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ABSTRACT

KEYWORDS: congestion games; non-cooperative games; Nash equilibrium;

Wardrop equilibrium; social cost; marginal cost pricing; series-

parallel graph; Price of Anarchy; Price of Collusion

The distribution of traffic on roads converges to an equilibrium known as Nash equilib-

rium. As a result of each user(player) acting in their own interest, the system reaches

a state where no individual user can benefit from changing their strategy. However, the

collective price paid (in terms of resources or time taken) by the users can be further

minimised if there is additional information provided to the users. Price of anarchy is

a measure of damage caused to social benefit by anarchy in the network. Levying ad-

ditional tax at edges likely to cause maximum damage is one way to provide additional

information to the users.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

1.1.1 Congestion games

The behaviour of traffic on roads can be modelled as a congestion game. A congestion

game is a non − cooperative potential game. In general, network games differ in

the kind of interaction between the players and the type of traffic. Games are usually

classified as cooperative and non− cooperative, discrete, atomic and nonatomic.

In Roughgarden et al. (2002) a network game is denoted by Γ(E, c, S, n, a),

whereP is the set of n players of k player types,E is the set of edges e and s is a

strategy belonging to the set S.

The edge cost (or latency) functions are given by ce(ξ) where ξ is the load on the

edge e. We usually assume the latency functions to be positive and convex functions

in ξ. aS,e is the rate of consumption on the edge e due to the strategy S which is

usually taken to be 1, i.e., any two players are assumed to be interchangeable. An

action distribution x is the measure of the number of players based on their choice of

strategy.

1.1.2 Classification of games

If there exists a partition on P such that the elements are either atoms (i.e., they cannot

be split further) or null sets then the game is atomic. Otherwise, it is a nonatomic

game. Discrete games are a subset of atomic games whose probability measure is a

discrete probability distribution.

In a noncooperative game, the players do not form coalitions and choose their

strategies such that at equilibrium none of the players have an incentive to change



their strategies. If the incentive of players to change their strategy is given by a global

potential function then the game is known as a potential game.

Incongestion games the payoffs are determined by a global potential function

and they are noncooperative, which means that the payoff to each player depends only

on the player’s strategy and on the number of other players choosing an interfering

strategy.

Games can be either of pure or mixed strategy. Pure strategy means the players

have a decided path once they choose a strategy. In a mixed strategy, the player can

randomly choose from the set of pure strategies with a finite probability. The corre-

sponding equilibria (if possible) are called pure equilibrium and mixed equilibrium.

In a congestion game with predetermined cost function c, xe =
∑k

i=1

∑
SεSi

aS,exS

gives the total measure of traffic on edge e due to all strategies sεS. cS(x) =
∑

eεS aS,ece(xe)

gives the total price paid by the users choosing a particular strategy s ε S. Thus, the

social cost function for a given distribution of traffic x is calculated as,

C(x) =
k∑
i=1

∑
SεSi

cS(x)xS

Our goal is to minimise this social cost function in order to maximise the collec-

tive benefits of all the players in P .

1.1.3 Nash equilibrium, Price of Anarchy and Marginal cost

Nash equilibrium is defined as the state of equilibrium in a noncooperative game

where knowing the strategies of other players, no player can find an alternate strategy

to increase his gain. Wardrop equilibrium is defined as the state of equilibrium in

which the latency due to all the routes is equal and is lesser than the latency associated

with any unused routes in the network. Price of Anarchy (PoA) is defined as the

worst-case ratio between the latency at Nash equilibrium to the latency when there is

optimal flow of traffic. Marginal social cost function c∗e(ξ) is given by the derivative

of the original social cost,

c∗e(ξ) = ξc
′

e(ξ) + ce(ξ)
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Thus,marginal cost can be understood as the cost incurred after adding an additional

load to the system. Marginal cost gives us an idea of which links are more prone to cre-

ate bottlenecks.

Roughgarden et al. (2002)quantifies the lower bound on the price of anarchy in

noncooperative games with convex latency functions. The paper studies and identifies

nonatomic congestion games whose equilibria are approximately equal. That is, the

optimizing strategy for individuals approximately leads to a social optimum. Every

nonatomic congestion game has atleast one equilibrium and all distinct equilibria

have equal social cost.

A class of differentiable and semi−convex1 cost functions as standard. Let x be

the equilibrium action distribution and x∗ be the desired optimal action distribution. For

this class of standard cost functions, the price of anarchy ρ(Γ) can be upper bounded

by,

α(C) = supcεC supx: c(x)>0 [λµ+ (1− λ)]−1

where λ = x∗/x, µ = c(x∗)/c(x) and c∗(x∗) = c(x).

If x is an equilibrium action distribution for (E, c, S, n, a) and x∗is the action distri-

bution for (E, c, S, (1 + δ)n, a) for δ > 0, then

C(x) ≤ 1

δ
C(x∗) (1.1)

Roughgarden and Tardos (2002) works with a continuous flow of traffic, which is

ensured by the assumption that each player controls ε amount traffic as ε→ 0. It upper

bounds the price of anarchy to 4/3 when the latency function is linear. If the latency

function is continuous and non-decreasing, then the total latency of the routes chosen

by selfish players maybe arbitrarily larger than the minimum possible total latency.

However, the latency at Nash equilibrium is no more than the optimal latency due to

twice the traffic, which is a special case of the continuous traffic equivalent of the

result obtained in (4).

Grosu and Chronopoulos (2002) classifies load-balancing approaches in networks

into global, cooperative and noncooperative approaches. In the global approach there

1If xf(x) is a convex function then f(x) is said to be a semi− convex function.
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is a single decision maker who tries to arrive at a social optimum. In the cooperative

approach, there are several decision makers each trying to optimise the collective de-

lay of its own set of players. This has a structure similar to a cooperative game. A

network that adopts a noncooperative approach behaves like a noncooperative game

where each player tries to minimise its own load in the given situation. This paper gives

an algorithm to balance load in a cooperative game where each decision maker places

a bid on the amount of load it can handle. The goal is to arrive at a payment mechanism

where each agent has to make a truthful bid to gainmaximum profit. The algorithm

succeeds in arriving at an optimal load distribution by defining an appropriate payment

function. This way the players profit the most by bidding only the true value of the

load.

Here b = (b1, b2, ....., bn) is a vector of bids placed, Λ(b) = (λ1(b), λ2(b), ....., λn(b))

is the vector of the output loads, P (b) = (P1(b), P2(b), ....., Pn(b)) is the vector of the

payments made to n agents and the true values of load are taken to be ti. The corre-

sponding cost function is costi(ti, λ(b)) = tiλi(b) and profit function is profiti(ti, b) =

Pi(b)−costi(ti, λ(b)) for agent i. Let b−i represent the vector (b1, b2, ....., bi−1, bi+1, ....., bn).

If P (b−i, bi) = biλi(b−i, bi) +
∫∞
x
λ(b−i, x)dx, then each agent makes a truthful

bid, that is, ti = bi. Thus, any agent trying to bid a value lower than its true value t will

get a lower payment and incur a higher cost leading to a lower profit. On the other

hand an agent trying to bid a value higher than its true value is bound to get a lower

profit. The profit earned reaches its peak only when the user is truthful.

1.1.4 Edge Pricing

Since aNash equilibrium does not lead to the minimum possible latency, edge pricing

is used to achieve an optimal solution. Marginal cost pricing is an older method used

to eliminate the inefficiency of a Nash equilibrium. The method asserts that the play-

ers should be charged with taxes corresponding to the additional congestion due to their

presence. However, this method makes an assumption of homogeneity that all players

will apply the same tradeoff between latency and taxes. Cole et al. (2003)considers

a network with a heterogeneous set of players and devises a pricing mechanism to

achieve optimal routing of traffic. Each player is assigned a tax sensitivity α(a) and

ix



minimum total latency in the network is computed by minimising the sum of latency

and α(a) times the tax that player a pays.

1.1.5 Effects of cooperation on Social Cost function

Hayrapetyan et al. (2006) quantifies the price of collusion of players in a game. Price

of anarchy assumes that the agents act selfishly, and also independently. Collusion

might lead to a positive or a negative impact on the social benefit factor. The price of

collusion (PoC) depends upon the disparity in power among the game participants. In

convex games, this quantity could become arbitrarily large. For games with convex

latencies, in symmetric nonatomic games the PoC is 1 while in symmetric discrete

congestion games it is upper bounded by 2. In games with concave latencies, the PoC

is upper bounded by 2 only if a pure equilibrium exists. For mixed equilibria, PoC

lies between 8/7 and 4.

1.1.6 Interesting properties of graphs with equilibria

Bhaskar et al. (2009) discusses the existence of multiple equilibria based on the type

of graph. The type of game studied is an atomic splittable flow game where each

player controls a discrete amount of traffic. An atomic splittable flow game has an

agreeing cycle if and only if atleast one of the circulations has the same direction as the

net circulation along its edges. A game with only two players has a unique equilibrium

iff the graph is a generalized series−parallel graph and a game with multiple players

of two types has a unique equilibrium iff the graph is a s − t − series − parallel

graph. For games with multiple types of players a unique equilibrium exists iff the

graph is a generalized nearly parallel graph. Equilibria are not unique for games

in 2 − terminal nearly parallel graphs. A s − t − series − parallel graph is a

two-terminal graph where the nodes other than the terminals are connected to only two

other nodes. A generalized series− parallel graph does not contain K4 as its minor.

In a generalized nearly parallel graph the components have two nodes which are

connected by vertex − disjoint paths. An alternate definition is that a generalized

nearly parallel graph contains atleast one agreeing cycle.
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1.2 Problem Statement

We have a data set of link characteristics and input traffic for Chennai city roads. The

data shows the existence of 4235 edges and 1569 nodes. Of these 1569 nodes, only 290

nodes/zones (from 929 to 1218) are potential origins/destinations. The potential

function for this network has been given as,

Travel time =Freeflow time ∗(1 + α(v/C)β) where,

travel time is the actual time taken to traverse the link, freeflow time is the time

taken when there is no competition, v is the volume of traffic on the link vehicles per

hour and C is the capacity of the link in the units vehicles per hour.

The objective is to minimise travel time from any origin to any destination. How-

ever, both minimising total travel time and determining link−wise traffic distributions

are impossible given the size of the network.

1.2.1 Decluttering the network

This is an image of the entire network as a graph.
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Figure 1.1: Original network

In order to prune the network, we classify the links based on their properties.

α, β and C

The network has only 4 sets of (α, β) values: (1.167, 1.189), (1.549, 1.064), (2.067, 1.33)

and (2.152, 1.013). Furthermore, there are only 9 values ofCapacity C, (1400, 1900, 2800, 3400, 3800, 4500, 6700, 12000, 99999)

each falling distinctly into one of the (α, β) categories defined above.

d(cost)/dv

Though the above classifications help us divide the network into more manageable sec-

tions, the measures in themselves do not have much meaning.

d(cost)

dv
= (Freeflowtime) ∗ α ∗ β ∗ (v/C)(β−1)
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gives us the marginal cost function for the network for the defined c(x). The

marginal cost computed at v = 1 showed a well-defined partition among the links.

The values were either greater than 100 or lesser than 0.5. From the definition of

marginal cost function, it is obvious that the links with the higher marginal cost at unit

volume are more prone to become congested.

The network simplifies to:

Figure 1.2: Links with greater marginal cost

Making use of this property, the aim is redefined to finding and observing only the

worst− case routes for each of these 290 origin nodes.

1.2.2 Assumptions

We will be calculating an approximate distribution of traffic under optimal and nash

equilibrium conditions. We will be making the following assumptions:

1. We are only concerned with reaching the next node on the route at any given

point of time.

2. Among all the possible next nodes, we will consider the route with the highest
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difference in volume of traffic under optimal and nash equilibrium conditions to

be our worst − case route. This is justified by the argument that with the addition or

removal of each unit of traffic this link will be the worst affected. The rest of the terms

in the optimisation can be ignored.

3. While calculating the traffic distribution for nash equilibrium conditions, we

will equate the costs as seen by a single user on each of these competing links based on

assumption 1.

4. Once the user reaches the next node on the worst − case route, we can opt to

either,

i) Continue without reestimating the traffic volumes using optimal case to improve

the Nash equilibrium routing. We will call this the Without Look Back method. Or,

ii) Reestimate the traffic volumes as seen in the optimal case before routing in the

next node for both optimal and Nash equilibrium cases. We will call this the Look Back

method.

1.3 Solution

Based on the structure of the network and the assumptions mentioned above, we can do

the following operations at each node.
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Figure 1.3: Example

Let V be the volume of traffic coming into node 1. Let C12,C13,C14 be the ca-

pacities, v = (v12, v13, v14) be the traffic volumes after optimal distribution and v′
=

(v
′
12, v

′
13, v

′
14) be the traffic volumes after achieving nash equilibrium, t12,t13,t14 be the

freeflow times and t′12,t
′
13,t′14 be the real travel times for the links 1− 2,1− 3 and 1− 4

and v12 + v13 + v14 = V , v′
12 + v

′
13 + v

′
14 = V . The minimisedobjective function is

of the form,

t = t
′

12 + t
′

13 + t
′

14

t = t12(1 + α12(v12/C12)
β12 + t13(1 + α13(v13/C13)

β13 + t14(1 + α14(v14/C14)
β14

Similarly, we will consider only the nearest neighbours for calculating nash equilib-

rium. Therefore,

t12(1 + α12(v
′

12/C12)
β12 = t13(1 + α13(v

′

13/C13)
β13 = t14(1 + α14(v

′

14/C14)
β14
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Now the worst-case route will be the one which will show a major variation between

the distributions for optimal and nash equilibrium conditions. Thus, we choose the link

for which the difference between the vectors v and v′ is maximum and proceed further

in a similar manner.

For computing traffic distributions Without Looking Back,

v = findopt(links, linkchar, VOpt)

v
′
= findnash(links, linkchar, VNash)

For computing traffic distributions While Looking Back,

v = findopt(links, linkchar, VOpt)

v
′
= findnash(links, linkchar, VOpt)

Here, the Nash equilibrium traffic distribution is kept updated in the new configura-

tion using v′ but the input traffic flow at the next step is always taken from the Optimum

traffic distribution, which is updated using v.

The termination condition for these routes is that they either reach one of the

zones or any node is repeated (leading to cycles). Since some links are far more

sensitive to changes in traffic volumes, when we solve the above equations we will find

that these links are chosen more often as the worst links.

1.4 Results

1.4.1 Graphs

The graphs show the behaviour of the worst-case route starting from one of the 290

zones. The X-axis gives the sequence number of the intermediate nodes along the

route. The Y-axis gives the steady state volume of traffic inflow at the intermediate

nodes. Each node also contains a label with the amount of traffic inflow at the

instant of routing, fraction of traffic being sent through the worst link and the

current node number.
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Figure 1.4: Worst-case route for route 269(Without Look Back)
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Figure 1.5: Worst-case route for route 269(With Look Back)

1.4.2 Comparison between Without Look Back and Look Back meth-

ods

The difference between routes computed without looking back and looking back are as

follows:
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Figure 1.6: Difference in path length

Measuring differences in path lengths is not an accurate method of comparing the

two methods as the measure only keeps track of the number of links traversed. So

instead we will look at how the sum of minimized net travel time taken along each

of the 290 routes varies for these two methods.
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Figure 1.7: Difference between sum of minimised objective functions

It is not intuitive that the LookBack method returns such high values of cumulative

objective function for certain routes. So to observe the difference we will look at

the routes for which the difference in cumulative objective function is less than

−10000. These routes start at 15,47,50,95,163,167,168 and 269 numbered zones.
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1.4.3 Anamolous Routes

Figure 1.8: Worst-case route for route 15(Without Look Back)

Figure 1.9: Worst-case route for route 15(With Look Back)
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Figure 1.10: Worst-case route for route 47(Without Look Back)

Figure 1.11: Worst-case route for route 47(With Look Back)
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Figure 1.12: Worst-case route for route 50(Without Look Back)

Figure 1.13: Worst-case route for route 50(With Look Back)
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Figure 1.14: Worst-case route for route 95(Without Look Back)

Figure 1.15: Worst-case route for route 95(With Look Back)
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Figure 1.16: Worst-case route for route 163(Without Look Back)

Figure 1.17: Worst-case route for route 163(With Look Back)
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Figure 1.18: Worst-case route for route 167(Without Look Back)

Figure 1.19: Worst-case route for route 167(With Look Back)
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Figure 1.20: Worst-case route for route 168(Without Look Back)

Figure 1.21: Worst-case route for route 168(With Look Back)
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Figure 1.22: Worst-case route for route 269(Without Look Back)

Figure 1.23: Worst-case route for route 269(With Look Back)

1.4.4 Reason for Anomalies

We can clearly see that in each of the above anamolous cases the volume of traffic

inflow becomes very high starting at some node on the route. There are nodes which

accumulate high volumes of traffic on these worst case routes. In these cases, the vol-

umes are higher than the combined capacities of links with lower values of freeflow

time. The free flow travel times of links with C = 99999 are close to 167 and when

compared with the lower values of freeflow time which are close to 1. Due to this

while finding optimal and nash solutions most of the traffic is routed through alternate
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links as the cost function for links with lower free flow times remain smaller than

those with higher free flow times, even when v becomes much greater than C. And

without a constraint on the volume of traffic v allotted to each link, the cumulative

sum of travel time tends to become very, very high. The failure of the constraint

v/C <= 1 immediately leads to greater congestion along these routes. The reason

why certain nodes accumulate more traffic than others seems to be that they are situ-

ated directly on the worst case routes for more than one zone and are also adjacent to

and thus, indirectly affected by more zones. The table given below demonstrates the

same fact for the deviating nodes on the anamolous routes. We can also observe that the

difference in minimized objective function for each route varies in inverse relation

to the number of routes sharing these high volume nodes and varies direct relation

to the number of zones contributing to the traffic.
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end node start node length speed traffic at origin difference

in sum of

objective

function

affected routes

71 981 3.12023 0.0187214 651.88513 -274670 95

71 993 1.44513 0.00867078 0 -274670 95

74 994 0.635915 0.00381549 95.73896 -274670 95

74 1011 0.928296 0.00556977 2328.38148 -274670 95

417 1196 0.520528 0.00312317 164.06063 -142390 269

417 1197 0.342551 0.00205531 2200.36371 -142390 269

338 1091 1.97845 0.0118707 4226.83331 -101800 15

-65060 163

-65060 167

-65060 168

338 1095 1.19495 0.00716973 1415.62942 -101800 15

-65060 163

-65060 167

-65060 168

338 1096 0.797588 0.00478553 1798.65727 -101800 15

-65060 163

-65060 167

-65060 168

534 1081 0.905861 0.00543517 3010.62288 -222400 47

-150720 50

534 1082 0.280404 0.00168242 10.35431 -222400 47

-150720 50

Table 1.1: Link characteristics for selected routes

NOTE: The initial node IDs given in the table are zones (in the 929 to 1218 range)
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