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ABSTRACT

Paris Smaragdis’s paper Non-negative Matrix Factorization on Polyphonic Music Transcription(1)

gives a methodology for analyzing polyphonic musical passages comprised by notes

that exhibit a harmonically fixed spectral profile (such as piano notes). Non-negative

matrix decomposition methods are used to estimate temporal information of every note.

After separatrion, when temporal activity of a particular note is analyzed, it is observed

that other notes are faintly heard. This project concentrates on reducing this problem

which results in producing a better separated signal.

KEYWORDS: Non-negative Matrix Factorization (NMF); Kullback-Leibler (KL)

Divergence; Hanning window
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CHAPTER 1

INTRODUCTION

Piano notes exhibit harmonically fixed spectral profile. Taking advantage of this unique

note structure we can model the audio content of a musical passage by a linear basis

transform and use non-negative decomposition methods to separate every note. This ap-

proach is data driven and does not incorporate any prior knowledge of musical structure.

It is based on the concept of redundancy reduction.

1.1 Non-negative Factorizaion

Non-negative matrix factorization was first proposed by Lee and Seung(2). Starting

with a non-negative matrix XM×N , the goal of NMF is to approximate it as a product

of two non-negative matrices WM×R and HR×N . We do so by minimizing the cost

function:

C = ||XM×N −WM×R ·HR×N ||

In more common terms what NMF does is summarize the profiles of the rows of

X in the rows of H, and likewise for the columns of X in the columns of W. The

parameter R that sets the rank of approximation controls the power of summarization.

If we choose appropriate values for R then it is possible to extract the major elements

of the structure of X.

For a music passage, apply a L-length spectral window and compute its time depent

magnitude spectrum x(t) = ||DFT ([s(t)...s(t + L)])||. The set of all the x(t) can be

packed as columns into a non-negative matix XM×N , where N are the total number

of spectra we computed and M (=L/2+1 because of repetitions after the middle sample

of DFT) is the number of their frequencies. Now we can perform NMF on our non-

negative matrix X.



Lee and Sueng’s paper(3) gives us two different multiplicative algorithms. One

algorithm can be shown to minimize the conventional least squares error while the other

minimizes the generalized Kullback-Leibler divergence. The monotonic convergence

of both algorithms can be proven using an auxillary function analogous to that used for

proving convergence of he Expectation Maximization algorithm.

In this project following update rules of Kullback-Leibler Divergence are imple-

mented:

Haµ ← Haµ

∑
iWiaXiµ/(WH)iµ∑

kWka

Wia ← Wia

∑
µHaµXiµ/(WH)iµ∑

ν Haν

Elements of W and H respectively contain the spectrum and the temporal informa-

tion of the notes.

Xk,ij = Wik ∗Hkj

where k = 1, 2, ..., R
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CHAPTER 2

A MUSICAL PASSAGE

Figure 2.1: A Musical Passage Example

2.1 NMF on Magnitude Spectrum

The given example has five events made up from four different notes. It is sampled at

22,050kHz. We produce the time dependent magnitude transform spectrum and analyze

it using NMF and dictionary size of 4 (R = 4) beacause it has four notes. For the

spectrum analysis we use a 2048-point DFT and a Hanning window with 50% overlap.

After Reconstruction using nth row of H and nth column of W, we get 4 different

music signals.



Figure 2.2: Reconstruted Music Signal 1

Figure 2.3: Reconstruted Music Signal 2
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Figure 2.4: Reconstruted Music Signal 3

Figure 2.5: Reconstruted Music Signal 4
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Figure 2.6: 4th Reconstructed signal compared to 1st

If we play them, we can hear a main note (loud) and other notes (faintly heard) at

the same time instants as the notes in original musical passage. From the plots, we can

make a clear distinction between main notes and faintly heard notes. Our main goal is

to remove these faintly heard ones from the four reconstructed music signals.

Let’s take a look at the fourth reconstructed signal from the perspective of the other

three.
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Figure 2.7: 4th Reconstructed signal compared to 2nd

Figure 2.8: 4th Reconstructed signal compared to 3rd
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Figure 2.9: 4th Reconstructed signal compared to 1, 2 & 3 signals
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Figure 2.10: NMF on both Magnitude and Phase Spectrum

From the above figure, we can notice that this clearly isn’t a very good idea.
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2.2 Repetitions on NMF (only Magnitude Spectrum)

Figure 2.11: Repetition of NMF on 4th Signal when W and H are randomly initialized
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When NMF is done on the original musical passage, matrices W and H are initialized

with random values between 0 and 1. From the Figure on previous page it can be con-

cluded that it isn’t a good idea when NMF is repeated. So W and H (one column of W

and the corresponding row of H) are intialized with the results of NMF on original mu-

sical passage (other three colums and rows are initialized with random values). Again

we get 4 different signals after reconstruction of which one of them closely resembles

the original reconstructed signal. This process can be repeated again and again.

Consider 4th separated signal,

Wk,initial(:, 4) = W1,final(:, 4)

Hk,initial(4, :) = H1,final(4, :)

Where Wk denotes W matrix for NMF×k and k = 2, 3, .... Other 3 columns and

rows of W and H respectively are initialized with random values between 0 and 1.

From plots, It can be seen that the fainlty heard ones become smaller and smaller as

no. of NMF repetitions increase. After about 100 repetitions on NMF, we can clearly

notice a change in waveform of the main component as indicated in the figure. In spite

of this, the main component sounds the same even after 100 repetitions and the faintly

heard ones vanish.

|Error|k = norm(Original Signal− Sum of all four signals after NMF× k)

11



Figure 2.12: Repetition of NMF on 4th Signal when W and H are initialized appropri-
ately
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Figure 2.13: Comparision between NMF once and NMF twice (after initializing appro-
priately)
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Figure 2.14: Comparision between NMF once and NMF x 10
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Figure 2.15: Comparision between NMF once and NMF x 100
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Figure 2.16: Overall Distortion plot
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CHAPTER 3

SYNTHETIC EXAMPLE

The musical passage considered in this project is from a natural piano. Since NMF

is completely data driven, we cannot be sure if this distortion happens for a synthetic

example.

y[n] = ancos(ω1n) + bncos(ω2n) + cncos(ω3n)

For the example considered, a = .99975; b = .99985; c = .9998; ω1 = 10000;

ω2 = 20000; ω3 = 15000;

It can be seen from Figure [3.2] that distortion exists even in synthetic case.

Figure 3.1: A Synthetic Example



Figure 3.2: Comparion between NMF once and NMF x 100 for given Synthetic Exam-
ple

18



Figure 3.3: Overall Distortion plot of Synthetic Example

19



CHAPTER 4

CONCLUSION

The method implemented here to remove the faintly heard ones works only when NMF

matrices are initialized properly. If they are intialized using random values, it is ob-

served that there isn’t any improvent for later repetitions.

As the number of repetitions on NMF increases, distortion keeps on increasing. In

spite of this, the main component sounds the same even after a significant number of

repetitions. So this method solves our goal of removing faintly heard ones at the cost of

distorting the main component (which is in acceptable range).

4.1 Future scope of work

From the method that we discussed, it is clear that at every NMF stage, we not only lose

some information of the faintly heard ones but also that of main component. So there is

a possibility in finding a better separation method.
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APPENDIX A

MATLAB CODE

A.1 NMF for the first time

clear

[y, Fs, nbits]=wavread(’filename’); %read .wav file

k=2048; %2048-pt. hanning window

l=ceil(length(y)/k);

y(length(y)+1:l*k,1)=zeros(l*k-length(y),1);

win=window(@hann,k); %50 overlap

rdim=4; % dictionary size

V=zeros(k,2*l-1); %magnitude matrix

U=zeros(k,2*l-1); %phase matrix

for j = 1:l

v = y((k*(j-1)+1):j*k).*win;

V(:,2*j-1) = abs(fft(v));

U(:,2*j-1) = angle(fft(v));

end

for j=1:l-1

v = y((k*(j-1)+1+k/2):j*k+k/2).*win;

V(:,2*j) = abs(fft(v));

U(:,2*j) = angle(fft(v));

end



[M,N] = size(V);

V = V((1:(M/2 + 1)),:);

[m,n] = size(V);

W = rand(m,rdim,’single’);

H = rand(rdim,n,’single’);

E = [];

e = 1;

E = [E, e];

i = 1;

%NMF

while(e > 0.05) && (i<500)

H = H .* ((W’*V) ./ (W’*W*H + 1e-9));

W = W .* ((V*H’) ./ (W*H*H’+ 1e-9));

e = sum(sum(abs((V-(W*H)))))/(m*n);

E = [E, e];

i= i+1;

end

i

e

W(k/2+2:k,1:rdim)=zeros(k/2-1,rdim);

[P,nmfRatio]=plot1(l,k,Fs,nbits,W,H,U,y);

%Reconstruction of signals done in plot1 function

23



A.2 NMF Function

function [W,H,i,e] = nmf1_1(V,rdim,ts,k,Iter,Err,H1,W1)

[m,n] = size(V);

W = rand(m,rdim,’single’);

H = rand(rdim,n,’single’);

% Appropriate Initialization as discussed in report

W(:,ts)=W1(1:k/2+1,ts);

H(ts,:)=H1(ts,:);

E = [];

e = 1;

E = [E, e];

i = 1;

while(e > Err) && (i < Iter)

H = H .* ((W’*V) ./ (W’*W*H + 1e-9));

W = W .* ((V*H’) ./ (W*H*H’+ 1e-9));

e = sum(sum(abs((V-(W*H)))))/(m*n);

E = [E, e];

i= i+1;

end

end
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A.3 Plot Function

function [P,nmfRatio] = plot1(l,k,Fs,nbits,W,H,U,y)

a=1:2:2*l-1;

b=2:2:2*l-2;

wdim = size(W);

rdim = wdim(2);

P = zeros(k*l,rdim);

for i = 1:rdim

p_a = W(:,i)*H(i,a);

p_a = p_a.*exp(U(:,a)*sqrt(-1));

for j=1:l

p_a(:,j)=real(ifft(p_a(:,j)));

end

p_b = W(:,i)*H(i,b);

p_b = p_b.*exp(U(:,b)*sqrt(-1));

for j=1:l-1

p_b(:,j)=real(ifft(p_b(:,j)));

end

p_bb=zeros(k*l,1);

p_bb(1+1*(k/2):k*(l-1)+1*(k/2),1)=p_b(:);

p_b=reshape(p_bb,k,l);

p = zeros(k,l);

p = p_a + p_b;

25



% p = p./max(abs(p(:)));

P(:,i)=p(:);

end

nmfRatio=max(abs(P(:)))/max(abs(y));

P = P./nmfRatio;

for i=1:rdim

figure(i);

hold on

plot(P(:,i));

ylim([-1 1]);

fname1 = sprintf(’hann_50_22_2048_%d.mat’, i);

fname2 = sprintf(’hann_50_22_2048_%d.fig’, i);

title(fname1);

hold off

saveas(figure(i),fname2);

fname3 = sprintf(’hann_50_22_2048_%d’, i);

wavwrite(P(:,i),Fs,nbits,fname3);

end

end
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A.4 NMF Repetition Function

clear

[y, Fs, nbits]=wavread(’test (3)’);

rdim=3;

ts=3;

k=2048;

l=ceil(length(y)/k);

y(length(y)+1:l*k,1)=zeros(l*k-length(y),1);

win=window(@hann,k);%50% overlap

z=y;

Z=[];

X=[];

nmfIter=100;

nmfRatio=zeros(nmfIter,1);

for It=1:nmfIter

V=zeros(k,2*l-1);

for j = 1:l

v = y((k*(j-1)+1):j*k).*win;

V(:,2*j-1) = abs(fft(v));

end

for j=1:l-1

v = y((k*(j-1)+1+k/2):j*k+k/2).*win;

V(:,2*j) = abs(fft(v));

end

[M,N] = size(V);
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V = V((1:(M/2 + 1)),:);

load(’U.mat’);

load(’W.mat’);

load(’H.mat’);

[W,H,i,e] = nmf1_1(V,rdim,ts,k,500,0.00005,H,W);

W(k/2+2:k,1:rdim)=zeros(k/2-1,rdim);

[P,nmfRatio(It,1)]= plot2(ts,l,k,Fs,nbits,W,H,U,y,It);

z1=norm(z - P(:,ts));

Z=[Z,z1];% distortion measure

y=P(:,ts);

end
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