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ABSTRACT 

 

 

KEYWORDS: Doppler Estimation, Timing Synchronization, Frequency estimation, 

OFDM systems 

 

Owing to the growing demand for the high-speed wireless communication, there is a 

need to provide high-quality and efficient transmission schemes to overcome various 

channel impairments appearing over the transmission link. One of the main problems 

in providing such mechanisms is Doppler shift. It plays a crucial role in reducing the 

spectral efficiency of the system, raising a need to determine its value with high 

accuracy. In order to estimate this frequency shift, first the timing recovery is required. 

So these two problems of timing synchronization and frequency estimation go hand-

in-hand. 

Over the years, numerous algorithms have been designed to determine this Doppler 

shift with considerate amount of success. But with the increasing speed of the vehicle 

and the worsening channel conditions, these mechanisms succumb to failure. The 

primary objective of this project is to determine these limitations of certain algorithms 

and to suggest necessary improvements to be made, so as to push them to work better 

at harder conditions too. 

The first chapter deals with the introduction to CP correlation method and Schmidl-

Cox algorithm for timing synchronization, their performance and their limitations. In 

second chapter, the improvisations that can be made to the Schmidl-Cox algorithm are 

discussed in detail and the resulted better performance is shown with the tabulations. 

The final chapter deals with the existing algorithms for frequency estimation and 

limitations. Finally, the necessary steps that can be taken to improve the performance 

of this estimation are suggested. 
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CHAPTER 0 

 

INTRODUCTION 

 

Owing to the rapid growth in the demand for high-speed wireless-

communication, or in specific high-speed satellite communication, it is essential to 

provide high-quality and efficient transmission schemes to overcome various channel 

impairments appearing over the transmission link. One of the main problems in 

providing such mechanisms is Doppler shift. It plays a crucial role in reducing the 

spectral efficiency of the system, raising a need to determine its value with high 

accuracy.  

Over the years, numerous algorithms have been designed to determine this 

Doppler shift with considerate amount of success. But with the increasing speed of the 

vehicle and the worsening channel conditions, these mechanisms succumb to failure. 

The primary objective of this project is to determine the limitations of certain 

algorithms and to suggest any improvements to be made so as to push them to work 

better at harder conditions too. 

In any communication system, where there is a burst transmission, it is of 

utmost importance to maintain timing synchronization, since it serves as the timing 

reference to the data symbols that follow. In OFDM system this means figuring out 

the end of the preamble, which in turn gives an estimate of where the data starts. The 

frequency shift problem is entangled with this timing synchronization, without which 

the estimation of its shift is not possible. So the frequency estimation and timing 

synchronization algorithms go hand-in-hand. Several efficient and accurate timing 

recovery algorithms have been proposed to obtain “coarse” and “fine” timing 

synchronizations. But the severe effects of the time slip enforces these techniques to 

be performed regularly at several instances, in order to correct the error being 

accumulated gradually over time. The preambles reduce bandwidth efficiency 

considerably, so the algorithms are to be made robust and efficient so as to optimize 

the number of preambles used. 
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Time Offset: 

 

 

 

 

Figure 0.1: Effects of Timing Offset 

The primary objective is to determine where to start the FFT-window: 

1) The window need not coincide exactly with the signal position. Due to the FFT 

cyclic-properties, it can start from any sample within the cyclic-prefix region. 

This would result in a cyclically-shifted signal. 

2) If the window spans samples from two different symbols, it would result in an 

Inter-Symbol-Interference (ISI) 

Frequency Offset:  
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    Figure 0.2: Effects of Frequency Offset 

Although the sub-carriers are 

still orthogonal to each other, 

their frequency spectrum of the 

received data shows that they are 

in wrong positions, i.e., shifted 

cyclically. 

There is a loss of orthogonality 

between the sub-carriers resulting 

in the severe degradation of the 

BER. 
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 With respect to the timing synchronization algorithms, the analysis was kicked 

off with the implementation of Cyclic-Prefix (CP) Correlation method. Despite being 

extremely simple, it was not preferred owing to various limitations, the primary being 

insufficient correlation window length. On the other hand, the Schmidl-Cox algorithm 

proved to be quite successful even at channel noises of around 6dB SNR and upto 0.01 

relative frequency shift. But the satellite systems that we are aiming at can have worse 

Doppler shifts as high as 0.7 (relative) and noise levels upto 0dB SNR. The Schmidl-

Cox algorithm alone is not capable of handling such harsh conditions. But then there 

was a scope to improvise upon at several fronts. 

 The number of signal repetitions in a preamble was primarily increased to four, 

which paved way for a serious development of the algorithm. The correlations were no 

longer limited to the adjacent lobes (signal), all possible combinations have been 

included into the correlation factor. This has showed clear signs of improvement in the 

efficiency of the system. 

But the main problem with respect to this Schmidl-Cox algorithm was the lack 

of a more specific designation for the timing synchronization in the correlation graph. 

Determining the end point of the plateau becomes an illusionary task, once the noise 

factor came into picture. Also, at high levels of noise, the correlations are not capable 

of carrying out adequate averaging of noise. On careful examination of the structure of 

the plateau, it can be realized that the plateau itself can act as a pilot with multiple 

repetitions. So, a second correlation was carried out on the Schmidl-Cox correlation 

graph, with window length of half the size of plateau. This scheme has clearly produced 

astounding results making the system robust and not to falter even at -3dB SNR 

AWGN noise. 

From the list of the timings recovered, it is easy to observe that error is 

symmetrical over the actual timing, i.e., it is positive or negative with equal probability. 

So, using multiple preambles across the time domain and adding their individual 

correlation graphs would definitely improve the performance. 
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After the above additional improvement, the timing can be recovered very 

accurately, at 99% efficient system performance, the error of the timing 

synchronization is just ±10 samples. Also the performance doesn’t degrade at all even 

in the presence of a channel. So even considering a 40-tap PDP channel at 0 dB SNR 

AWGN noise, the timing can still be recovered with 99% accuracy. 

In the frequency estimation algorithm, there are two steps. One, to determine 

the fractional frequency offset and the other, integer offset. There is a standard 

algorithm by Schmidl-Cox to evaluate each of these offset components using two 

preamble symbols. The scheme used to find integer offset is very efficient, it works 

perfectly even at noise of -6dB SNR AWGN noise without a slightest hint of error. 

But the fractional part has significant error at high noise levels. This can be attributed 

to improper averaging out of noise in the correlation made. So, similar to the 

mechanism in the Timing Synchronization case, all possible correlations are considered 

and their average is taken. Once this correction was made, it can be observed that the 

error is both positive and negative with equal probability. So considering multiple 

preambles would definitely better the performance. At the end, this improvised 

mechanism is very efficient. At 0dB SNR AWGN channel, the error is less than 0.1%. 
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CHAPTER 1 

 

TIMING SYNCHRONISATION ALGORITHMS 

 

This chapter deals with certain standard algorithms which have proved to be quite 

successful. First the cyclic prefix correlation method has been introduced and its 

advantages and disadvantages have been discussed. Finally, the famous Schmidl-Cox 

algorithm has been introduced.   

1.1 Introducing algorithms: 

In general, the repetitive structure of the preamble is exploited by using 

correlation methods. Here, the symbol is either auto-correlated with itself or it can be 

cross-correlated with the previously saved pattern, for example the symbol on the 

transmitter side. 

Synchronization in OFDM systems can be done using: 

1) Methods based on redundancy exploiting the inherent characteristics (viz., 

cyclic extensions) 

Example: Cyclic-Prefix (CP) Correlation method 

2) Methods based on pilot sequences 

Example: Schmidl-Cox method 

Cyclic Prefix: One of the main advantages of the cyclic prefix is its ability to protect 

the OFDM symbol from the multipath delay spread. It acts as a guard interval between 

subsequent symbols preventing the Inter-Symbol-Interference (ISI). Here, the length 

of the guard interval must be greater than the maximum delay spread introduced by 

the channel. 

It is just the cyclic extension of the waveform into the guard interval, i.e., part of 

OFDM symbol at the end is copied as the cyclic prefix. 
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Figure 1.1: A sample figure of an OFDM symbol with a cyclic prefix 

 

1.2 Cyclic-Prefix (CP) Correlation: 

 The symbol boundary can be estimated based on the correlation which utilizes 

the repetitive structure of an OFDM symbol. This exploits the fact that the Cyclic-

Prefix is identical to the last part of the symbol. Under this scheme, the correlation is 

carried out between the set of received symbol samples arrived during a time interval 

of length equal to that of cyclic prefix and another set delayed by ‘N’ (length of the 

frame minus length of the cyclic-prefix). The correlation reaches its expected maximum 

when the sets considered would be the cyclic prefix and its identical counterpart at the 

end of the symbol, enabling to estimate the boundaries precisely in the absence of 

noise. ‘x’ is the input OFDM signal. 

   𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒:             𝑃(𝑑) = ∑ 𝑥(𝑑 − 𝑖)𝑥(𝑑 − 𝑖 − 𝑁)

𝑁𝑐𝑝−1

𝑖=0

                 (1.1) 
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Figure 1.2: Graph depicting a typical CP correlation 

It is easy to detremine the peak in the absence of any external factors like Noise, 

Frequency Shift, and Channel Fading. But once these factors are accounted for, the 

peak is not tweaked properly and several other global peaks rise up due to noise, so we 

have to settle down for a rough approximation by making sure that the end of the 

symbol is still estimated to fall in the same symbol. So, effectively we would read a 

cyclically-shifted version of the transmitted signal at the receiver which, later, through 

several cyclic FFT properties, can be studied. 

 

 

 

 

 

 

 

Figure 1.3: Graph depicting CP correlation with a system with high noise 
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90% estimate: In this scheme, first the peak of the curve is to be detected and then 

the points to the left and to the right of the peak with amplitude more than 90% of the 

peak amplitude. The average of these two positions is to be noted as our timing 

synchronization. In general, adding an offset of around ‘Ncp/2’ would increase the 

probability of this timing recovered falling in the center of the cyclic-prefix region. 

 

Frequency Shift (∆𝒇/𝒇𝒔) @ 6dB (Efficiency) @ 3dB (Efficiency) 

0.01 81 69 

0.05 79 72 

0.1 78 74 

0.3 82 70 

0.4 80 72 

0.5 81 71 

0.6 83 70 

0.7 79 70 

0.8 80 72 

0.9 81 73 

Table 1.1: Efficiency of CP correlation scheme at different SNR values 

The main advantages of this estimator are its simplicity and the absence of the 

pilots. This would facilitate the algorithm to be applied on symbols more frequently to 

counteract the effects of time-slip without any actual requirement of pilot symbols. 

But this scheme is not robust, it succumbs in the case of high SNR. This owes 

mainly to the fact that the correlation is carried out over a very small interval (CP 

length), so the noise hasn’t been averaged out properly, resulting in huge errors. But 

the increase in CP length would result in the degradation of the bandwidth efficiency, 

so it is not recommended either. So owing to these limitations, it is observed that there 

is a need for pilot symbols with repetitive patterns over long intervals, through which 

the correlations can be carried out with better neutralizing of the noise.  
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1.3 Schmidl-Cox Algorithm: 

This scheme uses pilot sequences at regular intervals of time to identify the start 

of the frame and then to correct it in case of any slip. In each preamble, two (or more) 

repetitions of the same samples are transmitted, so these parts still remain identical on 

the receiver side, except for a phase being added because of the frequency shift. So 

correlation of the signal with a ‘N/rep’ shifted version of itself, would give a maximum 

when the correlation window is across the two repetitions. 

   𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛:                 𝑠(𝑛) =
1

𝑁
∑ 𝑥(𝑘)𝑒𝑗2𝜋𝑘

𝑛
𝑁

𝑁−1

𝑘=0

          (1.2) 

 

 

 

 

 

Figure 1.4: OFDM symbol preamble with repetitions 

These repetitions are achieved by transmitting a pseudo-random (PN) sequence 

with required number of zeroes (viz., 3 zeroes for four repetitions) between two 

consecutive symbols. These PN symbols can be chosen randomly from a QPSK 

constellation, which would enable uniform avg. power over the frequency spectrum. 

For a 256-point FFT OFDM system, we preferred a preamble with four 

repetitions. Here the correlation is carried out across samples which are spaced ‘N/4’ 

distance apart over ‘3N/4’ samples. So, when the conjugate of the symbol is multiplied 

with “N/4’ delayed version of itself, maximum is achieved as a plateau when the 

correlation interval spans the lobes {1,2,3,4} until its end when it is on {2,3,4,5}. 
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          𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛:                                𝑃(𝑑) = ∑ 𝑟𝑑−𝑛𝑟
∗
𝑑−𝑛−

𝑁
4
                       

3∗𝑁
4
−1

𝑛=0

(1.3) 

As per the definition, plateau occurs at the position of the last lobe in the 

symbol, i.e., it spans a length of ‘N/4’ before and until the start of the CP of symbol 

next to preamble. 

 

 

 

 

 

Figure 1.5: Correlation graph of Schmidl-Cox algorithm applied on an ideal system with no 
noise and no frequency shift 

But a fine plateau can be observed only in the case of a system with no noise. 

In the case of frequency shift, although there is phase difference between the samples 

correlated, its absolute value will still remain the same, keeping the shape of plateau 

intact.   

 

 

 

 

 

Figure 1.6: Correlation graph of Schmidl-Cox algorithm comparing at various conditions  
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As can be seen in the figure, it gets more difficult to determine the peak in the graph, 

making it impossible to find the edge of the plateau. Here 90% estimate procedure can 

still be carried out to find the points that atleast lie on the plateau. These simulations 

have produced results in a system of 0dB SNR AWGN noise which are only 70% 

correct. 

Frequency Shift (∆𝒇/𝒇𝒔) @ 3dB (Efficiency) @ 0dB (Efficiency) 

0.01 82 72 
0.05 80 69 

0.1 83 76 

0.3 81 74 

0.4 81 72 

0.5 81 70 

0.6 80 71 

0.7 83 72 

0.8 81 75 

0.9 80 71 

Table 1.2: Efficiency of Schmidl-cox algorithm at several Frequency Shifts 

Noise 

(SNR) 

12 dB 9 dB 6 dB 3 dB 0 dB 

Efficiency 98 91 87 80 71 

Table 1.3: Efficiency of Schmidl-cox algorithm at various SNR values of AWGN noise 
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CHAPTER 2 

 

IMPROVISATIONS ON SCHMIDL-COX ALGORITHM 

 

2.1 . Multiple Correlations: 

It can be observed that the correlation need not just be confined to the samples 

that are just ‘N/4’ distance away. Even the samples ‘N/2’ and ‘3N/4’ distance apart 

are identical. So, correlation is extended accordingly. 

𝑃𝑃(𝑑) = || ∑ 𝑟𝑑−𝑛𝑟
∗
𝑑−𝑛−𝑁 4⁄

3𝑁
4
−1

𝑛=0

|| + ||∑ 𝑟𝑑−𝑛𝑟
∗
𝑑−𝑛−𝑁 2⁄

2𝑁
4
−1

𝑛=0

|| + ||∑ 𝑟𝑑−𝑛𝑟
∗
𝑑−𝑛−3𝑁 4⁄

𝑁
4
−1

𝑛=0

|| 

(2.1) 

The absolute values of the correlations that are executed for samples spaced 

‘N/4’, ‘N/2’, ‘3N/4’ apart are added, and this cumulative value projects an improved 

performance than the earlier one. This improvement is attributed to more averaging 

out of the noise that is done by increasing the correlation window, because of which 

noise effects have been nullified to some extent. 

 

 

 

 

 

Figure 2.1: Comparison of new scheme vs old scheme 
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As depicted in the graph, in the new correlation curve, the shape of plateau is more 

imprinted which makes it all the more easy to pinpoint some point on the plateau, thus 

increasing the efficiency of the algorithm. Our standard method of 90% algorithm can 

be applied here.  

Frequency Shift (∆𝒇/𝒇𝒔) @ 6dB (Efficiency) @ 3dB (Efficiency) 

0.01 92 89 

0.05 93 88 

0.1 92 89 

0.3 92 90 

0.4 92 90 

0.5 91 89 

0.6 89 88 

0.7 91 87 

0.8 91 89 

0.9 90 88 

Table 2.1: Schmidl-Cox algorithm with the multiple correlations 

But this would provide efficient results only in the absence of delay spread. The 

very purpose of including cyclic-prefix is to compensate for this delay-spread, in the 

presence of which the starting portion of the CP is corrupted. To be more specific, the 

delay caused when the symbol is passed through the channel would extend into the 

cyclic prefix of the next symbol. This would effectively reduce the length of the plateau, 

since the starting few samples in a symbol will no longer be identical to that of the 

actual signal samples. 

So if the timing recovered lies in this starting portion of the CP, certain 

erroneous samples will be collected in every symbol, which in turn degrades the system 

performance. So in the 90% estimate method, after taking the average of the symbols 

to the right and left of the peak, it is to be shifted to the right by ‘Ndelay/2’, i.e., care 

is taken for the recovered timing to fall on the center of the plateau, which is now of 

length ‘(Ncp-Ndelay)’. 
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 Figure 2.2: Example of a PDP sequence 

2.2 Double Schmidl-Cox Algorithm: 

Although, the above method is preferred to get the timing sync to fall in the cyclic 

prefix, like discussed, due to the constraints of channel, it is not an ideal method. Since 

the goal is not pinpointed (any point on the plateau) and the noise being not averaged 

out properly, there is a need for more robust method through which the edge of the 

symbol is more visible and easy to figure out.  

Figure 2.3: Second correlation on the plateau 

So upon auto-correlation of these correlated values with ‘Ncp/2’ delayed version of 

itself, this would give a unique peak, when half the plateau is multiplied by conjugate  

   𝐷𝑜𝑢𝑏𝑙𝑒 𝑆𝑐ℎ𝑚𝑖𝑑𝑙 − 𝐶𝑜𝑥 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛:           𝑆(𝑑) = ∑ 𝑃𝑑−𝑛𝑃
∗
𝑑−𝑛−

𝑁𝑐𝑝
2

𝑁𝑐𝑝
2
−1

𝑛=0

(2.1) 

Although, one interesting fact to note is 

that the system behavior is hardly 

altered when a PDP channel is 

introduced. The efficiency remains the 

same, including the mean and variance 

of the error (offset of the timing from 

the actual). 

On observing the plateau carefully, one 

can see that it is similar to the preamble 

with several repetitions, i.e., all the 

samples are equal (under ideal 

conditions). Since the length of the 

plateau is already small, it can be 

considered as a symbol with just two 

identical halves. 
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of the other half of the plateau, i.e., at the end of the symbol. A triangle shaped graph 

is formed, in which finding the peak must be fairly easier than in the case of a plateau 

where the peak might not even lie in this region if the noise added to the samples is 

strong enough. 

 

 

 

 

 

 

Figure 2.4: Comparing the Double Schmidl-Cox to normal Schmidl-Cox method 

The advantage of this second correlation is clearly visible from the graph. The 

peak can be easily found out, but this cannot be directly detected as the timing, because, 

due to the noise, this peak can be offset from the actual timing by positive or negative 

value.  

 

 

 

In the Schmidl-Cox correlation, like discussed, there can be a peak before or 

after the plateau depending on the error on the samples there respectively. So after a 

second correlation, this will shift the peak of the graph accordingly. A more robust 

method is needed.  First the peak of the graph must be found out and let’s say its 

amplitude is ‘max’. Now, the sample to the left of the peak which has an amplitude 

(x*max) and a sample to the right of the peak with amplitude (y*max) are to be marked.  
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Figure 2.5: Mechanism to find the timing synchronization from the correlation graph 

The average of these two points should ideally give end of the symbol timing. But the 

error can be positive or negative, which would lead in detecting the timing either before 

the end of the symbol which is still reasonable or into the next symbol which is not 

preferred. So we shift our final value to the left by some distance parameter ‘z’. 

Simulations have been carried out using several values for parameters (x,y). The ideal 

values have turned out to be (0.25,0.15) where the system has shown some exceptional 

efficiency. At 3dB SNR AWGN noise, the system is 99% efficient, i.e., the timing 

recovered lies in the CP range, irrespective of any amount of frequency shift.  

Frequency Shift (∆𝒇/𝒇𝒔) @ 3dB (Efficiency) @ 0dB (Efficiency) 

0.01 99 90 
0.05 100 91 

0.1 98 87 

0.3 100 92 

0.4 100 90 

0.5 100 92 

0.6 99 92 

0.7 100 92 

0.8 100 91 

0.9 98 90 

Table 2.2: Tabulations of Double Schmidl-Cox scheme 
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2.3  Multiple preambles: 

We need to get better results than this, because this scheme falters when a 

channel is introduced. So effectively the range of timings recovered must be reduced. 

It is evident from the results that the error is positive or negative with almost equal 

probability. So there is a scope for more averaging out by considering multiple 

preambles spread out across the time domain. The idea is to shift the correlation curve 

by the required amount (distance between two preambles), so as to overlap these 

triangle shaped correlation forms of each of the preamble on to each other and then 

apply the above technique on this cumulative curve to find the timing.  

 

 

This way the offset error can be averaged out. 

 

 

 

 

Figure 2.6: Correlation graph of Double Schmidl-Cox algorithm with five preambles 
each spaced 10 symbols apart 

 

 

But the problem of the time slip arises here. Care must be taken that over the 

period, in which all these preambles are received, the time-slip must be negligible. This 

would raise a concern over the number of preambles used and the space between every 

two consecutive preambles. Owing to all these conditions, the simulations have been 

carried out using five preambles, each spaced 10 symbols apart. 

 



 18 

 

 

 

 

 

 

Figure 2.7: Comparison of Correlation graphs for the five preambles and the average 
correlation 

This scheme would produce results that make the system 100% efficient at even 

-3dB SNR. But with the increasing noise, the timings syncs are more spread out making 

the system lesser efficient when a channel is introduced. At 0dB SNR, the range of 

timing indices is just 24 for a 256-point FFT. So, effectively even if a channel with 40-

tap is introduced, the system still behaves the same with 100% efficiency. 

Table2.3: Tabulations of Double Schmidl-Cox algorithm on a system with 0dB SNR noise 

 

Frequency  

Correct 
Hits 

(out of 
1000) 

Indices 
Range  

(CP: 896-
960) 

Length 
of this 
range 

Length at 
99% 

efficiency 

max n-
tap 

channel 
possible 

0.01  1000 955-985 31 28 36 

0.05  1000 956-984 29 28 36 

0.07  1000 955-984 30 28 36 

0.1  1000 955-984 30 28 36 

0.2  1000 954-986 33 31 33 

0.3  1000 954-985 32 30 34 

0.4  1000 953-984 32 30 34 

0.5  1000 954-984 31 30 34 

0.6  1000 953-984 32 30 34 

0.7  999 955-984 30 30 34 

0.8  999 954-987 34 30 34 

0.9  1000 953-985 33 31 33 
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This range increases to over 38-40 at -3dB SNR. So this is the maximum noise that can 

be tolerated and still managing to identify the timing recovery with more than 95% 

efficiency. When the noise is further increased, i.e., at -6dB, it is 81% efficient and at -

9dB, it is close to 68% efficient.  

 

 

 

 

 

 

 

 

Table 2.4: Tabulations of Double Schmidl-Cox algorithm on a system with -3dB SNR noise 

 

 

 

 

 

 

 

 

Frequency  

Correct 
Hits 

(out of 
1000) 

Indices 
Range  

(CP: 896-
960) 

Length 
of this 
range 

Length at 
99% 

efficiency 

max n-
tap 

channel 
possible 

0.01  1000 947-985 39 36 28 

0.05  1000 946-985 40 38 26 

0.07  1000 941-983 43 40 24 

0.1  1000 943-985 43 39 25 

0.2  1000 944-985 42 41 23 

0.3  1000 944-985 42 40 24 

0.4  1000 943-983 41 39 25 

0.5  1000 944-985 42 40 24 

0.6  1000 942-986 44 43 21 

0.7  999 945-984 40 38 26 

0.8  999 944-985 42 40 24 

0.9  1000 944-986 43 41 23 
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CHAPTER 3 

 

FREQUENCY ESTIMATION ALGORITHM 

 

3.1 Schmidl-Cox frequency estimation algorithm: 

Once the timing is realized, the frequency shift in the system must be estimated. 

The preamble with multiple repetitions again comes into use for this purpose. 

When the lobes/signals that are identical are passed and collected at the 

receiver, they remain identical except that there will be a phase shift. So the phase of 

the correlation values on the plateau must give this phase difference. If the conjugate 

of a sample from the one quarter (half) is multiplied by the sample in another quarter 

(half), the product will have a phase that is directly proportional to the frequency shift. 

                𝑃ℎ𝑎𝑠𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒                              ∅ = 2𝜋∆𝑓
𝑇

4
                                (3.1)                

This phase difference will be of the form (2zπ+α), where ‘α’ is the fractional part and 

‘n’ the integer part. ‘α’ can be determined directly i.e., it is just the argument of ‘∅’ which 

follows the condition –π<∅< π.  

The correlation can be carried out across three repetitions, so as to average out 

more noise and to better estimate the fractional part. Let ‘m’ be the timing recovery. 

𝑃 = ∑ 𝑟𝑚−𝑛𝑟
∗
𝑚−𝑛−𝑁/4

3∗𝑁
4
−1

𝑛=0

                                              (3.2) 

𝛼 = 𝑎𝑟𝑔(𝑃)                                                                        (3.3) 
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The symbol received can be corrected with the fractional part of frequency offset, 

where 

∆𝑓̅̅̅̅ =
2𝛼

𝜋𝑇
                                                             (3.4)  

The received samples are thus to be multiplied by 𝑒−𝑗2𝜋∆𝑓
̅̅̅̅ 𝑡 for the correction. Now 

the integer part can be estimated using two preambles. The first preamble has four 

repetitions, i.e., it has a PN sequence of QPSK symbols at every fourth sample in the 

frequency domain. The second symbol has a PN sequence of QPSK symbols at all 

samples in frequency domain, but with half the amplitude, so that both the preamble 

symbols have the same average power.  

Let ‘𝑥1’ be the PN sequence of ‘4p+1’ sample frequencies of first preamble 

Let ‘𝑥2’ be the PN sequence of ‘4p+1’ sample frequencies of second preamble 

Now let ‘𝑣’ be the relative PN sequence, where  

𝑣(𝑘) =
𝑥1(𝑘)

𝑥2(𝑘)
                                                  (3.5) 

Integer part of phase difference implies that the sub-carriers are still orthogonal 

to each other but the frequency positions itself are shifted. So, at the receiver end, the 

frequency spectrum shows cyclically versions of the original PN sequences. This shift 

is to be measured. 

Let ‘𝑦1’ be the ‘4p+1’ sample frequencies FFT of the corrected first preamble 

Let ‘𝑦2’ be the ‘4p+1’ sample frequencies FFT of the corrected second preamble 

 The sequence ‘𝑣’ appears at the output but shifted by ‘4𝑔’ positions because of the 

uncompensated frequency shift. So the expression 

𝐵(𝑔) =∑𝑦1(𝑘 + 4𝑔)𝑣
∗(𝑘)𝑦2

∗(𝑘 + 4𝑔)

𝑁/4

𝑘=0

                             (3.6) 
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This attains the peak value when the value ‘𝑔’ coincides with the actual integer shift of 

the system. 

 

 

 

 

 

Figure 3.1: Graph depicting the integer part of relative frequency shift 

The total frequency shift is just the sum of the fractional and integer part. 

          𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆ℎ𝑖𝑓𝑡                   ∆𝑓 = ∆𝑓̅̅̅̅ +
4𝑔

𝑇
                                                  (3.7) 

 

This method is very efficient, the integer part gives correct results always even at 

negative SNR values of noise. But the fractional part has significant error because of 

the noise not being averaged out properly. For a 256-point FFT, maximum fractional 

offset is 4/256=0.015625.  

 

 

 

 

 

Table 3.1: Results of Schmidl-cox Frequency Estimation algorithm carried out in a system 
with an AWGN noise of 0dB and -3dB SNR 

Relative Fractional 

Frequency Shift 

(=∆𝒇̅̅̅̅ /max ∆𝒇̅̅̅̅ ) 

 Error (%) 

()Percentage (0 

dB SNR) 

Error (%) 

Percentage (-3 

dB SNR) 

  0 dB -3 dB 

0.1  9.07 21.87 

0.2  9.43 20.76 

0.3  9.57 21.43 

0.4  9.41 20.65 

0.5  9.36 20.60 

0.6  9.76 20.24 

0.7  9.62 21.61 

0.8  9.60 21.01 

0.9  9.34 22.17 



 23 

3.2 Improvisation using multiple repetitions: 

To increase the efficiency, the multiple repetitions in the preamble can be exploited. 

The other correlations are calculated and their phases are taken into consideration. 

𝑃1 = ∑ 𝑟𝑚−𝑛𝑟
∗
𝑚−𝑛−𝑁/2

2𝑁
4
−1

𝑛=0

                                                (3.8) 

𝑃2 = ∑ 𝑟𝑚−𝑛𝑟
∗
𝑚−𝑛−

3𝑁
4

𝑁
4
−1

𝑛=0

                                                    (3.9) 

The phase difference can be corrected to  

𝛼 =

{
 
 
 
 

 
 
 
 arg(𝑃) +

arg(𝑃1)

2
+
arg(𝑃2)

3
;                                                   0 ≶ arg(𝑃) ≶

𝜋

3

arg(𝑃) +
arg(𝑃1)

2
+
arg(𝑃2) ± 2𝜋

3
;                              ± 

𝜋

3
≶ arg(𝑃) ≶ ±

𝜋

2

arg(𝑃) +
arg(𝑃1) ± 2𝜋

2
+
arg(𝑃2) ± 2𝜋

3
;                 ± 

𝜋

2
≶ arg(𝑃) ≶ ±

2𝜋

3

arg(𝑃) +
arg(𝑃1) ± 2𝜋

2
+
arg(𝑃2) ± 4𝜋

3
;                  ±

2𝜋

3
≶ arg(𝑃) ≶ ±𝜋

 

(3.10) 

 

 

 

 

 

 

Table 3.2: Results of improvised Schmidl-Cox Frequency estimation algorithm 

Relative Fractional 

Frequency Shift 

(=∆𝒇̅̅̅̅ /max ∆𝒇̅̅̅̅ ) 

 Error (%) 

()Percentage (0 

dB SNR) 

Error (%) 

Percentage (-3 

dB SNR) 

  0 dB -3 dB 

0.1  1.06 5.21 

0.2  1.76 4.76 

0.3  1.51 5.10 

0.4  2.07 5.41 

0.5  1.94 4.92 

0.6  1.91 5.04 

0.7  2.01 4.84 

0.8  1.78 4.61 

0.9  1.84 4.73 
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3.3 Multiple Preambles: 

By observation it can be found that, the error is both positive and negative with equal 

probability. The system can be made better by using multiple preambles and just 

averaging out the fractional parts. This helps in nullifying the noise to the maximum 

extent and the error is close to zero even at 0dB SNR noise. 

 

 

 

 

 

 

Table 3.3: Results of improvised Schmidl-Cox algorithm along with using five preambles 
each spaced 20 symbols apart 

 

These are astounding results and this completes the whole topic of determining 

the effects of timing and frequency offsets, finding the timing synchronization and 

evaluating the frequency shift eventually. 

 

 

 

 

 

 

Relative Fractional 

Frequency Shift 

(=∆𝒇̅̅̅̅ /max ∆𝒇̅̅̅̅ ) 

 Error (%) Error (%) 

Percentage (-

3 dB SNR) 

  0dB SNR -3dB SNR 

0.1  0.04 0.3 

0.2  0.02 0.1 

0.3  0.03 0.4 

0.4  0.04 0.4 

0.5  0.01 0.7 

0.6  0.03 0.5 

0.7  0.04 0.6 

0.8  0.04 0.4 

0.9  0.04 0.4 
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CHAPTER 4 

 

RESULTS AND CONCLUSION 

 

4.1 Timing Synchronization algorithm: 

The analysis has been started with implementation of the existing algorithms 

and finding their limitations with respect to the worsening of the channel conditions 

like high noise or high frequency shift. CP correlation method has been dismissed off 

owing to its unrepairable drawbacks (period of convolution being very less, i.e., CP 

length). 

So Schmidl-Cox scheme has been executed and it was found to be around 80% 

efficient at 6dB SNR AWGN noise. The number of repetitions in the standard 

Schmidl-Cox algorithm were just two, but our simulations have been carried out using 

a preamble with four repetitions. This change has triggered a scope for improvement 

in the existing mechanism. Instead of getting confined to convoluting a signal with the 

conjugate of its adjacent lobe, all possible combinations can be considered, i.e., sum of 

the absolute values of each of these correlations is taken as the final correlation value 

to decide upon the timing synchronization. 

But the very notion of determining the end point on the plateau turns 

meaningless with the inclusion of noise. So on the dire need to determine something 

more specific, it was noted that the plateau itself can act as a preamble with multiple 

repetitions. A second correlation was done on the Schmidl-Cox correlation curve with 

window length of half the preamble length. This was a clear hit. A little more careful 

examination has showed that the error is positive or negative with equal probability, so 

multiple preambles are taken and their respective correlation curves are added to get a 

curve, which was studied through certain mechanisms. This final improvised algorithm 

has shown 100% efficiency. 
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Frequency 
Shift (∆𝒇/𝒇𝒔) 

CP 
Correlation Schmidl-cox 

Multiple 
Correlations 

Double 
Schmidl-Cox 

Final 
algorithm 

0.01 63 72 82 90 100 
0.05 62 69 81 91 100 

0.1 61 76 80 87 100 

0.3 64 74 83 92 100 

0.4 63 72 81 90 100 

0.5 63 70 82 92 100 

0.6 61 71 80 92 100 

0.7 62 72 82 92 100 

0.8 59 75 77 91 100 

0.9 58 71 79 90 100 

Table 4.1: Comparing the efficiencies of the algorithms based on each improvement 

It can be clearly seen from the graph about how the performance is improved by 

making each correction in the algorithm followed. 

 

4.2 Frequency Estimation Algorithm: 

 There is a standard algorithm by Schmidl-Cox for frequency estimation. The 

frequency shift essentially has two parts: Fractional offset and Integer offset. The 

integer offset estimation mechanism is very efficient. Even the slightest error in this 

integer offset will affect the performance badly. So we cannot afford to have any error 

here and the algorithm itself works fine, without any need for improvising, even at -

6dB SNR AWGN noise. But the fractional offset has significant error at high noise 

levels. To overcome this, we steered to the previous improvements made in the timing 

synchronization algorithms. The multiple correlations have been considered, and mean 

of all these values is taken. An observation made was that the error here is equi-

probably positive or negative. So, taking multiple preambles and averaging out the 

frequency estimated from all of these will produce better results. The results are totally 

compatible with the expected shift, with a maximum error of just 0.1% at 0 dB SNR. 
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Table 4.2: Comparing the Error Percentage in each of the algorithms with a channel 
noise of 0 dB SNR 

Table 4.3: Comparing the Error Percentage in each of the algorithms with a 
channel noise of -3 dB SNR 

 

 

 

 

Relative Fractional 
Frequency Shift 

(=∆𝒇̅̅̅̅ /max ∆𝒇̅̅̅̅ ) 

 Schmidl-Cox Multiple Correlations Multiple Preambles 

     

0.1  9.07 1.06 0.04 

0.2  9.43 1.76 0.02 

0.3  9.57 1.51 0.03 

0.4  9.41 2.07 0.04 

0.5  9.36 1.94 0.01 

0.6  9.76 1.91 0.03 

0.7  9.62 2.01 0.04 

0.8  9.60 1.78 0.04 

0.9  9.34 1.84 0.04 

Relative Fractional 
Frequency Shift 

(=∆𝒇̅̅̅̅ /max ∆𝒇̅̅̅̅ ) 

 Schmidl-Cox Multiple Correlations Multiple Preambles 

     

0.1  21.87 5.21 0.3 

0.2  20.76 4.76 0.1 

0.3  21.43 5.10 0.4 

0.4  20.65 5.41 0.4 

0.5  20.60 4.92 0.7 

0.6  20.24 5.04 0.5 

0.7  21.61 4.84 0.6 

0.8  21.01 4.61 0.4 

0.9  22.17 4.73 0.4 
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APPENDIX 

 

 
A.1 Duplicating Signal Structure: 
 
 
clear all 
clc 
close all 
N=256; % OFDM system of 256-point FFT 
Ncp=N/4; % Cyclic Prefix length is one-fourth of the window length 
Ns=N+Ncp; % Sampling frequency 
Nrep=5; % number of time-frame repititons considered 
Nf=20; % number of symbols between two such preambles 
Ni=(4+(Nrep-1)*Nf+Nrep)*Ns; 
  
SNR=[-2 0 2 4 6 8 10 12 14]; 
doppler=[0.01 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]; 
  
count=zeros(12,3000); % counting the timing syncs 
  
for dplr=1:12 
    for p=1:500 
         

% QPSK symbols used 
 

QAM=[0.707+0.707i -0.707+0.707i 0.707-0.707i -0.707-0.707i];        
buf=QAM(randint(N/4,Nrep,4)+1); 

         
        % preambles used 
        a=zeros(N,Nrep); 
        index=1; 
        for n=1:4:N 
            a(n,:)=buf(index,:); 
            index=index+1; 
        end 
         
        a(N/2-1,:)=0; 
        a(N/2,:)=0; 
        a(N/2+1,:)=0; 
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        a(N/2+2,:)=0; 
  
        % random signals 
        b=ifft(a); 
         
        random=0.5*QAM(randint(N,((Nrep-1)*Nf+4),4)+1); 
         
        random(N/2-1,:)=0; 
        random(N/2,:)=0; 
        random(N/2+1,:)=0; 
        random(N/2+2,:)=0; 
         
        rand=ifft(random); 
         
        sample=zeros(N,((Nrep-1)*Nf+4)+Nrep); 
         
        sample(:,1:2)=rand(:,1:2); 
        sample(:,end-1:end)=rand(:,end-1:end); 
        index1=3; 
        index2=3;         
        for index3=1:(Nrep-1) 
            sample(:,index1)=b(:,index3); 
            index1=index1+1; 
            for j=1:Nf 
                sample(:,index1)=rand(:,index2); 
                index1=index1+1; 
                index2=index2+1; 
            end 
        end 
        sample(:,index1)=b(:,Nrep); 
         

 
        %adding Cyclic-Prefixes 
        signal=[sample(N-Ncp+1:N,:);sample];         
        signal1=reshape(signal,1,size(signal,1)*size(signal,2)); 
         
        % channel impulse response 
        channel=zeros(1,Ncp); 
        for i=0:((Ncp/2)-1) 
            channel(i+1)=exp(-i); 
        end 
         
        % signal passing through channel 
        signal2=convn(signal1,channel,'full'); 
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        % signal affected by frequency shift 
        for index4=1:size(signal,1)*size(signal,2) 
            signal3(index4)=signal1(index4)*(exp(1i*2*pi*doppler(dplr)*index4)); 
        end 
         
        % adding AWGN noise 
        sig=awgn(signal3,0,'measured'); 
        

 
 
A.2 Timing Synchronization algorithm 
 
        P=zeros(1,Ni); 
        P1=zeros(1,Ni); 
        P2=zeros(1,Ni); 
        P3=zeros(1,Ni); 
        S=zeros(1,Ni); 
        T=zeros(1,Ni); 
         
        % Schmidl-Cox correlation 
        for i=Ns:Ni 
            % correlation of adjacent lobes 
            for j=0:(0.75*N-1) 
                P1(i)=P1(i)+conj(sig(i-j))*sig(i-j-N/4); 
            end 
            % correlation of alternate lobes 
            for j=0:(0.5*N-1) 
                P2(i)=P2(i)+conj(sig(i-j))*sig(i-j-N/2); 
            end 
            % correlation of lobes spaced two lengths apart 
            for j=0:(0.25*N-1) 
                P3(i)=P3(i)+conj(sig(i-j))*sig(i-j-0.75*N); 
            end 
             
            % cumulative correlation 
            P(i)=abs(P1(i))+abs(P2(i))+abs(P3(i)); 
        end 
         
        % Double Schmidl-Cox correlation 
        for i=Ncp:Ni 
            for k=0:((Ncp/2)-1) 
                S(i)=S(i)+conj(P(i-k))*P(i-k-Ncp/2); 
            end 
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        end 
         
        % adding multiple preambles 
        T=abs(S); 
        for i=1:(Nrep-1) 
            T=T+abs(circshift(S,[0 -(((Nf+1)*Ns)*i)])); 
        end 
         
        U=abs(T(1:5*Ns)); 
                 
        % determining the timing recovery 
        maxim=max(U); 
        [l1 m1]=find(U==maxim); 
        V=U(1:m1(end)); 
        W=U(m1(end):end); 
        [l2 m2]=find(abs(V-maxim*0.25)<=0.3); 
        [l3 m3]=find(abs(W-maxim*0.15)<=0.3); 
  
        m= ceil(0.5*(m2(end)+m3(1)+m1(end))); 
         
         
        count(dplr,m)=count(dplr,m)+1; 
         
 

A.3 Frequency Estimation algorithm: 
         
        P1=0; 
        P2=0; 
        P3=0; 
         
        % timing correction 
        m=m-32;         
         
        % multiple correlations 
        for j=0:(0.75*N-1) 
                P1=P1+(sig(m-j))*conj(sig(m-j-N/4)); 
        end 
        for j=0:(0.5*N-1) 
                P2=P2+conj(sig(m-j))*sig(m-j-N/2); 
        end 
        for j=0:(0.25*N-1) 
                P3=P3+conj(sig(m-j))*sig(m-j-0.75*N); 
        end 
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        % FFT of transmitted preambles 
        x1=fft(signal1(2*Ns+Ncp+1:3*Ns)); 
        x2=fft(signal1(3*Ns+Ncp+1:4*Ns)); 
        y=x1.*conj(x2); 
         
        % fractional frequency offset 
        f1=2*angle(P1)/(pi*N); 
         
        % correcting signal with the frequency offset 
        for index8=1:Ni 
            sig1(index8)=sig(index8)*exp(-1i*2*pi*f1*index8); 
        end 
         
        % FFT of received signal 
        xx1=fft(sig1(m-N+1:m)); 
        xx2=fft(sig1(m+Ncp+1:m+Ns)); 
        yy=xx1.*conj(xx2); 
         
        % Determining integer frequency offset 
        num=zeros(1,N); 
        B=zeros(1,N); 
         
        for g=0:N/4-1 
            for index9=1:4:N 
            num(g)=num(g)+conj(y(index9))*(yy(rem(index9+4*g,N))); 
            end 
            B(g)=abs(num(g)); 
        end 
         
        [int1 int]=find(B==max(B)); 
         
        % Final Frequency Shift estimated 
        freq(dplr,p)=(4*int/N)+f1; 
         
    end  
end 
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