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ABSTRACT

In a TDM (Time-Division Multiplexing) over PSN (Packet Switched Network), the
inter-departure process of the jitter-buffer at the receiver should have minimum variance
to comply to the jitter performance as specified in the IEEE 1588 TDM Standard. Thus
minimizing the variance of the inter-departure process of a suitable modeling queue is
of paramount importance. This project proposes two queuing-models which can help
us in reducing the variance of the inter-departure process. In addition, it also proposes
a queuing model to reduce the buffer-size.

In the first model, we consider a modification of the standard M/G/1 queue (queues
with markovian arrival process, general service time distribution and single server) with
unlimited waiting space and FIFO-discipline in which the service times depend linearly
and randomly on the waiting times. In this model the waiting times satisfy a modified
version of the classical Lindley’s recursion. We determine when the waiting times dis-
tribution converge to a proper limit, and we develop approximations for this steady state
limit, then based on these approximations we try to schedule the successive services in
order to reduce the variance of the inter-departure process.

In the second model we consider an offline algorithm where service times depend
linearly on queue-length (number of customers in the queue). A mathematical pro-
gramming representation for the sample path dynamics of a state dependent queue is
presented. Also, some simulation results have been presented.

In third model, we are trying to implement the Mansour’s online rate-jitter control
algorithm and simulate the algorithm.

In additional literature survey, we are trying to implement the known BRAVO-effect
(Balancing Reduces Asymptotic Variance of Outputs) for correlated queuing model.

KEYWORDS: State Dependent M/G/1 Queue; Variance of the Inter Departure
Process; TDM over PSN; Lindley’s Equation; BRAVO Effect.
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CHAPTER 1

INTRODUCTION TO TDM over PSN

Time-division multiplexing (TDM) is a method of transmitting and receiving indepen-
dent signals over a common signal path by means of synchronized switches at each
end of the transmission line so that each signal appears on the line only a fraction of
time. TDM circuits have been the backbone of communications over the past several
decades. It is a hard partitioned circuit switched technology and provides reliable and
low delay services for real time interactive digital telephony as well as data and video
transport. However, these circuits are migrating towards Internet Protocol (IP) based
Packet Switched Networks (PSN) (9.Keyur and Junius, 2007). It is so because band-
width is used inefficiently in TDM. For efficient bandwidth utilization and hence to re-
duce the cost of transport and management, there has evolved a packet based converged
network for all services. In such a network, digitized signals are carried over packet
switched network. Due to the sheer magnitude of the installed legacy TDM equipment,
this migration to end-to-end IP will go through a transitional phase where some services
will continue to use legacy equipment, while the core network moves towards PSN. In
this transitional phase, there is a need for technology allowing seamless transmission of
TDM services across the packet switch networks.

TDM over PSN is a technology for emulating TDM circuits over packet switched
networks. In this technology a logical circuit is realized in a PSN, which links two TDM
islands. The TDM traffic at the transmitter is packetized into constant bit sized frames
and transmitted across a PSN. When the packet carrying the TDM payload traverses
the PSN, it experiences random delay due to the queuing at the intermediate routers.
Because of this reason, the packets at the receiver arrive randomly. The received pack-
ets are said to possess jitter or packet delay variation. Since outgoing stream is TDM
stream, which should comply to a minimum jitter, the packet delay variation of incom-
ing TDM packet stream has to be minimized. Hence, to meet this purpose, a buffer
(called jitter buffer) of suitable size is used. A mismatch between the read and the write
clocks at the input and the output of this buffer, due to large delay variation will cause
overflow or underflow of the jitter buffer. Such clock mismatch can lead to observable
defects on the end service. Synchronization in the data link layer of the ISO stack is
therefore an important issue in such networks (8.R Manivasakan and Usharani, 2012).

For achieving synchronization at the data link layer of the ISO stack, in this project,
we use a queuing model, where frames arriving from the transmitter are queued in
the jitter buffer and served such that the variance of the inter-departure process of the
outgoing frame stream is minimum. Minimizing variance of the inter-packet time at
either of the two layers, physical or data link of the ISO stack will reduce jitter in the
outgoing stream.



CHAPTER 2

BACKGROUND MATERIAL

The engineering problem addressed in this project can be well studied using mathe-
matical model of queuing theory. We review basic and necessary information about
queuing systems. We specially focus on two types of systems: one having general ar-
rival process, general service time distribution and are called GI/GI/I; another having
markovian arrival process, general service time distribution and are called M/G/I.

2.1 Queuing Theory

The word gueue comes, via French, from the Latin cauda, meaning tail.

Queuing theory is the mathematical study of waiting-lines or queues. In queuing
theory a model is constructed so that queue-lengths(Q) and waiting-times(W) can be
predicted.

A queuing system can be described as customers arriving for service, waiting for
service if it is not immediate, and if having waited for service, leaving (departure) the
system after being served.

The main characteristics of a queuing system are arrival process, service process,
and number of servers.

Now, we will see some basic terms encountered in queuing theory.

Inter-arrival time(X,,) is the time between arrival of customers n and n + 1 to a
queuing system.

Waiting time(W,,) is the amount of time spent by customer n waiting in the queue
before the start of it’s service or before entering into the server for service.

Service time(S,) is the amount of time spent by customer n in the server while
getting service or the difference of time between initiation of it’s service and and it’s
departure from the system.

Figure 2.1: We encounter queue on daily basis.
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Figure 2.2: Basic elements of a Queuing system are arrivals, waiting-line, server and
departures.

Now, we will see some basic relations in queuing theory, which are among inter-
arrival times(X,,), service times(S,,) and waiting times(W,) of customer n.

Little’s Law The long-term average number of customers in a stable system () is
equal to the long-term average effective arrival rate, A, multiplied by the average time a
customer spends in the system W'; or expressed algebraically:

Q=AxW 2.1)

2.2 M/G/1 Queue

This section provides a simple overview of M /G /1 queue and its various properties.
An M/G/1 is a queue model where arrivals are Markovian (modulated by a Poisson
process), service times have a general distribution and there is a single server.

Model Definition: A queue represented by a M/G/I queue is a stochastic process
whose state space is the set {0, 1,2, 3...}, where the value corresponds to the number
of customers in the queue, including any being served. Transitions from state ¢ to
1 + 1 represent the arrival of a new customer: the times between such arrivals have an
exponential distribution with parameter A. Transitions from state ¢ to ¢ — 1 represent a
customer who has been served, finishing being served and departing: the length of time
required for serving an individual customer has a general distribution function. The
lengths of times between arrivals and of service periods are random variables which are
assumed to be statistically independent.

Mean Queue Length : The Pollaczek-Khinchine formula states a relationship be-
tween the queue length and service time distribution Laplace transforms for an M /G /1
queue. The term is also used to refer to the relationships between the mean queue length
and mean waiting/service time in such a model.



The formula states that mean queue length is given by:

P>+ X\ x Var(9)
2(1=p)
where ) is the arrival rate of the process, (1/p) is the mean of the service time distribu-

tion S, p=(A\/p) is the utilization, Var(S) is the variance of the service time distribution

S.

L=p+ (2.2)

Mean Waiting Time: Using Little’s Formula we can calculate WW:

_p+ A x Var(S)

v 2(p—A)

(2.3)

2.3 GI/GI/1 Queue

This section provides a simple overview of standard (uncorrelated) GI/G1/1 queue and
its various properties. The notation GI/GI/1 queue is usually referred to a single server
queue with first-in-first-out discipline and with a general distribution of the sequences
of inter-arrivals and service-times (which are the "driving sequences" of the system). In
studying the single server queue GI/G1/1, it is usually assumed that all inter-arrival
times and service requirements are independent.

We will see some relations for G/G/1 queue, which will be helpful in further anal-
ysis of our queuing model.

Lindley’s Recursion Let IV,,= Waiting time of customer n;
W, 1= Waiting time of customer n + 1;
S,,= Service time of customer n; and,
X, =Inter-arrival time between customer n and n + 1.

Then, Lindley’s Recursion tells us that:

W1 = [Wo + S, — X F 2.4)

Average Waiting Time Kingman’s formula gives an approximation for the mean
waiting time in a GI/G1/1. The formula is the product of three terms which depend
on utilization, variability and service time. It was first published by John Kingman.
It is known to be generally very accurate, especially for a system operating close to
saturation.

Kingman’s approximation states

(2.5)

Where,

Mean service rate

=
Il



A= Mean arrival rate
p= A/p = utilization or normal traffic intensity

C, = Coefficient of variation for arrivals (that is the standard deviation
of arrival times divided by the mean arrival time)

C, = Coefficient of variation for service times (that is the standard devi-
ation of service times divided by the mean service time)

2.4 State dependent GI/G/1 Queue

This section provides a simple overview of a class of queues in which service rate or
arrival rate or both depends upon the state of the queue,i.e., number of customers in
the queue or may be waiting time of the customer in the queue.

However much analytic results are not established for this class of queues, we will
see how server behaves based on the state of the system. Lindley’s Recursion which is
stated in the previous paragraph are still valid.



CHAPTER 3

M/G/1 QUEUES WITH SERVICE TIMES
DEPENDING LINEARLY AND RANDOMLY UPON
WAITING TIMES

The work of this chapter has been inspired from the paper (Ward WHITT, 1990). In
this chapter, we will consider an extension of the standard M/G/1 queue with un-
limited waiting space and FCFS discipline in which the service rates depend linearly
and randomly on the waiting times. In this model the waiting times satisfy a modified
version of the classical Lindley recursion. We determine when the waiting-time distri-
butions converge to a proper limit. Then, we develop approximations for this steady
state limit primarily by applying previous results for the unrestricted recursion of type
Yor1 = C, xY, + R, where Y,,, C, and R,, are random variables. We’ll consider
a normal approximation for the stationary waiting time distribution in the case when
queue rarely becomes empty. We also consider the problem of scheduling successive
service-times, with the objective of achieving nearly optimal throughput with nearly
bounded waiting times, while making the service-time sequence relatively smooth. We
identifies policies depending linearly and deterministically upon the work in the system
which meet these objectives very well; with these policies the waiting times are approx-
imately contained in a specified interval a specified fraction of time. We will use this
scheduling of service times to obtain the expression for inter-departure time and will
try to minimize that which is our objective.

3.1 Introduction

We consider a modification of standard G/G/1 queue with unlimited waiting space and
FCEFS discipline, in which the service times depends linearly and randomly upon the
waiting times. We study the sequence {W,, : n > 0}, which is defined recursively by

Wn+1 - [Wn + gn - an_a n 2 O, (31)

where [z]T = maz{x,0}; )
Sp =5+ G, xW,, (3.2)

Here, equation (3.2) is one of the many possible linear or random dependency relation
between service times and waiting times. Also, in the above equation, we interpret IV,
as the waiting-time, G,, as some random variable and S,, as the service-time of the n*”
customer. We call X,, as the inter-arrival time between customers n and n + 1. We
call S,, as the nominal service time of customer n; because this would be the actual
service-time if the state dependent behavior were omitted i.e. if G,,=0 with probability
1. We assume that 0 < E[X,] < oo and 0 < E[Sp] < 0o, and define the nominal traffic
intensity in the usual way as p =E[X,]/E[So].



We analyze this model by recognizing that the waiting times satisfy the generalized
Lindley recursion

Wn+1 = [On X Wy + Rn]+a n > 0; (33)

where,
c,=1+G, and R,=S5,—X,, n > 0. (3.4)

Equation(3.3) reduces to classical Lindley recursion when P(Cy=0)=1. Similar to the
classical case, our analysis of the queuing model depends on the equation(3.3) and
the sequence{(C,,, R,)}, and not on the specific way (C,,, R,,) is defined in terms of
(Xn, Sn, G) in equation(3.4). Recursion(3.3) is a special case of more general recur-
sions that have been analyzed earlier. However, we will get stronger results for (3.3) by
analyzing special structure in detail.

Our analysis of (3.3) is primarily based on relating it to unrestricted recursion
Yn—i—l = Cn XY, + Rna n >0, (3.5)

which has been studied by Vervaat and Brandt (A. Brandt,|1986) in detail.

The system studied here has different stability conditions then the nominal system in
which C),, = 1 with probability 1 in (3.3). In the nominal system the stability condition
is well known which is p < 1. However, in our system, when P(C,, = 1) < 1, stability
depends on multiplicative factor C), instead of p. Moreover, for this model, the concept
of stability is only a limited partial characterization. It is possible to have instability,
even though the time required to reach a high level, from which the process can diverge
to +00, can be very large with high probability. On the other hand, it is possible to have
stability, even though the limiting distribution can concentrate on very high values.

We also focus on stable systems with p > 1. Having p > 1 can tend to keep the
process { W, } in (3.3) away from origin, so that {I¥/,,} behaves much like {Y},} in (3.5).
We’ll also show that a normal approximation for {Y,, } developed by Vervaat also applies
to {W,,} when p > 1 under appropriate conditions. We’ll apply this approximation to
determine specific policies for scheduling service-times under which the waiting times
are approximately contained in a specified interval a specified fraction of time. These
policies have the property that service-times change smoothly, which is desirable. We’ll
use these policies to determine the inter-departure time and try to reduce it’s variance.

3.2 Stability of Queues

To obtain the stability conditions of our model, we’ll begin with two preliminary lem-
mas as mentioned in (Ward WHITT, [1990). The first Lemma relates recursion (3.3)
to an associated unrestricted recursion of the form (3.5). We say that a sequence
{W,, : n > 0} is stochastically bounded if for all v > 0 there exists a constant K
such that P(|W,,| > K) < ~ for all n. A sequence is stochastically bounded if and only
if every sub-sequence has a sub-sequence converging to a proper limit. Let = denote
the convergence in the distribution.

In equation (3.3), if we replace C,, by [C,,|T and R,, by [R,,|T; then the waiting-times
will be at least as large and the positive-part operator in (3.3) becomes unnecessary.



Lemma 1:(Ward WHITT, |1990) If W, satisfies (3.3), then W, <Y, for all n with
probability 1, where

Yo = [Ch]T x Y, + [R,]T, n>0, (3.6)

and Yo = W, > 0.

Corollary: (Ward WHITT, |1990) If W, satisfies (3.3), Y,, satisfies (3.6) and Y,, =
Y as n — oo where Y is proper then {IV,,} is stochastically bounded and P(W,, >
t) < P(Y,, > t) for all ¢, where WV is the limit of any convergent subsequence of {IV,,}.

We’ll now get an explicit expression for W, for the condition P(Cy, > 0) = 1.
Without loss of generality, we assume that the stationary sequence {(C,,, R,,)} : n > 0}
has been extended to —0o < n < oo. Let =7 denotes equality in distribution. We say
that a sequence {W,, : n > 0} is stochastically increasing if W,, <4 W, for all n,
where <, denotes stochastic order.

Lemma 2:(Ward WHITT, 1990) If P(C, > 0) = 1, then

Wn+1 = mam((), an R, + Cn X Rnfla R, + Cn X Ry_1+ Cn X Cnfl X Rn727

.........,Rn+CnXRn_1+...+Cn2XR1+Cn1 XR0+Cn0><WO>(3.7)

=4 ntl = max{O, Ro,Ro + CO X R_l, Ro + C() X R_1 X CO X C_l X R_g,

..........,R0+COXR_1+...+CO_(n_1) XT—1+CO_RXWO.(3.8)

If Wy = 0, then W, is stochastically non-decreasing in n, so that W,, = W =¢ M
as n — oo, where M,, = M as n — oo, with M possibly being improper. It is easy to
see that non-negativity condition on Cj is needed in lemma 2

Now, we will discuss about the conditions of stability with respect to random se-
quence C), and in particular Cy (Ward WHITT, |1990). There are five possible cases:

(a) If P(Cy < 0) > 0, then W, is stochastically bounded for all p and Wj. If,
in addition , {(C,,, R,,)} is a sequence of independent vectors with P(Cy < 0, Ry <
0) > 0, then the events {WV,,,; = 0} are regeneration points with finite mean time and
W, = W as n — oo, where IV is proper for all p and W,. (A. Brandt,|1986)

(b) If P(Cy > 0) = 1and P(Cy = 0) > 0, then W,, = W as n — oo, where W is
proper for all p and ).

(c) If P(Cy > 0) = 1and E[logCy] < 0, then W,, = W as n — oo, where W is
proper for all p and W,

(d) If P(Cy > 0) = 1 and E[logCy] > 0, then W, /(Cy...Cp_y) — W with
probability 1 as n — oo where (Cy ... Cp_y)/™ — eFle9%] > 1, with probability 1 as
n — oo and W is proper for all p and W,

(e) If P(Cy > 0) = 1 and E[logCy] = 0, then W,, = W when W, = 0, where W
may be proper or improper. If P(Cy = 0) = 1, then W,, = W for all W, where W is
proper(improper) for p < 1(p > 1).



3.3 Normal Approximations when p > 1

In this section we assume that {(R,,, C,,)} is a set of i.i.d random vectors with E[R2] <
o0, P(Cy > 0) = 1, E[(logCy)?] < oo and E[logCy] < 0, so that W,, = W, as
n — oo, where W is proper. Using the work of Vervaat and Brandt , we show that if
E[Ry] > 0, which corresponds to p > 1, and |E[logCy]| is suitably small, then W is
approximately distributed with mean (Ward WHITT, |1990)

B[R]

EFW| = ————F— 3.9
1= TEogcal 69
and variance
Var[Iv] = (E[Ry])? x Var[logC) Var[Ry) E[Ry] x Cov[Ry, logCy|
= T X [ElogColP 2 x | E[logCo]] (E[logCy))?
(3.10)

Since W is non-negative, one test for reasonableness of this approximation is that the
mean E[W] should be sufficiently far away from O in the scale of the standard deviation
(Var[W))4/2,

Assuming that the process {1V, } tend to not to be near the origin (which is what
happening in this case, asymptotically), we should have

E[W] = E[Cy x W + Ry (3.11)
as a reasonable approximation, which yields (Ward WHITT, [1990)

E[Ro]

EW] =
given that E[Cy] < 1. We can see that equation(3.12) is consistent with equation(3.9)
when Cj tend to be slightly less than 1, i.e, if Cy = 1 — e x Z; for some random variable
Zy, because then

lOgCO = lOg(l —€X Zo) = —€X Zo = CO —1. (313)

and,

Var[W] = {2 x B[R] x E[Ro x Co] x (1 — E[Cy] + E[R2] x (1 — E[Cy])? — (1 —
E[C3]) x (E[Rg])}/{(1 = E[CF]) x (1 — E[C3)*}

3.4 Scheduling Services

In this section, our focus is to be able to formulate some policies to reduce the fluctua-
tions in the service times of successive customers. We will try to schedule the service-
times using these policies. For this reason, in our model we assume that inter-arrival
times come from a given sequence { X, } of i.i.d. random variables not subject to con-
trol. At each departure we must select the next service time depending on the history
upto that point of time. By history, we mean all the previous service times and all the



inter-arrival times upto that time. Now, we want to determine S,,, where

S, =S, + H, (3.14)

with

If H, = G,, x W, which is one of the possibilities in (3.14), then (3.14) reduces to
(3.2).

Our proposition or general idea is that something like what we have previously
considered should be an appropriate policy in some circumstances. We want to choose
a suitable 1,,. Here, we mention three general criteria for choosing ,,.

First criterion is quite obvious that waiting-time should not be large i.e., as small as
possible. To achieve that we might want to control the expectation of some increasing
function of waiting time, such as the mean E[WV].

Then, secondly, we want the throughput to be high as well as optimal, so that we
might want the probability of emptiness after each departure small.

Third, we want to reduce the fluctuations in the successive service times. This
should certainly help us in making inter-departure process relatively more smooth which
is required for various applications. So, in effect we want to control | S, — S, or its
distribution. As mentioned earlier in this section, an appropriate policy is required to
fulfill our third requirement. This third criterion is our most important criterion for
TDM over PSN.

We will now consider two cases of different lower bounds over service times (Ward
WHITT, 1990). In first case, let the lower bound is zero, i.e., P(Sy = 0) = 1. In this
case, we can obviously have high and optimal service rate and W,, = 0 for all n (and
thus satisfy the first two criteria above which is to minimize the waiting-time and obtain
the optimal service time) by setting

S, =H, =X, —W,, n>0, (3.16)

To me it seems like that we start from boundary condition assuming ideal cases like
W, = 0. However, this policy is not optimal as the successive service time will fluctuate
substantially as much as the inter-arrival times will fluctuate. In particular , for n > 1,
this policy gives

Sni1 — Sn = Xpa1 — X, (3.17)

Analyzing the above equation, we get

E[Spi1— S, =0 (3.18)

and

Var[Sps1 — Sy] =2 x Var[X,]. (3.19)

As we can see the resultant variance of successive service times which is twice the
variance of inter-arrival times is relatively larger. A natural alternative to (3.16), if
smoothing of S, is of concern, is a more smoothed response which we’ll discuss about
now.

For that we consider the second case where the lower bound is not zero. (Ward

10



WHITT, 1990) In this policy, we will relax the assumption we made previously which
was P (S, = 0) = 1 and reconsider equation (3.14). We shall find a policy of the form
H, = d+ex (X, —W,) that is more general than our previous policy and tends to keep
the process W, in a prescribed interval [a,b] ( Here, € is a small positive number and d
is an appropriate positive number; also a and b and positive numbers such that a < b).
To do this we will apply the normal approximation to produce control parameters d and
e such that

p(W <a)=PW >b)~m (3.20)

for any specified probability w. Our solution will require that E[So] > E[Xq], i.e
p > 1. Since, S, .1 = S, +d+e€ x (X,, — W,,), in this case we have C,, = 1 — ¢, R,, =
(e—1)x X, + S, +d.

Now, using the previous equations for mean and variance of waiting times

EW] = (3:21)
€
and,
Varw) = E=U2x WarlXol & Var{S)) (3.22)
€ex (2—¢) '
we first use the desired range » = b — a to specify €. Since
r=b—a=2xgx (Var[W]))"? (3.23)
where, P(N(0,1) > ) = m, we can apply (3.22) to obtain
X 1)2 1/2
1|1 (Var[So] + Var[ X)) (3.24)

(Var[Sol +[r/(2 x B)]?)?

which has a solution provided that Var[Sy| < (r/(2 * (3))?. We can see that € varies
with 7 and .

Next we use the intended mean E[W] =~ (a + b)/2 to solve for d. We apply (3.22)

to get
(6 — 1) X E[Xo] + E[So] +d

€

E[W] = (a+1b)/2 = (3.25)

so that
d=ex (a+b)/2—(e—1)x E[Xo] — E[So] (3.26)

Of course a feasible solution requires that d > 0 in (3.26). A necessary condition is
E[Sy] > E[X,], but € determined by (3.24) must also be appropriate.

As noted above, a primary motivation for considering policies of this form is to
control the fluctuations in the successive service times. We have done this in two ways.
first, given that a < W,, < b, we have overall bounds on the final service-times, i.e.,

Sp+d+ex (X, —b <8, <S,+d+ex (X, —a). (3.27)
Second, we have controlled the short run fluctuations in {5}, i.e.,

Snt1—Sn = Spt1— (L+6) X Syt ex X1 — (6)* x W, — (€)° x X, —e x d, (3.28)
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Figure 3.1: A departure process.

so that E[S,] = E[X,,] and E[S, 11 — S,] ~ 0 for large n, and

2
Var[S,i1 — Sa] = M x Var[Sy] + 2% (¢)

2—¢€ — €

x Var[Xo. (3.29)

3.5 Inter-Departure Process

The study of departure process in queuing system is primarily motivated by need to
analyze queuing network model, in which the departure process of one queue is arrival
process of another queue. There are very few exact results for departure processes if
one considers general arbitrary distributions.

Here, we will use general definition of inter-departure time (11. Dimutris J Bertsi-
mas and Daisuke |, [1990)

ID, = X,, + Wpy1 — W, + Spy1 — Sy (3.30)

where I D,, denotes the inter-departure time between n'* and {n + 1}*" customer. Now
we will replace terms S,, 1 and S, in the above equation by their respective definition
involving waiting times i.e., W,, and W,, .

ID, = X+ Wp1 —Wo+Spi1 —Sn+ex (Xpp1 — Xpn) —ex Wy —W,) (3.31)
Now, we will try to figure out the variance of the inter-departure process:

Var(ID,) = Var(X,+ex(Xn1—X,))+Var(S,i1—5p)+Var(W, .1 —W,—ex(W,11—W,,))
(3.32)

which gets manipulated to:
Var((1—e€) x X,y +ex X,01) +Var(Sper — Sp) + Var((1—e) x (Wyp1 —W,))

We can see that to calculate the variance of inter-departure time we need to calculate
the variance of W,, .1 — W,,. So, we will try to calculate that variance using following
equation,

Var(Spi1—Sp) = Var(Spi1 — Sp+ex (Xpy1 — Xp) —e x (Wypy — W,)) (3.33)

So, as we can see,

E X Var(Wyp, — Wy) = (=2 x Var(S,) — 262 x Var(X,) + Var(S,.1 — S,))

12



From the above equation we will get Var(W,, 1 — W,), and using this we find
Var(ID,):

Var(ID,) = [(1 —€)? + (€)?) x %] + [1]

—e)? € € €)?
5 X (- - BE (B ) () + B2 x ()

3.6 Results

Here, we are showing the results for the inter-departure time which is obtained by plot-
ting the equation in MATLab.

Figure 3.2: Variance of inter-departure process v/s €.

Figure 3.3: Log of variance of inter-departure process v/s €.

13
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CHAPTER 4

MATHEMATICAL PROGRAMMING
PRESENTATIONS for STATE DEPENDENT QUEUES

The work of this chapter has been inspired from the paper (Chan and Schruben, 2008).
In his paper, Victor Chan has developed a LP (Linear Programming) optimization model
for state dependent queues where service rate decreases with increase in queue length.
This is kind of an offline algorithm, where future information of arrivals and all the
necessary data are already given. With minor modification, we have developed a LP
optimization model for state dependent queues, where service rate increases with in-
crease in queue length. We have tried to simulate a simpler state dependent queue and
draw some inferences.

In this chapter, we are trying to model the state dependent discrete-event dynamic
systems. However these systems are difficult to model due to uncertainties and depen-
dencies of system performance on the system state. For example queue-length depen-
dent service rate of a state dependent queue can change during service. We try to obtain
a mathematical programming representation (MRP) for the sample path dynamics of a
state-dependent queue.

Before we could go any further, we would like to review some concepts of Math-
ematical Programming. Mathematical Programming (MP) is the use of mathematical
models, particularly optimizing models, to assist in taking decisions. The term "pro-
gramming" antedates computers and means preparing "a schedule for activities". Math-
ematical Programming is one of a number of OR techniques. Its particular characteristic
is that the best solution to a model is found automatically by optimization software. An
MP model answers the question "What’s best?" rather than "What happened?" (statis-
tics), "What if?" (simulation), "What will happen?" (forecasting) or "What would an
expert do and why?" (expert systems).

Mathematical Programming is more restrictive in what it can represent than other
techniques. Nor should it be imagined that it really does find the best solution to the
real-world problem. It finds the best solution to the problem as modeled. If the model
has been built well, this solution should translate back into the real world as a good
solution to the real-world problem. If it does not, analysis of why it is no good leads to
greater understanding of the real-world problem.

One special case of Mathematical Programming which has been enormously suc-
cessful is Linear Programming (LP). In an LP model all the relationships are linear,
hence the name.

Talking about MRP, it has been recently used to describe the behavior of discrete
event systems as well as their formal properties. The main advantage of such models is
the rapidity of searching for the optimal solutions, given the explicit knowledge of the
objective function and constraints. Here, in this chapter, an appropriate LP optimization
model, for optimizing SDQ, has been proposed.



4.1 Introduction

We consider a queue with single-server whose service rate depends on the queue length
called as state dependent queue (SDQ). Inter-arrival times and service requirements are
generally distributed. We use a notation G/G(Q)/1 for the queue. SDQs are realis-
tic models for discrete-event dynamic systems. We want to develop a mathematical
programming representation (MRP) for SDQs. MRP is a mathematical programming
based technique for modeling discrete-event systems (DES) dynamics as the solutions
to the optimization models. A DES changes its state in accordance with occurrence of
events. The trajectory of a discrete-event system, therefore, consists of a series of (state)
marked event-occurrence times. Simulating such a system will give a realization of its
state trajectory. Modeling system state trajectories as the solutions to an optimization
problem is another way of observing the system dynamics. We want to get insights into
the behaviors of state-dependent queues depending on how the server responds to the
changes in line-length. It may further help us to optimize the inter-departure process of
the state-dependent G/G/1 queue.

We will derive MRP for state dependent G/G//1 queue and call it as SDQ-LP. We’ll
use two steps to derive the SDQ-LP optimization model. At first, we’ll develop set
of equations for the service time in a SDQ and establish the convexity property of the
service time. Then, we’ll derive the constraints from a G/G/1 queue simulation model
and from the equations for the service times, making use of the convexity property of
the service time.

4.2 Linear Dependence of Service Rates on Queue Lengths

In this section we’ll obtain set of equations for the service time in a SDQ and estab-
lish convexity property of the service time. Consider a queuing system with general
independent arrival process where each arriving customer has a general i.i.d. service
requirement. The G/G(Q)/1 queue follow FCFS-discipline and has infinite waiting
space. The service-speed and hence the service-time depends on the queue-length i.e.,
the server may increase or decrease its speed when there are more or less jobs in the
queue.

We say that speed of server is according to a deterministic rate function:

p(t) = f(Q(1), 4.1)

where 1i() denotes the speed of sever at time ¢ and ()(¢) denotes the length of queue at
time 7.

However, in DES, queue size changes only at discrete times, above equation can be
rewritten as:

u(t) = £(Qy), t=t,ts, ... (4.2)

where, (), is the queue length and ¢4, ¢, ... denotes the times when queue size changes
due to arrival or departure of customers.

Now, let us define yu; as the service rate when there are k customers in the queue.
We will also assume that service rate increases linearly as the no of customers increases
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or queue length increases. This we call that service process has increasing service rate.
So, the service rate can be defined as

por = (Qr + 1) X po, t=t1,tg, ... (4.3)

In the above equation, 1y indicates the base service rate or minimum service rate, which
is the case when there are no customers waiting in the queue i.e. ¢); = 0.

Now, for notation we define dj; as the difference between the service rates i, and

e
dy = g — 1, k,l e {0,1,2,...,n|k‘>l}. 4.4)

Here, as we can see that service rate ju; is monotonically increasing function and these
monotonic properties lead to useful monotonic properties of the service rate.

Our next job is to define a set of sample path equations to model the service times.
Here, we will assume that all customers have same service requirements for simplicity
of equations. So, the service time of a customer ¢ depends on the service rate which
will change with queue length, which in turn is a function of the arrival times and finish
times of other customers or jobs.

For example, if the system is empty when a customer ¢ arrives and no other cus-
tomers arrive during customer ¢’s entire service, then the service time of customer ¢
would simply be 1/s, . However, if one and only one customer (say customer i + 1)
arrives during customer ¢’s service, then the service time of customer ¢ would become
a;v1 + (1 — a1 X 89)/s1, where a; 1 is the inter-arrival time between customer 7 and
customer ¢ + 1 . The service time of customer 7 + 1 would then depend on the finish
time of customer ¢ and also on subsequent customers’ arrival times.

Now, let k; be the number of customers arriving during the service period of cus-
tomer 7. We will denote that service time of customer 7 as sf; when k; customers arrive
during it’s service period and j being the first one to arrive.

If customer ¢ starts a busy-period, then the queue size is zero at its arrival and ;
at the time of its departure. Now, let sbfi gives the service time of customer ¢, when
it initiates the busy period containing k; jobs. Here, the following definition gives an
expression for sb}:

Definition 1 (Chan and Schruben, | 2008):Define the following set of formulas

sbf =1/ (4.5)

1+ Zf;ol Ais1410k
M

k _
sb; =

(4.6)

where k € {1,2,...,n— 1},

and, sb¥ denotes the service time for customer i initiating a busy period, consisting
of k customers if k; = k € {1,2,...,n— i} fori € {1,2,... ,n}.

It seems that in order to find the service time sbfi, knowledge of k; is required
and it is difficult to get this information. However, our calculation becomes simple by
knowing the fact that equation (4.6) is actually convex in k; for increasing service rate
system.
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Other important point is that the minimum of these service time values in k; equals
to the true value of sbf". This property will allow us to drop the subscript k; from sbfi
and use sb; to denote the service time service time of customer 7 regardless of how many
customers arrive during its service period. The next lemma formally documents this:

Lemma 1: Given a set of {a;,1, a2, . ..,a,}, the formula specified in (4.6) is con-
vex for an increasing service rate system, and the service time for customer ¢ initiating
a busy period is

sb; = min{sb¥} 4.7)

for all k and fori € {1,2,...,n}.

Because of this convexity property we can avoid all the equations when finding the
minimum.

Now, we will consider the case in which customer ¢ arrives when another job is being
served. In this case, the service time of customer ¢ will depend upon the finish time of
the customer currently being served i.e., customer (i — 1) and also on the customers
which will arrive during its service period.

Let s f;;l be the service time of customer ¢ which arrives when server is busy and
there are k; jobs arriving during the customer ¢’s service with j being the first customer
to arrive. Let A; and F; be the arrival time and finish time of customer 7. Here is the
next definition describing the computation for s fi’jﬁ:

Definition 2 (Chan and Schruben, |2008): Define the following set of formulas:

sfiy = Ytj-i, (4.8)
1 Ai—F,_)di_;i_i_
Sfil‘ — +( J 1) 1—] 1 (49)
Hj—i
) k—1
s i;; _ 1+ (A] - Efl)djfiflJrk,jfifl + Zl:l ajJrldjfiflJrk,jfi—lJrl (4.10)
Hj—i—1+k

fori € {2,3,...,n—1}andj € {i +1,...,n}.

The service time of the customer ¢, who arrives at a non-empty queue and seeks
k; arriving customers during its entire service period, with first arriving customer being
customer j, can be computed by above formulai.e., s Z’j where k; = k € {0,1,2,...,n—
j+1tandie€ {2,3,...,n—1}andj € {i+1,...,n}.

As we saw in lemma 1, the formula in definition 2 also exhibit convexity property.
Hence, using this convexity property we can find the service time of customer 7 without
knowledge of number of customers arrived during the service time of customer 7. So,
we will say that sf;; is the service time of customer ¢ when it arrives at a non-empty
system and the first customer to be arrived is j. Here, we define Lemma 2

Lemma 2: Given a set of {a;,a;41,...,a,}, the formula given in Definition 2 is
convex in k for the increasing rate system and the service time of customer i(sf;;)
entering a non-empty system and j being the first customer to arrive during customer
1’s service period is given by:

sfij = min{s Z’;}, (4.11)
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forall kand fori € {2,3,...,n—1}andj € {i+1,...,n}.

However, while using Lemma 2 we require the knowledge of the first customer j
to arrive during the service period of customer ¢. Good news is that sf;; possesses
another concavity property that allows us to compute its value without knowing the
actual identity of job j.

So, in next lemma, we will define sf; as the service time of customer ¢ when it
arrives at a busy system.

Lemma 3: sf;j,7 = i+ 1,...,n given in Lemma 2 is concave in j for increasing
rate system and the service time of customer i(sf;), entering a busy system is:

sfi = max{sfi;}, (4.12)
forall j and fori € {2,3,...,n— 1}.

Now, our assumption was that simulation runs for n customers; there is a possibil-
ity that all n simulated customers arrived before the service initiation of customer i.
However, this possibility is quite thin, even then we will discuss about it. Let sl; be
the service time under this situation. So, lemma 4 defines this particular case of service
time of customer i:

Lemma 4: The service time of customer 7, when all n customers arrived earlier than
its service initiation, can be computed as:

sli = 1/pn—i, (4.13)
fori € {2,3,...,n—1}.

Now we are equipped with all the necessary equations to find out the service time
of customer 7. So we will define a theorem for service time s; of job .

Theorem 1 (Chan and Schruben, 2008): The service time of a customer in G(Q)
queue is given as

s; = min{min(Vk){sbl'}, maz{max(¥j){min(Vk){s Z}}}, slit} (4.14)

4.3 Formulation of SDQ-LP

Theorem 1 gives an equation which is max-plus recursion, which can be mapped as
linear constrains. In this section, we will use the stated equation to come up with a
derivation of a LP(Linear Programming) for SDQ (state dependent queue).

First of all, we will start with a simulation model of G/G//1 queue where the service
rate is constant. Figure shows this simple simulation model, which is one of the many
simulation models for G/G /1 queue. We use ERG (event relationship graphs) to define
the system dynamics. ERGs are a general, minimalist means of explicitly representing
or expressing all the dynamic causal relationship between events in a discrete event
dynamic model system.

The ERG in the given figure can be interpreted simply by following the arrows. We
define two events: which are Arrivals(A) of customers and Finish of services. There
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i = if system empty
j = if customers in queue

Figure 4.1: ERG simulation model of G/G/1 Queue.

are three arcs given in the figure. The first arc (A, A), which is unconditional, indicates
that once a customer arrives, the next one is scheduled to arrive after a delay of a which
is a random variable with realization a;, called as inter-arrival time.

Second arc (A, F), which is conditional, indicates that when a customer arrives, and
if the server is idle, it can start it’s service and will leave the system after a service delay
of s, which is a random variable with its realization s;, being the service time of ith
customer.

Third arc (F, F), which also is conditional, makes sure that once the server becomes
available due to departure of a customer, it will serve the next customer immediately,
provided that there is at least one customer is waiting in the line. And, this job will also
leave after it’s service delay of s, which is the same random variable as discussed in the
above paragraph for conditional arc (A, F).

The Mathematical Programming Representation (MPR) for this ERG that generates
the same sample path for a given data set of {(a;, s;),i = 1,2, ........ ,n} for n customers
is the Linear Programming (LP) shown in GG1 — L P. We know that arrival event times
are determined by data, the sample path is simply the one which finishes all the jobs
(departing of all the customers) in the minimum time i.e., as early as possible.

GGI1-LP (Chan and Schruben, 2008)

minz F; (4.15)
Vi
subjected to the constrains:
F,—A; > s, 1=1,... N
F,—F,_1 > s, 1=2,3,....... ,n

and all variables are positive.

Now, we have seen a linear programming for normal G/G/1 queue. Our goal is to
modify the G/G/1 ERG by replacing the independent service times s;, Vi with the ser-
vice times specified in Theorem 1. By doing this we are actually extending the G/G/1
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ERG to a pseudo SDQ-ERG. We call this modified ERG pseudo SDQ, because it can’t
actually be simulated in the usual "next event scheduling" manner because it requires
future information (i.e., future arrival times) to compute the service times. However,
the requirement of future information is never a problem for the corresponding Linear
Programming model because all the necessary data is available to LP.

Now, talking about the constrains for this pseudo ERG model for the SDQ, we can
easily say that, since it has same structure as the G/G/1 ERG model, the two constrains
in the GG1-LP model will also be needed in the SDQ-LP. Apart from these two con-
strains, we need to incorporate the equations in Theorem 1 into additional constrains on
the service times. From here we will derive the resulting SDQ-LP.

To come up with the desired LP, we add slack variables to express all constrains as
equalities. All the notations for slack variables follow the same format: yg, where «
represents the original variable in the corresponding constraint and [ is the subscript
(these can be multiple subscripts) of the original variable and the corresponding con-
straint. For example in a slack variable y;, where F represents the original variable F
in the constraint and the subscript ¢1 represents that this is the first ("1") constraint with
the original variable F;.

We will try to derive the constraints for service times now. From Lemma 1 we can
say that sb; is the minimum of all sb?. From here we can draw an important conclusion
that

sb; < sbf (4.16)

1=1,... sk =0,....,n—1.

Now, we will focus on sf;;. From Lemma 2 we can conclude that s f;; is the mini-
mum of all s i’}, which means

sfij < sfh (4.17)

Now, we will focus on sf; . From Lemma 3 we can say that s f; is the maximum of
all Sfij' So,

Now, we will look into Theorem 1 for more constraints. In the expression for service
time in Theorem 1, the second argument for the first minimum function is the maximum
between s f; and sl;. Now, we will define s f[; as the maximum and then:

and
1=2 . ,n — 1. Finally, again from Theorem 1, the service time s; is the minimum
of sb; and sfl;. Hence,

s < Sbi, (421)
=1, ... ,n, and

5 < sl 422)
1=2, . ,n—1
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From the inequalities (4.18),(4.19) and (4.20); we can say that the objective func-
tion of LP should act as an mechanism to push sf; and s fl; down to the maximum of
their corresponding right hand side. At the same time we can conclude from inequal-
ities (4.16),(4.17), (4.21) and (4.22) call the objective function to maximize sb;, sf;;
and s; by pulling it up to the minimum of their right hand sides, provided that enough
incentives has been given to hold right hand side unchanged during the course of mini-
mization or maximization.

Here is an example of such simple function:

main{sf; + sfl; — sb; — s; — Z sfii} (4.23)

Vi

However, as we can see, the above simple LP is not optimal. It is so because, maxi-
mizing some of the variables might conflict with minimizing some of the variables. For
example, minimizing sf; in equation (4.18) will conflict with the goal of maximizing
s fi; in equation (4.17); because minimizing s f; induces the inclination to have smaller
sfij’s, which contradicts the goal of maximizing sfij in (4.17).

Similarly, simply multiplying the variables with some coefficients in the objective
function or Linear Programming (LP) does not work because, their coefficients would
depend upon the data given in the particular problem, and determining their values will
require as much effort as running the entire simulation.

So, here we will use a new technique to solve this problem. This technique is to
transform the LP into a certain form so that, its optimal solution will be identical to the
simulation results. There are two steps involved in this transformation. First step is to
change all constraints into equalities by adding slack variables. Now, in the next step,
which is second step, we define an objective function of minimizing all slack variables
scaled by coefficients, ¢~ where c is some constant and : is the index of the customer
that the variable is associated with and n is the total number of simulated jobs. (Chan
and Schruben|, 2008)

Now, we perform transformation. After performing the transformation on the above
constraints along with the suggested objective function, we obtain an LP with the opti-
mal solution identical to the simulation trajectory of a SDQ.

SDQ-LP

mmz " (Yl b+ > v +Zy,fj+zysf+ysfl +yd Fun ) (4.24)
Vk ik

which is subjected to the following equalities:

Fy— Ay —yh = s, i=1,2, ... n (4.25)
F,—F_, —yh = s, =2, n (4.26)
sby + Y5y = sb, i=1,..,mk=0,.... N —i 4.27)
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Sf?,] + yfjflj = S 7{?7 Z = 2, ....... ,n— 1, (4‘28)

jJ=1+1,...... ynyk=0,..... n—7g+1
sfi — il = sfi, i=2,..on—1j=i+1,.....n (4.29)
sfl —yilt = s, i=2yn—1 (4.30)
sfl; —ysft = sl =2 n—1 (4.31)
si + vy = sb;, i=1,....,n (4.32)
si + yih = sfl, i=2,....,n—1 (4.33)

4.4 Simulations

In this sub-section, we will try to simulate a state dependent queue (SDQ) and com-
pare it’s results with uncorrelated queue. Let’s assume that in a state dependent queue,
service rate (u) is linearly dependent on the queue-length (k), such that:

= (1+ k) X pio (4.34)

where, i is the service rate when there are no customers in the queue i.e., £ = 0. Here,
we will assume that once a customer n enters the server, service rate remains constant
throughout it’s service and is equal to (1 + k) X 1o, where k is the number of customers
present in the queue at the time customer 7 entered the service.

Table 4.1: Here is the table comparing the mean queue length and the Variance of queue
length of both types of queues for different combinations of arrival rates and
service rates:

A 1 mean; means Var; varp
0.10 020 0.8568 0.43 223 192
020 040 0.8772 0.46 1.21 0.18
0.30 0.60 0.9269 0.46 1.01 0.09
040 0.80 1.04 0.48 1.19 0.05
0.50 1.00 1.00 0.49 1.16 0.05
060 120 1.00 0.50 1.02 0.04
050 1.20 0.71 041 0.63 0.03
060 1.00 1.48 0.59 248 0.05

From the results of the simulation we can see that if the service rate increases with
queue length linearly, then the mean queue length is smaller. Also the variance of the
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queue length is smaller. So, we can see that having SDQ help us in designing jitter-
buffer of optimal size.

MAT Lab Code Snippet

if newA < newD, (new arrival before new departure)
epoh= newA;

present= present + 1;
newA= epoh + (-1/a)log(rand); (new arrival)

if present == 1,

newD= epoh + (1/d);
end

else
epoh= newD; (new departure)
present= present - 1;
if present > 0,

newD= epoh + (1/(d(present+1)));

else
newD= inf;
end

disp(transpose(s));

m= mean(s); standard deviation = std(s);
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CHAPTER 5

Jitter Control in Qos Networks

This chapter has been inspired from the paper (12. Mansour and Boaz | 2001). It
talks about jitter control in networks and proposes on-line (arrival sequence is unknown
or real time algorithm) jitter control algorithm and compare their results with the best
possible jitter control algorithm (off-line algorithm) for a given arrival sequence. We
have tried to understand and the simulated the on-line algorithm given here.

Jitter is measured in two terms. One measure, called delay jitter, bounds the max-
imum difference in the total delay of different packets. The second measure called the
rate jitter, bounds the difference in packet delivery rate at various times. It measures
the difference between the minimal and the maximal inter-arrival times. We will focus
on rate jitter part.

For jitter control implementation, traffic incoming into the switch is input into a
Jjitter-regulator, which reshapes the traffic by holding packets in an internal buffer.
When a packet is released from a jitter-regulator, it is passed to a link-scheduler, which
schedules packet transmission on the output link.

For our rate jitter algorithms, we assume that the average inter-arrival time of the
input stream (X, )is given ahead of the time. Apart from that, we parameters denoted
Lnin and I, are also given which are lower and upper bound on the desired time
between consecutive packets in the output stream. The on-line algorithm uses a buffer
size of 2B + h, where h > 1 is a parameter, B is such that an off-line algorithm
using buffer-space B can release the packets with inter-departure times in the interval

[[min7 [ma:c] .

The algorithm guarantees that the rate jitter of the released sequence is at most the
best off-line jitter plus an additive term of 2(B + 2)(nae — Lmin)/h-

5.1 Rate Jitter Control

We consider the problem of minimizing the rate-jitter or how to keep the rate at which
packets are released within the tightest possible bounds given as [I,in, Inaz].- We will
use the equivalent concept of minimizing the difference between inter-departure times.
In this section, we will present an on-line algorithm for rate-jitter control using space
2B + h and compare it to an off-line algorithm using space B guaranteeing jitter .J. Our
algorithm guarantees rate jitter J + ¢B/h at most , where c is a constant. The algorithm
can work without knowledge of the exact average inter-arrival time. In this case, jitter
guarantees will come into effect after an initial period in which packets may be released
too slowly or we can say after a transition-time.

These are the parameters of the online rate-jitter control algorithm:

B = Buffer size of an off-line algorithm; B,y = B;



h > 1= space parameter for the on-line algorithm, such that B,,, = 2B + h;

Linin, Imae= bounds on the minimum and maximum inter-departure time of an off-
line algorithm respectively;

X, = average inter-departure time of the input sequence and also the output se-
quence

The parameters [,,,;,, [nq. are the worst rate-jitter bounds the application would tol-
erate in order to reach optimal level of jitter. The goal of the rate jitter control algorithm
is to minimize the rate jitter subject to the assumption that space B is sufficient (for an
off-line algorithm) to bound the inter-departure times in the range 7,,,in, Lmqz- The jitter
guarantees will be expressed in terms of 1,45, [jnin, XeandJ, where J is best rate jitter
for the given arrival sequence attainable by an offline algorithm using space B.

The key idea of the algorithm is to have next departure time as a monotonically
function of the current number of packets in the buffer. More the packets in the buffer;
lesser is the inter-departure time.

The algorithm uses 25 + h buffer space. With each packet in the buffer 0 < 2B +h,
we have a inter-departure time 7 DT(j) defined as follows. Let 6 = (Lae — Linin)/h-

IDT(]):Imaac OSJSB
[max_(]_B)(S B§]§B+h
Lnin B+h<j<2B

The algorithm starts with a buffer loading stage in which the packets are only accu-
mulated and not released until for the first time / DT(j) is less than X,.

Theorem 1 (12. Mansour and Boaz |, 2001) : Let Jbe the best rate-jitter attainable
(for an off-line algorithm) using buffer space B for a given arrival sequence. Then
the maximal rate-jitter in the release sequence generated by Algorithm is at most J +
(Imaz — Lmin)(2B + 4)/h and never more than [,,,4, — Lpnin.

We did simulations based on above algorithms and found results in accordance to
the Theorem 1.
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CHAPTER 6

RESULTS OF BRAVO EFFECT

This chapter is more of a literature survey of papers published by (Yoni Nazarathy,
2009) on BRAVO effect. It claims that previous results have shown that Balancing

Reduces Asymptotic Variances of Outputs.
Here are the results of the paper for different kind of the queues.

1. For M /M /1/K queue a factor of 1/3 appears for large K when A =

2. For M /M /1 queue a factor of 2(1 — 2/7) appears when A\ = p

3. For G/G/1 queue a factor of 1 — 2/7 appears when A =

4. For G/G/1/K queue a factor of 1/3 appears wen =

However, most of the above results are observation based and have been based on

simulations.

However, we could not generate the same effect; it can be useful for future work on
the variances of the inter-departure processes.



CHAPTER 7

CONCLUSION

We saw that state dependent queues are difficult to analyze, but we can still draw some
valuable results. In chapter 3, we tried to implement a linear policy for service-time of
customer n, which depends upon waiting time of customer n. We found the variance of
the difference of the successive service times, which was dependent on some variable
coefficient €. Using this relation, we can reduce this variance and hence, reduce the
fluctuations in the service times. We also derived the variance of inter-departure times,
which again depends on some variable coefficient €. Using this relationship, we tried
to reduce the variance of the inter-departure time, which will help us in minimizing the
jitter in the outgoing stream.

In chapter 4, we tried to obtain a mathematical programming representation for
the sample path dynamics of a state dependent queue. Here, the service rate was de-
pendent linearly on the number of customers in the queue. We derived equations for
service times and derived the constrains from a G/G/1 queue simulation model from
the equations for the service times. We derived the MPR formulation of the SDQ us-
ing convexity property. Finally we close the discussion by SDQ-LP (State dependent
Queue- Linear Programming).

We simulated some state dependent queues were service rate depends upon the num-
ber of the customers and increases as the queue-length increases. We calculated the
mean queue length and as expected it was low and the variance of the queue length
dropped dramatically. It can help us in designing systems with lower buffer-sizes.
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