on its implementation

4.2.1 Laplacians

From the dataset V , the proximity matrix S can be constructed from (2.6). Other ap-

proaches are detailed in the notes section. The degree ki of node i in V is defined in

(2.7). For two subsets of nodes A, B ⊂ V , W (A,B) is defined as,

W (A,B) =
∑

i∈A,j∈B

Si,j, (4.1)



which is indicative of the strength of links between set of vertices (or clusters) A and

B. The volume of subset A, an indicator of the size of the subset is given by,

vol(A) =
∑
i∈A

ki.

Another indicator of size is the size of the cluster simply given by |A| . The degree

matrix D is a diagonal matrix where Di,i = ki. The Unnormalized Graph Laplacian L

is defined as,

L = (D− S). (4.2)

For a vector f ∈ Rn,

fᵀLf =
1

2

∑
i, j∈V

Si,j(fi − fj)
2. (4.3)

This proves that L is a symmetric positive semi-definite matrix. The eigenvector cor-

responding to the zero eigenvalue is the constant vector where fi = fj ∀i, j ∈ V.

Similarly the Normalized Graph Laplacian Lsym is defined as,

Lsym = D−1/2LD−1/2. (4.4)

Just as in (4.3), Lsymsatisfy,

fᵀLsymf =
1

2

∑
i, j∈V

Si,j

(
fi√
ki

− fj√
kj

)2

.

Lsym is also a symmetric positive semi-definite matrix.

4.2.2 Graph Cut

The graph cut view of clustering seeks to cluster all the vertices in groups Ai such that

the sum of edge weights between clusters is minimized - meaning points from different

clusters are dissimilar. The cut of a partition of V into A1, . . . , Ak is given by,

cut(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Āi), (4.5)
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where Āi is the set of all points in V not in Ai. Minimizing cut leads to solutions where

the clusters are of dissimilar sizes as separating one vertex from the rest minimizing

it. Hence, objective functions such as RatioCut (Hagen and Kahng, 1992) and normal-

ized cut Ncut (Shi and Malik, 2000) have been defined to penalize dissimilarly sized

configurations,

RatioCut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Āi)

|Ai|
, (4.6)

Ncut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Āi)

vol(Ai)
. (4.7)

Spectral clustering is a means to solve the relaxed versions of the minimization of the

above values.

Consider a partition A, Ā in V . Define indicator vector f ∈ Rn as,

fi =


√

|Ā|
|A| vi ∈ A

−
√

|A|
|Ā| vi /∈ A.

(4.8)

From (4.3), we get,

fᵀLf =
1

2

∑
i∈A,j∈Ā

Si,j

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

+
1

2

∑
i∈A,j∈A

Si,j

(
−

√
|Ā|
|A|

−

√
|A|
|Ā|

)2

= |V | × RatioCut(A, Ā). (4.9)

Also,

fᵀf = n, (4.10)∑
fi = 0. (4.11)

The last equation implying that f is perpendicular to the constant vector, another eigen-

vector of L. The minimization of RatioCut in (4.6) with fi as defined in (4.8) subject to

constraints (4.10) and (4.11) is an NP hard problem. It can be relaxed by allowing f to
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take any real value. The relaxed problem is,

min
f∈Rn

fᵀLf subject to
∑
i

fi = 0, fᵀf =n. (4.12)

The above equation by the Rayleigh-Ritz theorem has the solution of f as the second

smallest eigenvector of L. Cluster labels can be assigned by seeing the sign of fi or more

generally by performing k-means clustering initialized with two cluster centres.

The problem can be extended to case with an arbitrary number of clusters k by

defining indicator matrix H ∈ Rn×k with ,

Hi,j =


1√
|Aj |

vi ∈ Aj

0 otherwise.

Also,

RatioCut(A1, . . . , Ak) = Tr(HᵀLH).

The relaxed problem becomes:

min
H∈Rn×k

Tr(HᵀLH) subject to HᵀH = I.

By the Rayleigh-Ritz theorem, the H is formed from the smallest k eigenvectors of L.

To obtain clustering, k-means clustering is done on H.

Similar to the analysis above, the normalized cut is found to be,

Ncut(A1, . . . , Ak) = Tr(TᵀLsymT),

where T = D−1/2H. The relaxation of the problem of finding the minimum cut is as

given below:

min
T∈Rn×k

Tr(TᵀLsymT) subject to TᵀT = I.

The solution for T is the first k eigenvectors of Lsym and transforming, the solution for
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H is the first k eigenvectors of another Laplacian Lrwdefined as,

Lrw = D−1L. (4.13)

Meila and Shi (2001) established the equivalence of of the transition probability on

a random walk and the normalized cut. Minimizing normalized cut is equivalent to find-

ing a cut to minimizing the probability of transition from one cluster to another when

taking a random walk on the graph. RatioCut minimization is achieved by maximiz-

ing the size of the clusters and an emphasis on within cluster similarity is not placed.

Hence, the normalized spectral clustering approach is preferred as it achieves the twin

objectives of minimizing cut(A, Ā) as well as maximizing within-cluster similarities

W (A,A) and W (Ā, Ā).

4.2.3 Normalized Cut Algorithm

The algorithm for normalized spectral clustering involves constructing a similarity ma-

trix from the data. The first k eigenvectors of the Laplacian Lrw are found. Finally

k-means clustering is done on the n rows of the matrix containing the k eigenvectors.

This is described in algorithm 5.

Algorithm 5 Normalized Cut Algorithm
One approach to spectral clustering:

1. Proximity matrix S ∈ Rn×n is constructed from the dataset.

2. Laplacian L = D− S is found.

3. The smallest k generalized eigenvectors u1, . . . , uk found from the general eigen-
vector problem: Lu =λDu. This is equivalent to finding the eigenvectors of Lrw.

4. Matrix U ∈Rn×k having u1, . . . , uk as columns constructed k-means clustering
is done on the rows of U.

The construction of the similarity matrix from the data can be done through different

methods. Apart from simply a different choice of similarity measure, points could be

connected if they lie in an ϵ neighbourhood, are k closest neighbours or only if both

points are mutually among the k closest neighbours of each other. Similarity matrices

constructed from the ϵ neighbourhood approach tend to connect only points of a higher

density while the k nearest neighbour approach can connect points on different scales
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(Von Luxburg, 2007). Both parameters are difficult to establish while the completely

connected graph which has been implemented in (2.6) is not a sparse matrix increasing

the complexity of algorithms finding the eigenvectors of the Laplacians. One method of

estimating the parameter σ is to have the mean radius of the kernel envelop k ∼ log n

points.

4.2.4 Extracting the number of clusters

The eigengap heuristic is proposed in Von Luxburg (2007) which is applicable for all

Laplacians. Number k is chosen such that eigenvalues λ1, . . . , λk is small and λk+1 is

relatively larger. The justifications presented are from perturbation theory based on the

observation that k completely disconnected clusters, eigenvalue 0 has a multiplicity of k

and the k+1-th eigenvalue is much larger. Such heuristics return non-ambiguous results

only when the clustering structure is very pronounced. Weber (2004) suggests choosing

λk+1 as the first eigenvalue above a minimum bound, another difficult parameter in

practice to evaluate.

4.3 PCCA Algorithm

The Perron Cluster Analysis algorithm was introduced and analyzed by Weber et al.

(2004). Extension of the problem to general similarity matrices was carried out by

Kumar et al. (2013).

The PCCA algorithm is very similar to the other algorithm in terms of construction

of the graph Laplacian from the similarity matrix but later assigns a soft clustering to

the points that exploits the structural properties of the objects even in the spectral sub-

space instead of simply performing k-means. A cluster here is a vertex of a simplex in

the spectral sub-space and clustering as the membership of data to these vertices.

4.3.1 Simplex

The transition probability matrix for a markov process defined on the graph or for a

random walk on the graph is,
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T = D−1S = I− Lrw,

where the symbols are as defined earlier. If there were disjoint clusters, the multiplic-

ity of eigenvalue λ = 0 would be the number of clusters k with eigenvectors being

f1, . . . , fk with fi ∈ Rn and,

fij =

1 vj ∈ C(vi)

0 otherwise.

This can be easily visualized if we change the order of rows and columns of T such that

points in the same cluster have rows (and columns) that are adjacent to one other. This

can be seen in Fig. 4.1 This transformed matrix will be a diagonal matrix. If the rows

of this matrix t1, . . . tn can be written as a linear combination of k representative rows

as,

ti =
k∑

j=1

αi,jtπj
,

We can verify easily the following because the sum of each row of T is 1,

k∑
j=1

αi,j = 1.

The linear combination factors are convex combination factors. The convex combina-

tion of the representative rows of the eigenvector matrix also happens to be the same.

Let X be the eigenvector matrix with rows x1, . . .xn and columns u1, . . .un as,

Xi,l = λ−1
i tᵀiul

= λ−1
i

[
k∑

j=1

αi,jtπj

]ᵀ
ul

⇒ xi =
k∑

j=1

αi,jxπj
. (4.14)

Thus, we see in (4.14) that the eigenvectors lie in a simplex. Weber (2004) shows

that pure-state transition matrices when perturbed approximately fall in a simplex and
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Figure 4.1: Laplacian or transition matrix when aligned such that adjacent points belong
to the same cluster. Spectral clustering done with k = 4 on Ped A dataset.
Lighter areas indicate higher values.

also suggests a Gram-Schmidt normalization procedure to find the furthest points or the

vertices of the simplex in the sub-space. Further, if only the first k eigenvectors are

considered, the final cluster membership mapping is a linear one defined as follows,

A−1 =


Xπ1,1 . . . Xπ1,k

...
...

Xπk,1 . . . Xπk,k

 ,

χ = XA. (4.15)

Here χi,j indicates the probability of membership of point i to cluster j. An example

of a simplex can be seen in Fig. 4.2 where clustering has been done on the Ped A

dataset with k = 4. The resulting eigenspace is projected onto its top three principal

components for visualization.

4.3.2 PCCA Algorithm

As in the case of the Normalized Cut Algorithm, the similarity matrix S is constructed

from the data and Laplacian is constructed. The first k eigenvectors are computed.Kumar

et al. (2013) proposes that the gap heuristic be used to determine the number of clusters.
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Figure 4.2: Simplex resulting from plotting eigenspace on top 3 principal components.
The Ped A dataset has been clustered with k = 4.

The heuristic is that we choose the first k eigenvalues such that,

ek+1 − ek
1− ek

> tc, (4.16)

where ei is the i-th eigenvalue and tc is the Spectral Gap Threshold. k points of the

data in Rk eigenspace now have to be chosen as vertices of a k − 1 simplex. i.e. a

complex hull in which all the data points lie. This is done by first choosing the point

furthest away from the origin xπ1 . Now we choose a point xπ2 furthest away from xπ1

and subsequent points are chosen if they are the farthest from the hyperplane formed by

the joining the preceding points. Algorithm 6 details the procedure.

Algorithm 6 PCCA algorithm
Similarity matrix computed as earlier.

1. Construct L from similarity matrix S as: L = D−1S.

2. Compute the first k eigenvectors u1, . . .uk of L for which the gap of the largest k
eigenvalues exceeds the Spectral Gap Threshold as given in 4.16. Form X from
the eigenvectors as columns.

3. Define π1 as the index for which ∥xπ1∥2 is maximum. Define γ1 = span(xπ1).

4. For i = 2, . . . , k: πi is the index for which ∥xπi
− γi−1∥2 is maximum. γi =

span(x1, . . .xi).
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Figure 4.3: Normalized Cut clustering with k = 16 on the Ped A dataset for various
values of σ. Its effect on the first k eigenvalues is seen in the graph at the
bottom-right.

4.4 Results

4.4.1 Spectral Clustering

Fig. 4.3 shows the results of Normalized Cut spectral clustering for various various of σ

used to construct the S. As σ gets larger, only very close points get non-zero similarity

measures. This may lead to a situation where the similarity measure cannot differenti-

ate between a point in the adjacent cluster and another further away and thus multiple

disjoint clusters may get mapped as one. Smaller σ leads to merging of neighbouring

clusters.
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Figure 4.4: Cluster-order extraction of the PCCA algorithm using the eigengap heuristic
with a quality metric. Ped A dataset was used.

4.4.2 PCCA algorithm

The sensitivity of the number of clusters chosen on the basis of the heuristic mentioned

in 4.16 is shown in Fig. 4.4 along with a quality measure. The automatic extraction

of the cluster-order from the eigenvalues is not a trivial procedure. Fig. 4.5 and Fig.

4.6 show the performance of the PCCA algorithm on the Ped A and Ped B datasets.

Clearly, this algorithm outperforms Normalized Cut spectral clustering. This is because

clustering in the eigenspace takes into consideration the structural properties of the

spectral sub-space. The plot of the eigenvalues serves to again highlight the challenge

in choosing k, the knee point after which the eigenvalues floor.
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Figure 4.5: PCCA clustering with k = 16 on the Ped A dataset with a plot of the eigen-
values. The red line indicates the cluster order chosen after which the eigen-
values floor.

Figure 4.6: PCCA clustering on the Ped B dataset with k = 4 with a plot of the top
eigenvalues.

44



CHAPTER 5

Optimal Non-Linear Receivers

5.1 Decoding procedure

The datapoints are first passed through a cluster-order extraction algorithm and are

clustered based on this order. A GMM is initialized with this clustering through two

approaches - initializing the EM algorithm with the means and variances of points in

each cluster with the probability of a component being proportional to the number of

points or directly initializing a GMM with the above parameters. After the pdf of the

interference plus noise is obtained, the ML estimate for the desired signal is obtained

by finding the maximum value on the pdf of the points as given below,

x̂ = argmax
x

p(y − h1x).

In the simulations, multiple channel realizations (∼ 100) are used to generate the

average BER plots.

5.2 Single Antenna Case

Fig. 5.1 presents the BER vs. SNR plots when various clustering algorithms are uti-

lized. The system in this case involves 2 QPSK interferers at 0dB and -3dB transmitting

on the Ped A channel. A number of observations can be made:

1. For all the clustering algorithms where the GMM could be initialized in both
ways as mentioned in the previous section, there is not a significant difference in
performance between the computationally expensive procedure of initializing the
EM algorithm or directly instantiating a GMM. This can be seen in the BER vs.
SNR plots of the Hierarchical clustering algorithms.

2. The cluster-order that is extracted plays a significant role in the determination of
performance. Cluster-extraction through the eigengap metric is not yielding the
right number of clusters as can be seen in the graph on the bottom right and this



Figure 5.1: BER vs SNR plots of various clustering approaches used in the decoding
algorithm for a Ped A channel with 2 QPSK interferers at 0dB and -3 dB.

flattens the performance of the decoder based on PCCA. Also, the performance
of the approach of directly instantiating a GMM is slightly worse than initializing
the EM algorithm as the clusters identified by the PCCA can be of non-convex
shape. Estimating the parameter σ is again difficult, impacting the final clustering
and performance here.

3. The OPTICS algorithm is seen to match the performance of Hierarchical Clus-
tering given that there are 16 cluster centres, the ideal case. Thus the problem of
cluster extraction seems to be appropriately handled.

4. Hierarchical clustering even if it extracts the wrong cluster order is seen to per-
form just as well as the ideal case of 16 clusters. This shows that there is a wide
tolerance band of the cluster order in terms of performance.

Fig. 5.2 compares the above system (Case 1) with a similar system but without a

distinctive cluster structure. The second system has 2 interferers - one from a 16 QAM

alphabet and the other from QPSK with powers 0db and -3 dB respectively transmitting

on the Ped A channel. Clearly, the receiver which in this case uses the Hierarchical

clustering algorithm floors as the main bottleneck here is the interference profile.
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Figure 5.2: Performance comparison of the single antenna decoder with hierarchical
clustering on case 1 with a distinct clustering structure and case 2, a similar
system but with a 16 QAM interferer lacking any distinctive cluster struc-
ture.

5.3 Multiple Antenna Case

In the system model it is assumed that the receiver gets independent channels at each

of its antennae. There are several ways of using receive diversity in decoding, a few are

listed below:

1. Running the clustering algorithms separately to determine the cluster-order. Ex-
change this information and run the algorithm on both with maximum of the
cluster-orders. The soft decoded outputs can be combined in series - by taking
the average assigning equal importance to both cases, a weighted average assign-
ing more importance to the clustering with higher quality or by taking the product.
Taking the product is akin to finding the probability that both the data streams are
independently clustered to be the same.

2. Doubling the dimension and running the clustering algorithm on this larger space.
This method is quicker than the previous one as the clustering algorithm is run
only once.

Fig. 5.3 compares the performance of approaches 1 and 2. In both cases, the system

(Case 1) described in the previous section is used. On the left side, as more antennas are

used, the soft outputs are averaged equally and this offsets poor clustering and GMM

fitting at say one of the antennae. Predictably, the performance improves as more anten-

nas are added. However, it is very clear that doubling the dimension is far more optimal

and yields performance that is orders of magnitude better as the number of antennae are
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Figure 5.3: Multiple antenna approaches for the heirarchical clustering algorithm - av-
eraging the outputs and doubling dimension. The system used in Fig. 5.1 is
used.

increased. This could be because the distance between 16 clusters spread across four

dimensions is much larger improving cluster separation and cohesion. Fig. 5.4 shows

the performance of the case whether the hierarchical clustering algorithm extracts the

cluster order, shares the information with the other antennas and then averages the soft-

outputs after clustering with higher k. Clearly, as the number of antennas increase, the

maximum of the cluster-order estimated by the various antennas approaches the optimal

figure of 16. The performance of this method is not significantly worse than the method

used in Fig. 5.3 where we had supplied the cluster-order of 16.

Fig. 5.5 corroborates the above observations even with the OPTICS algorithm. It is

far more optimal to double the dimension and perform clustering rather than combining

the soft-outputs after clustering in each antennae.

Finally in Fig. 5.6, all the multi-antenna approaches have been simulated with the

hierarchical clustering algorithm. EM algorithm has not been used to initialize the

GMM. The following are some observations:

1. The interferer data x ∈ χ1 × χ2 × . . . χn for each point determines the clustering
label in both antennas and both should be similar.

2. Averaging the soft outputs or performing a weighted average based on the quality
of clustering (Silhouette metric) does not yield any difference.

3. Reducing the dimension of the combined signal space by the principal component
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Figure 5.4: Hierarchical clustering used for cluster extraction from multiple antennas.
The order is shared among the antennas and the maximum is chosen and
clustering done again. Finally the soft-outputs are added.

Figure 5.5: Performance of multi-antenna approaches using the OPTICS algorithm.
The Ped A system with 2 QPSK interferers is used.
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Figure 5.6: Various multi-antenna approaches with hierarchical clustering done with
k = 16.

method brings only a small improvement over the single antenna case. In both
cases a GMM is fit over a two dimensional subspace.

4. Taking the product of the soft-outputs has a performance that falls in between
dimension doubling methods and methods averaging individual clustering per-
formance on the clusters. Taking the product ensures that only points which have
been wrongly clustered in both antennas will be incorrectly clustered overall.

5. Performing clustering on a single antenna and then doubling the dimension and
fitting a pdf on the four dimensional point based on the single antenna cluster
labels does not carry a significant penalty in performance from clustering directly
on the doubled dimension. Some saving is achieved in the distance computation
to generate the similarity matrix here.

50



CHAPTER 6

Conclusions

6.1 Summary

The non-Gaussian nature of the interference plus noise rendered popular techniques

such as LMMSE ineffective and necessitated the need for more sophisticated inter-

ference aware mitigation techniques. The Expectation Maximization algorithm was

studied but a problem in implementation was estimating the number of components.

Clustering approaches were studied as a means to determine the cluster-order in the

system. The Hierarchical algorithm coupled with a quality of clustering metric were

first explored. Quality of clustering metrics largely depend on the data from the system

and for wireless systems with convex clusters, the Silhouette approach was observed to

be more accurate and computationally efficient than the others. The OPTICS clustering

algorithm, an implementation of density based clustering, was seen to the most accurate

in terms of cluster-order detection. While being computationally cheaper than the other

approaches, it classifies a lot of points as noise and hence can only be used to initialize

the EM algorithm as approached to the faster method of initializing a GMM directly on

the data. Finally, the eigenspace of the Similarity matrix was studied and approaches

such as Normalized Cut and Perron Cluster Analysis was studied but the estimation of

cluster order was seen to be a challenge.

The performance of this non-linear ML receiver was seen not to floor only in cases

with a clear clustering structure. Certain interference profiles such as two dissimilar

QPSK interferers was seen to have better error performance than two QPSK interferers

of the same magnitude because it has a more apparent clustering structure. Notably,

the performance of the much cheaper approach of initializing a GMM directly from the

clusters is seen to not differ significantly from the method of initializing the parameters

of the EM algorithm such as the means and variances when the clusters indicated are

convex in shape. The optimal approach in multiple-antennas receivers is to double the

dimension of the data by merging data-streams. With all clustering approaches, this



method is not only more efficient but the increased separation between clusters due to

the fact that the dimension is increased results in enhanced accuracy.

6.2 Future Work

In this thesis, the channel was considered to be static in time and only a few sub-carriers

wide in frequency. Exploring how the results from the previous clustering run can be

used to either speed up computations in this run or improve accuracy can be studied.

Means to track the slowly varying PDF of the interference and noise can be useful

and save calculation. Only the performance of the uncoded data is studied. How the

performance of the channel varies with coding will be useful to study.

In the thesis a clustering run in performed on around 500 points, a number cho-

sen based on the time period in which the Doppler does not play a significant role and

keeping in mind the expected cluster structure. However, the performance of the clus-

tering and the ML detector as a function on the volume of data is critical as it allows for

intelligent design of pilot signals and bootstrapping methods. In the multiple antenna

approach, the channels are considered to be statistically independent which may not

be accurate in all cases. Performance of various clustering approaches and combining

them when the channels are correlated will be useful to study.
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