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ABSTRACT

KEYWORDS: Multilateration ; TDOA; Extended Kalman Filtering; Multi-

path channel.

Extended Kalman Filtering is a recursive algorithm for estimation in a non-

linear process and measurement model. In this thesis, an algorithm is proposed

employing the multilateration technique for Mobile Station (MS) localization.

First, the performance of the algorithm along with several other attributes are

studied for two different mobility models for an LOS environment. This is

followed by a performance study in a multipath environment with pre-defined

channel characteristics determined by the Jake’s model and different Power De-

lay Profiles.
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CHAPTER 1

INTRODUCTION

A general outline of the problem statement and the thesis is described in this

section.

1.1 Background

Localization is the pinpointing of the position of an object on the surface of the

Earth, and is measured in terms of latitude and longitude. This thesis concerns

MS (Mobile Station) localization. The MS transmits and receives signals to

and from various BS (Base Stations). Various aspects of these signals could be

used for pinpointingMS location to varying degrees of accuracy. For example,

TOA (Time of Arrival) data could be employed. However, the problem involves

factors like how theMS moves (the mobility model), noise present in data and

so on. Algorithms or pinpointing could be static, like the least squares method

or recursive, like Kalman Filtering. We try to develop an algorithm based on

Extended Kalman Filtering for localization, and study its performance aspects

under various scenarios.

1.2 Problem Statement

Consider an environment with a pre-set number of base stations (BS) at spec-

ified locations in a 2 × 2 grid. The problem is to come up with an accurate

and reliable algorithm for mobile phone tracking in various environments and

mobility models, and check performance. The algorithm must employ the mul-

tilateration technique to overcome the synchronization problem faced in trilat-

eration. It has to be tested for robustness with respect to varying measurement



error and the complexity aimed to be minimized. It has to be simulated for two

realistic multipath channel to check performance.

1.3 Thesis outline

In Chapter 2, different kinds of localization schemes are introduced. Various

measurements which are useful in solving the localization problem are investi-

gated. A few localization algorithms available in literature are also mentioned.

In Chapter 3, the concept of Extended Kalman Filtering is introduced in context

with localization. Simulations, results and conclusions are discussed in Chapter

4.
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CHAPTER 2

Localization techniques

2.1 Trilateration

Trilateration is the fundamental concept behind most localization algorithms.

It is a method to determine the position of an object based on simultaneous

range measurements from three or more known locations (the locations being

non-collinear). In 2D geometry, it is known that if a point lies on two curves

such as the boundaries of two circles then the circle centres and the two radii

provide sufficient information to narrow the possible locations down to two.

Additional information may narrow the possibilities down to one unique lo-

cation. It could employ TOA data, which are described subsequently in the

chapter. [1] employs trilateration for localization.

Figure 2.1.1: Trilateration



2.2 Multilateration

Multilateration is a technique based on the measurement of the difference in

distance to two or more stations at known locations that broadcast signals at

known times. Difference in distance gives a hyperbolic locus for the object in

2D. With two or more sites, the object is fully localized. Multilateration could

employ TDOA data, described later in the chapter. This thesis employs Mul-

tilateration for localization. Acquiring absolute time values as in trilateration

is difficult and more error prone as compared to obtaining difference in arrival

time from theMS point of view.

2.3 Subspace based approaches

They are linear methods for noise reduction. Information is contained in a

small linear subspace of the possible sample vectors (signals), whereas addi-

tive noise is distributed isotropically. A subspace based localization algorithm

is discussed in [2].

2.4 Metrics in localization algorithms

The most common metrics associated with the localization process are dis-

cussed in this section.

2.4.1 TOA (Time of Arrival)

These measurements involve the travel time of a radio signal from a single

transmitter to a remote single receiver. By the relation between light speed

in vacuum and the carrier frequency of a signal the time is a measure for the

distance between transmitter and receiver. TOA uses the absolute time of ar-

rival at a certain base station. For this technique to work properly we need the

4



receiver and transmitter clocks to be synchronized. The need for highly syn-

chronized clocks places a heavy burden on the equipment cost.

A lot of factors such as humidity, temperature etc affect speed of propaga-

tion of ultrasound signals and therefore, Radio Frequency signals are used in

general. Multipath signals also affect localization that employ TOA data.

2.4.2 TDOA (Time Difference of Arrival)

TDOAmeasurements involve the difference in the travel time of a radio signal

from two transmitters to a remote single receiver. This overcomes the synchro-

nization problem faced in the TOA scenario as the difference in arrival times is

measured.

The technique has various ways of implementation, but in this thesis, the

TDOA values for two base stations from a single MS are considered. This

gives a hyperbolic locus for the location of the MS with the two base stations

as the foci. With more such values, theMS can be localized.

2.4.3 AOA (Angle of Arrival)

AOAmeasurement is a method for determining the direction of propagation of

a radio-frequency wave incident on an antenna array. Direction is determined

by measuring the TDOA at individual elements of the array from which AOA

can be calculated. An algorithm based on AOA is proposed in [3].

This technique is least popular due to high sensitivity to multipath signals

and high costs involved.

5



2.4.4 RSSI (Received Signal Strength Indication)

Radio Frequency signals attenuate as they move through space. RSSI is an

indication of the power level being received by the antenna. Distance between

source and receiver can be calculated using received signal strength, the trans-

mitted power and a path loss model for the channel.

6



CHAPTER 3

Algorithm for Localization

In this section Extended Kalman Filtering is applied to the localization process

using the multilateration technique. The state transition model and measure-

ment model are described for the localization problem and an algorithm is pro-

posed.

3.1 State and measurement model for multilatera-

tion

The EKF algorithm is an extension of the linear Kalman filter. The latter as-

sumes the state transition and measurement to be linear models. An algorithm

for localization based on Kalman filtering is described in [4] and [5]. EKF ,

however, relaxes the linearity assumption of the Kalman filter. The state equa-

tion could be the following:

s(k) = f(s(k − 1)) + w(k) (3.1)

where s(k) refers to the state and w(k) is zero mean multivariate Gaussian pro-

cess noise with covariance Q(k). The function f is differentiable and can be

used to calculate the predicted state from the previous estimate.

Similarly, the measurement equation could be as follows:

z(k) = h(x(k)) + v(k) (3.2)

where z(k) is the observation vector and v(k) is zero mean uncorrelated

measurement noise with covariance R(k). The function h is differentiable and

can compute predicted measurement from predicted state.



The localization problem based on multilateration can be described in this

formulation in the following way, from [4]. In a two dimensional scenario, if

the location of the object s(k) = [x(k), y(k), vx(k), vy(k)]T is defined as the state

of the object. The state model considered involves the following state transition

equation.

s(k + 1) = Ts(k) + w(k) (3.3)

s(k) and w(k) areas defined before. T is the following matrix.

T =











1 0 Δ 0

0 1 0 Δ

0 0 1 0

0 0 0 1











(3.4)

Δ is the time interval between samples. We observe that the measurement equa-

tion is linear. The measurement equation, however, is non-linear. The proposed

algorithm is based on TDOA of signals from the MS to various BS. By mul-

tiplication with c these are converted to range (distance) differences of the MS

from various BS. If (xi, yi) refers the position of BS number i in the two dimen-

sional environment, and rij refers to the difference of distance from BS number

i to j of theMS, we obtain the following measurement equation.

rij =
√
(xi − x(k))2 + (yi − y(k))2 −

√
(xj − x(k))2 + (yj − y(k))2 + v (3.5)

There could be as much as
(
N
2

)
values of rij that could figure in the measure-

ment model. For a two dimensional scenario three are sufficient for localization.

The R.H.S of (3.5) includes v, which is Gaussian measurement noise. We as-

sume that the measurement noises are uncorrelated with one another. Thus the

measurement equation is formed as a non-linear equation involving the state

variables.
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3.2 Prediction and Update

The predict and update equations for EKF are described here, from [6], de-

scribing them on the basis of of Equations (3.1) and (3.2).

3.2.1 Prediction

Predicted state estimate:

ŝ(k|k − 1) = f(ŝ(k − 1|k − 1)) (3.6)

ŝ(k|k − 1) is the predicted state at iteration k based on the previous k − 1 mea-

surement data.

Predicted covariance estimate:

P (k|k − 1) = F (k − 1)P (k − 1|k − 1)F T (k − 1) +Q(k − 1) (3.7)

F (k − 1) is ∂f
∂s

evaluated at ŝ(k − 1|k − 1).

3.2.2 Update

Innovation:

ỹ(k) = z(k)− h(ŝ(k|k − 1) (3.8)

Innovation covariance:

S(k) = H(k)P (k|k − 1)HT (k) + R(k) (3.9)

Kalman gain:

K(k) = P (k|k − 1)HT (k)S−1(k) (3.10)

Updated state estimate:

ŝ(k|k) = ŝ(k|k − 1) +K(k)ỹ(k) (3.11)

9



Updated estimate covariance

P (k|k) = (I −K(k)H(k))P (k|k − 1) (3.12)

H(k) is ∂h
∂s

evaluated at ŝ(k − 1|k − 1), I is the identity matrix.

We use the state transition model and measurement model suggested in

Equations (3.3) and (3.5) in concordance with the prediction and update pre-

sented in section 3.2.2 to generate the algorithm.

10



CHAPTER 4

Simulation, Results and Conclusions

This section demonstrates the mobility models and the algorithm performance

for both an LOS and a multipath environment.

4.1 Velocity perturbation mobility model

The first mobility model assumes a constant velocity for the object, perturbed

by mild variations of the environment such as wind gusts, slight speed correc-

tions and so on. These perturbations are modelled as noise additions to the

velocity, and are assumed to be normally distributed and uncorrelated with

each other. The model, therefore takes the following form:

vx [n] = vx [n− 1] + ux [n] (4.1)

Similarly for the y direction,

vy [n] = vy [n− 1] + uy [n] (4.2)

vx [n] and vy [n] denote the x and y components of velocities respectively.

ux [n] and uy [n] are the noise perturbations. Also

rx [n] = rx [n− 1] + vx [n− 1]Δ (4.3)

Similarly for the y direction,

ry [n] = ry [n− 1] + vy [n− 1]Δ (4.4)

rx [n] and ry [n] denote the x and y components of position respectively. This



simulation involves the following parameters with their corresponding values:

S.no Parameter Value
1 Δ (Time step duration) 0.01s
2 Perturbation variance 0.01
3 Velocity ofMS 1m/s

Table 4.1: Parameter values 1

Without perturbations, the velocities would be constant and the vehicle

would move in a straight line, as indicated by the red lines in Figure 4.1.1 .

The blue line indicates the path of the vehicle with perturbations in velocity.

The number of time steps (iterations) is 30. However as time increases, the true

trajectory gradually deviates from the straight line path in this model as shown

in Figure 4.1.2 , for 100 iterations.

Figure 4.1.1: Few iterations

12



Figure 4.1.2: Large number of iterations

The unboundedness of rx [n] and ry [n] is as a result of the variances of vx [n]

and vy [n] eventually increasing to infinity. The proof of that is outside the scope

of this thesis.

4.1.1 Algorithm performance for mobility model 1

The performance of the algorithm is expressed as a plot of

en =
√
(xn − x̃n)2 + (yn − ỹn)2 (4.5)

versus n, where (xn, yn) is the actual position of theMS known to the simulator,

(x̃n, ỹn) is the estimated MS position and ′n′ is the time index. This criteria of

performance is followed throughout this thesis.

The base station configuration employed for the first performance simula-

tion is depicted in Figure 4.1.3.

13



Figure 4.1.3: BS configuration 1

The algorithm performance is shown in Figure 4.1.4. It is not, however an

accurate depiction of the error as the position diverges significantly from the

straight line path as mentioned before. Therefore, the values obtained as inputs

to the EKF would change significantly.

Figure 4.1.4: Algorithm performance for model 1

14



4.2 Random walk model

In this model, we assume that theMS at an arbitrary (x, y) takes random steps

towards (x − 1, y − 1), (x − 1, y + 1), (x + 1, y − 1) or (x + 1, y + 1) with equal

probability. This is shown in Figure 4.2.1.

Figure 4.2.1: The random walk model

4.2.1 Performance with measurement error

In this subsection, the algorithm is simulated for a simple case of BS configura-

tion as in Figure 4.1.3 for different measurement error values. Noise is depen-

dent on how large the range difference actually is, in the sense that the simu-

lation adds noise proportional to the actual measurement value. To construct

the measurement matrix, noise variance for each measurement is made pro-

portional to the actual measurement value. Base stations farther away would

generate larger noise, and the above is an attempt to capture that fact. There-

fore, as the MS moves, different values of the time-differences (converted to

15



range-differences by multiplication with the speed of light factor) are perceived

depending on distances from the base stations.

The parameters involved in this simulation are shown in the table below:

S.no Parameter Value
1 Δ (Time step duration) 0.01s
2 InitialMS position (10, 10)
3 Velocity ofMS 1m/s

Table 4.2: Parameter values 2

We observe that all three towers are roughly equally spaced from theMS for

a significant number of iterations or time steps, for the configuration shown in

Figure 4.1.3, and for a mobility model similar to the one in Figure 4.1.5, where

theMS does not deviate very much from the initial point. The error for all three

range differences, thus, would be roughly of the same magnitude throughout

the simulation. The algorithm is run for low error, medium error and high error

in this simulation environment.

Figure 4.2.2: Plots for different measurement errors

16



We see from Figure 4.2.2 that the algorithm is robust, and converges for dif-

ferent magnitudes of error quite rapidly. This is further shown in Figure 4.2.3,

where the difference in the iteration error (4.5) is plotted for the various pairs

of the test cases involved in the previous case versus ′n′, the iteration number.

We see that all three plots converge to zero quite rapidly.

Figure 4.2.3: Illustration of algorithm robustness

4.2.2 Measurement inputs

In this subsection, an analysis of the effect of number of measurement inputs

versus algorithm performance is done for varying number of BS, BS config-

urations and measurement errors. The computational complexity of the algo-

rithm varies according to the number of base stations taken into consideration.

Therefore, lesser base stations would lead to a computationally simpler algo-

rithm, though we need to analyze how performance is affected.

We first consider 6 base stations in a circle as shown in Figure 4.2.4. The

17



simulation is run taking 3, 4, 5, and finally all 6 BS into consideration.

Figure 4.2.4: BS configuration 2

The algorithm is then simulated for low measurement error and high mea-

surement error.

Figure 4.2.5: Comparison for low error

18



Figure 4.2.6: Comparison for high error

It is noted that the algorithm performs similarly irrespective of how many

BS are taken into consideration, both for low error and high error.

The algorithm is then run for the BS environment of Figure 4.2.7 , where all

six stations are not equidistant from the origin.

Figure 4.2.7: BS configuration 3

19



The algorithm is run employing TDOA values from the BS in blue, which

are closer to theMS, followed by values involving all six BS for different levels

of error.

Figure 4.2.8: Comparison for low measurement error

Figure 4.2.9: Comparison for high measurement error

20



We observe that there is no significant change in algorithm performance by

increasing the number of TDOA inputs. Therefore, the algorithm can be run

simply by considering the three earliest arrivals (three nearest BS) in a two-

dimensional scenario.

4.3 Algorithm simulation for a multipath channel

The algorithm is simulated for a multipath channel in this section. First a pedes-

trian profile is considered followed by a vehicular profile. The doppler shift

depends on the speed of the MS, and the parameters used in this simulation

are described in the following table.

S.no Parameter Value
1 Pedestrian profile velocity 1m/s
2 Pedestrian doppler shift fd 0.07Hz
3 Vehicular velocity 10m/s
4 Vehicular doppler shift fd 0.7Hz

Table 4.3: Parameter values 3

The BS configuration employed for the following simulations is shown in

Figure 4.3.1.

Figure 4.3.1: Rayleigh fading for the pedestrian profile

21



4.3.1 Pedestrian profile

The PDP for the pedestrian profile is as shown in the following table:

Tap number Relative Path Power (dB) Delay (ns)
1 0 0
2 −0.9 200
3 −4.9 800
4 −8.0 1200
5 −7.8 2300
6 −23.9 3700

Table 4.4: Power Delay Profile of a pedestrian channel model

The Rayleigh fading for an MS moving at 1m/s is shown in Figure 4.3.2.

This was generated using the Jake’s method.

Figure 4.3.2: Rayleigh fading for the pedestrian profile

We deduce the channel impulse response from the PDP values in Table 4.4

and from the fading described in Figure 4.3.2. The following figure depicts an

example of the six taps in the impulse response.

22



Figure 4.3.3: Channel impulse response for the pedestrian profile

In a real scenario, there is error in both the magnitude as well as the position

of the taps. We add these errors, and choose the tap with maximum amplitude

in all the BS to obtain TDOA values for the algorithm.

Figure 4.3.4: Algorithm performance for the pedestrian channel
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4.3.2 Vehicular profile

The PDP for the vehicular profile is as shown in the following table:

Tap number Relative Path Power (dB) Delay (ns)
1 0 0
2 −1 310
3 −9 710
4 −10 1090
5 −15 1730
6 −20 2510

Table 4.5: Power Delay Profile of a vehicular channel model

The Rayleigh fading for an MS moving at 10m/s is shown in Figure , gen-

erated using the Jake’s methid like in the previous channel model.

Figure 4.3.5: Rayleigh fading for the vehicular profile
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The channel impulse response is depicted in the following figure.

Figure 4.3.6: Channel impulse response for the vehicular profile

We add error to both the amplitude and the position of the taps, and choose

the tap with the maximum amplitude in all the BS to obtain the TDOA data.

Figure 4.3.7: Algorithm performance for the vehicular channel
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From Figures 4.3.4 and 4.3.7, we see that the proposed algorithm converges

quite rapidly. Therefore, the algorithm works satisfactorily in case of a multi-

path channel.

4.4 Conclusions and Future Work

An EKF based localization algorithm based on the multilateration technique

is proposed in this thesis that is robust, as seen in section 4.2.1. The algorithm

works roughly similarly for any length of measurement input vector as de-

picted in section 4.2.2, and therefore can be run with minimum data values

(three in the two dimensional case). The TDOA values corresponding to the

three nearest BS to theMS could be chosen. Performance in an assumed mul-

tipath channel is also satisfactory, and is tested for two profiles in section 4.3.

The multipath analysis in this thesis assumes a channel model. The next

step could be estimation of the channel, alongwith the recursive EKF algo-

rithm employed here. Also, to obtain TDOA values, the tap with the highest

amplitude is chosen. A better selection rule could be employed to determine a

better set of TDOA data to ensure faster convergence and reliability. The mul-

tilateration technique could be extended to particle filtering as well.
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