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ABSTRACT

KEYWORDS: Physiological control system; Delay differential equation;
Mackey-Glass equation; Lasota equation; Local stability analysis;

Local bifurcation analysis; Hopf bifurcation.

We study a class of physiological systems which are modeled by nonlinear delay dif-
ferential equations. In particular, we focus on the Mackey-Glass and Lasota equations
which have been proposed to model the erythrocyte concentration in blood. These equa-
tions are prototypical of several other physiological systems and hence are interesting

in a broader context.

For both these systems, we conduct a systematic local stability, local rate of con-
vergence and local Hopf bifurcation analysis. We show that the system behaves like
a damped oscillator in the stable regime and obtain expressions for critical damping.
After a critical delay, the system loses stability and is proved to undergo a Hopf bifurca-
tion. The system is reduced to a two dimensional center manifold and then transformed
to the Hopf bifurcation normal form. Limit cycle amplitudes are computed analytically

and corroborated through bifurcation simulations.

The study and control of oscillatory instabilities and chaos provides insights for
effective treatment strategies of certain dynamical diseases like cardiac arrhythmia and
Parkinson tremors. Closed form expressions for critical damping, critical delay and

amplitude of limit cycles enable us to design controllers for these systems.

il
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Chapter 1

Introduction

1.1 Motivation

Physiological processes like heartbeat and breathing have been observed to be rhythmic
(periodic) (Glass and Mackey, 1988) under normal conditions, but can switch to new
rhythms or chaotic behavior under special conditions like physical exertion or the onset
of a disease. Mackey and Glass (1977) proposed that, the oscillatory instabilities cor-
respond to a bifurcation in the dynamics of an underlying first order delay differential
equation. Such changes is qualitative dynamics based on parameter variations is called
a dynamical disease. See Bélair et al. (1995); Mackey and Milton (1987) for a review
of dynamical diseases that arise in hematology, cardiology, neurology, and psychiatry.
A class of physiological systems can be modeled by the nonlinear delay differential

equation (an der Heiden and Mackey, 1982)

z(t)=p(x(t—71)) —d(x(t), (1.1)

where p (-) is a production function, d (-) is a destruction function and 7 is a feed-
back delay. For several physiological systems, the destruction function is linear (an der

Heiden and Mackey, 1982) and given by

d(r) = —vx, (1.2)
where -y is the rate constant.

In particular, we study the Mackey and Glass (1977) and Lasota (1977) equations
that have been proposed to model the erythrocyte concentration in blood. These equa-

tions are prototypical of several other mixed feedback systems.

an der Heiden and Mackey (1982) proved that a mixed feedback system has stable



and unstable limit cycles, where the cycles may have an arbitrary number of extrema
per period. They proved period doubling and chaos for a rectangular feedback function.
In this paper, we numerically simulate the same for some smooth feedback functions.

We explain the appearance of limit cycles through a Hopf bifurcation analysis.

See Bélair et al. (1995) for a review on the identification, temporal aspects and
treatment strategies of human illness based on modeling it as a dynamical disease. For
example, a cardiac arrhythmia suppression trial (Echt et al., 1991) found an increase
in sudden cardiac deaths in patients receiving a drug that reduced certain types of car-
diac arrythmia. In the presence of chaos, even small changes in drug concentration can
change a potential beneficial effect to an effect that causes significant patient morbidity
or even mortality. To that end, the study and control of chaotic dynamics is achieved by
arobust system design. A simple approach is to choose operating parameters that are far
from the Hopf bifurcation manifold. Beuter and Vasilakos (1995) demonstrated bista-
bility between a large amplitude Parkinson tremor and a physiological tremor. This can
be understood as due to a subcritical Hopf bifurcation. Hence, stability and bifurcation

analysis is useful in the diagnosis, therapy, and device design for such diseases.

1.2 Organization

In Chapter 2, we introduce two nonlinear time-delayed models (Mackey-Glass and La-
sota) and show that they satisfy physiological constraints like boundedness and positiv-
ity. We numerically simulate the Mackey-Glass equation and present graphs to illustrate
the influence of time delay on the system dynamics. In Chapter 3, we linearize the sys-
tem about the fixed points and list conditions for local stability using results obtained in
Appendix A. We then analyze the effect of model parameters on the rate of convergence
of the linearized systems. We show that the system behaves like a damped oscillator
and obtain expressions for critical damping. The expressions for stability and rate of
convergence are illustrated in stability charts. In Appendix B, we prove that the system
undergoes a Hopf bifurcation on losing local stability and calculate the amplitude of
the resulting limit cycles. In Chapter 4, we present a Hopf bifurcation diagram that
corroborates our estimate for limit cycle amplitudes. Finally, in Chapter 5, we present

our inferences and list out avenues for further research.



Chapter 2

Nonlinear time-delayed models

Figure 2.1 shows a control system for the concentration of erythrocytes in blood, z (¢).

Such a control system can be modeled by

1. Mackey-Glass equation (Mackey and Glass, 1977) :

L x(t—7) B
0lt) = B~y e
2. Lasota equation (Lasota, 1977) :
x (t) = fx(t—71)"exp(—z(t—17)) — vz (t) 2.2)

where 8 > 0 is the production coefficient, v > 0 is the destruction coefficient, 7 > 0

is a time delay, and n > 0 is an exponent.

Stem cells
NG
Nonlinear p(x) Delayed
production maturation
p(z(t—1))
Blood Linear Ny
z (1) )
stream destruction d(x) -

Figure 2.1: Erythrocyte life cycle in human blood (Mackey, 1997). Stem cells and ery-
throcytes interact to produce cells that mature into erythrocytes. The av-
erage time to mature corresponds to a feedback delay 7 in the production
chain. Erythrocytes are assumed to be destroyed at a rate constant .

2.1 Positivity and boundedness

It is useful to obtain bounds on x (t) based on its past dynamics. We prove boundedness
for (1.1) if the production function p (-) is positive and bounded by the destruction

function d (-). Note that (2.1) and (2.2) satisfy these conditions.



Lemma 1. If x(t) is positive for t < t', and if p(x) > 0Vx > 0; then x(t) remains

positive Vt < t' + 7.

Proof. x(t) = p(x (t — 7)) — ya(t)

— z(t) > —yz (1)
= x(t) >z (t')exp(—y(t—1)) > 0. O
Theorem 2. [f z(t) is positive for t < t', and if p () > 0Vx > 0; then x(t) remains

positive Vt.

Proof. By induction on Lemma 1. O]

Corollary 3. If x (t) is bounded above by T fort < t', and if p(z) < d(T) YV < Z; then

x(t) remains bounded above Vt.

Proof. x(t) <~ T—y (t)in(1.1)and (1.2)yieldsy (t) = (d (T) —p (z (t — 7)) —yy(t).

y (t) is positive by Theorem 2 and hence z (¢) is bounded above by Z. O

Corollary 4. If z (t) is bounded below by T fort < t', and if p(x) > d(T) VYx > Z; then

x(t) remains bounded below V1.

Proof. Consider z (t) <~ T+ y () in (1.1) and (1.2). O

2.2 Qualitative system dynamics

Bounded systems can either converge to an equilibrium point, a limit cycle, or a chaotic
attractor. Figure 2.2 illustrates the dependence of the system dynamics on the delay 7
for the Mackey-Glass equation. The delay 7 destabilizes the system into limit cycles
and then to chaotic oscillations. However, an optimum delay 7y can result in faster

convergence of the linearized system.

In Figure 2.3, we see that, apart from a trivial equilibrium point- there can exist
either a unique stable equilibrium point, a saddle-node, or a pair of stable and unstable
equilibrium points. Throughout this paper, we only consider the stable equilibrium

point.
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The system described by the Mackey-Glass equation (2.1), on increasing
the delay 7; transitions from equilibrium point convergence, to limit cycles,
and to chaotic oscillations. Simulated using MATHEMATICA (Wolfram Re-
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The above figure plots different production functions p(x) and shows, at
7 = 0, the local stability of non-zero equilibrium points obtained for d (x) =
0.3z. The equilibrium point is unstable when p'(z) > d' (x) as shown in
Section A. Expressions for non-zero equilibrium points and conditions for
their existence are given in Table 3.1. The Mackey-Glass equation can only
have a unique stable equilibrium point. The Lasota equation can have either
a unique stable equilibrium point, a saddle-node, or a pair of stable and
unstable equilibrium points. (a) Mackey-Glass equation (2.1) with g =
1,n = 4. (b) Lasota equation (2.2) with 3 = 1,n = 0.5. Whenever
n < 1, it has a unique stable equilibrium point. (c¢) Lasota equation with
B =1,n = 2. Whenever n > 1, for /s < (n~1/e)" ", it has two equilibrium
points given by the Lambert WW-function. The smaller equilibrium point
is unstable and hence we only consider the larger equilibrium point. At
/s = (n1/e)""", it undergoes a saddle-node bifurcation.



Chapter 3

Linearization

Linearizing (1.1) about the stable equilibrium point z, , and letting = (t) = z. + y (¢),

we have

y (t) = —ay(t) — by(t — 1), 3.1)

where z,,a and b are listed in Table 3.1. We can obtain the necessary and sufficient

conditions for stability by carrying out the local stability analysis as in Section A. We

present our results in Table 3.1.

Table 3.1: Linearization about the equilibrium point.

Mackey-Glass equation (2.1)

Lasota equation (2.2)

Condition for

<1 2 < ()" orn <1
equilibrium g g ( ‘ )
4\ 1 1
(&) (L =m)W [(2/8)71 /(1 =)
a Y g
b fy(n(l—%)—l) v (2 —n)
Unconditional ne1 1
1> 1> 222 (22)" > 3 > (m) e
stability
Sufficient 1l
I CE O\ PR RS T P
condition

4T [-] is the Lambert W-function.

3.1 Rate of convergence

The linearized physiological models in Table 3.1 have a first order transcendental char-

acteristic equation



A+a+bexp(—AT)=0. (3.2)

Let \; = o0; + jw; be the set of solutions to the characteristic equation (3.2). Then

we define the rate of convergence (ROC) as
ROC = Min (—0;) .

Theorem 5. ROC' is maximum when the system is critically damped. This happens at

T0 — @

Proof. Consider the characteristic equation (3.2)
= (M +ar)exp (AT +a1) +brexp (ar) =0
= AT +ar = W [-brexp (aT)]
T )

We also have,

dv (A +a)d —(A+a)A
dr  t(A\+a)+1 1+ W][—brexp(ar)]
For W [—brg exp (am9)] = —1, 2 is singular. Hence A has a local extrema at 7o =
w5

a

R[W [—b7 exp (aT)]] '

T

ROC=R[-\=a-—

As =2 > 0 for T < 79, the ROC has a maxima at 7.

A is complex for 7 > 7y and real for 7 < 7. Hence, the system is critically damped

at 7p.

ROCypw = a (1 FW [%] 1) .



We can see from Figure 2.2 that the system spirals into asymptotic stability. We
consider the distance of (x(t), z(t — 7)) from the equilibrium point as an indicator of

convergence. Figure 3.1 corroborates our claim.

o 8 4 —— Analytical solution
8 - - - Simulation
q.) p—
o
[ee]
€ o5 T
c
(@] —
3)
= <
o I -
)
9
= _
o o _
e T T T T T
0 1 2 3 4
T

Figure 3.1: We compare the numerically simulated ROC' against the analytical solu-
tion. The numerical ROC' is obtained by taking the logarithmic distance of
(x(t),z(t — 7)) from the equilibrium point, at ¢ = 30. The analytical solu-
tion is computed by linearizing the system. The system can be understood
as a damped oscillator with the feedback delay 7 acting as a damping factor.
We have simulated using MATHEMATICA (2010), taking v = 0.1, 8 = 0.2,
n = 10and z(t) = 0.5 + 0.02¢t, —7 <t < 0.

In Figure 3.2, we have numerically computed the stability characteristics of the
Lasota equation and visually represented the Hopf bifurcation lines and rate of conver-

gence.

3.2 Local stability charts

In Figure 3.3, we present local stability charts. Note that it suffices to plot representative
regions of local stability in the S —~ and 7—n planes to capture the change in qualitative

dynamics along any parameter variation.
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Figure 3.2: In this gradient plot, we characterize the convergence of the linearized La-
sota equation (2.2) along the 7 — n plane at = 4,y = 1. The critically
damped line (ROC),,.) signifies the transition between underdamped (non-
oscillatory) and overdamped (oscillatory) convergence. The system loses
convergence as it approaches the Hopf bifurcation manifold.

Mackey-Glass equation (2.1)

o
— B
36 =0.25,7=0.1
<
o
0 - 20
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Lo
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Figure 3.3: Local stability charts. These charts illustrate the system’s sensitivity to pa-
rameter variations. We shall show that the system undergoes a Hopt bifur-
cation at loss of stability. For a robust system, it is desirable to be far from
the Hopf bifurcation line and close to critical damping.



Chapter 4

Hopf bifurcation

We have shown in the Appendix that the physiological systems undergo Hopf bifurca-
tions. In order to compare the bifurcation dynamics of different models, we set them on
a common platform. The parameters of the different models may be chosen such that
they are equivalent under linearization. We choose v = 1 for both models and choose
other parameters (3, n) such that they give the same equilibrium point z, and critical
delay 7.. We take 7 as the common bifurcation parameter to perform the analysis in B

and present our result in Figure 4.1.

. M2 -
) -

a1 --- 0.05(Mackey-Glass) -7

| —— 1.17 (Lasota) e

0 | - /
g ¥ aa

0 o T =~ ~

Cd_ = =~ ~

N Il S

[y - T T I I

3.8 3.9 4.0 4.1 4.2

.
@ x, =4,7. =4.

Figure 4.1: We contrast the bifurcation dynamics for the Mackey-Glass (2.1) and Lasota
(2.2) equations. The amplitude of the limit cycles (Appendix B) is propor-
tional toy/1/u, . This is corroborated by the above numerical simulations.



Chapter 5

Conclusion

We have performed a systematic study of the nonlinear delay differential equation (1.1)
which is prototypical of several physiological systems. In particular, we studied equa-
tions (2.1) and (2.2) that model erythrocyte concentration in human blood. We proved
boundedness and positivity of the system if the production function is bounded by the
destruction function. We performed a local stability analysis and presented conditions

for stability in Table 3.1.

In the asymptotically stable regime, the system is observed to behave like a damped
oscillator transitioning from non-oscillatory to oscillatory convergence. In Theorem 5,
we have shown that the rate of convergence is maximum at critical damping. Figure 3.1
validated numerical simulations against the analytical solution for rate of convergence
of the linearized system. Figure 3.2 showed the existence of a critical damping man-
ifold. It is of interest to operate at critical damping for robust treatment of dynamical
diseases. We presented local stability charts (Figure 3.3) that aid in the design of robust

systems.

Further, we did a local bifurcation analysis and calculated the amplitude of limit
cycles. In Figure 4.1, we illustrate bifurcation diagrams that corroborate our analysis.
We obtained analytic expressions for the Lyapunov coefficient. In this paper, we have
only performed a local stability and local bifurcation analysis. It is important to research
and develop a similar systematic procedure for global stability and global bifurcation

analysis.



Appendix A

Local stability analysis for transcendental characteristic

equations

The linearized physiological systems in Section 3.1 have a first order transcendental

characteristic equation

A+a+bexp(—A1)=0. (A.1)

\i is the k" eigenvalue satisfying (A.1). For asymptotic stability, ¢ (\,) < 0 V k.

Hence, asymptotic stability at 7 = 0 requires b > —a. On increasing 7, Ay move from

the left half plane towards the right half plane. Let 7. be the smallest delay for which

3k such that R (\;) = 0. Putting A\, = jwp in (A.1) yields

wo — bsin (wer.) = 0,

a+bcos (wore) = 0.

Solving for wy, we get w + a® — b* = 0. We have,

1.
2.

No positive solution for wj if |b| < a. The system is unconditionally stable.

Unique positive solution for w? if b > a and a > 0. We get the critical delay

S arccos (—_b) ' (Az)
b2 — g2

It is useful to introduce a parameter

a
0= =
arccos ( —b)

that captures the degree of stability. We have § < © < 7 and b7, = ©/sine. It

is easy to see that 7. > Z;. Hence 7 < g is a sufficient condition for stability

when b > a > 0. As ©® — 7, 7. — oo and becomes unconditionally stable. As
0 — g*, T. — 3; and can be seen as a maximally unstable system.



Appendix B

Local bifurcation analysis

In order for a Hopf bifurcation to occur at 7 = 7., we first need to satisfy the transver-

sality condition (Kuznetsov, 1998), i.e.

d
—A .
R (dT k) B 70
On differentiating (A.1), we get
iA . —<)\ + a))\c
dr " o Te(Aeta)+ 17

We obtain

7.(0? — a?)

1 + 2ar,. + b*7?

T=Tc

v = (L)

since b > a > 0 for existence of 7.. The transversality condition is thus always

satisfied. A Hopf bifurcation occurs whenever the nondegeneracy condition (nonzero

Lyapunov coefficient) is also satisfied (Kuznetsov, 1998).

B.1 Center manifold reduction to the Hopf bifurcation

complex normal form

Let 7 = 7. + p with a Hopf bifurcation taking place at = 0. The system needs to be

reduced to a two dimensional Hopf bifurcation complex normal form

W = <ﬂ+i)w+w|w|2+0(|w|4). (B.1)

M2



In order to characterize the local stability of limit cycles generated at Hopf bifurcation
point, it is sufficient to approximate the nonlinearity by considering only the quadratic
and cubic terms. The amplitude of limit cycles can be shown to be \/% for small p
(Kuznetsov, 1998).

All other characteristic roots at 7. except -jw have negative real parts. According to
the center manifold theorem (Carr, 2006), there is a family of smooth two-dimensional
invariant manifolds W near the origin. The infinite dimensional system restricted on

W is two-dimensional and has the following complex normal form (Kuznetsov, 1998)

1
f=Awat Y pon (0) 22 0 (|2f'). (B.2)

2<k+I<3

Equation (B.2) can be transformed by a smooth and invertible parameter-dependent

change of complex coordinate to (Kuznetsov, 1998)
W= () w+ e (@) ww)? + 0 (Jwl'), (B.3)

where

J o 1 2 921
0) =— -2 - = + =.
c1(0) 2w (920911 911 3 | go2| ) 9
The Lyapunov coefficient c¢; has to be nonzero in order to satisfy the nondegeneracy
condition. Then, the equation (B.3) can be transformed into the form of (B.1) by a

parameter-dependent linear coordinate scaling, a time rescaling, and a nonlinear time

reparametrization (Kuznetsov, 1998). We can thus derive

—R(e1 (0))

M2 o (0)

We see that the sign of p» determines the direction of the Hopf bifurcation. If po >
0, the Hopf bifurcation is supercritical, whereas for s < 0, the Hopf bifurcation is

subcritical.

14



a=0.5, b=1 a=0.8, b=1

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
c2/b? c?/p?
--- Mackey-Glass equation (2.1) Lasota equation (2.2)
Figure B.1: Density plot of po with loci traced by the Mackey-Glass and Lasota equa-
tions as parameter x, is varied. Higher values of p, result in smaller limit
cycles. The Mackey-Glass equation has higher p, for smaller x,but then

approaches py = 0 for larger x,. o for the Lasota equation is less sensitive
to variations in x, and hence is more robust.

B.2 Calculation of 1, for systems with time-delayed non-

linearity

On considering the Taylor series expansion of (1.1) about an equilibrium point, we get

u(t) =—au(t)—bult —7)—cult —7)* —du(t —7)* + O (u(t — 7)4) . (B4

See (Raina, 2005) and references therein to compute 1. Note that € (1) = /#/p.

gives the amplitude of limit cycles for small p.

‘We have

po = ez (o) = p1a (45) (B.5)

where

15
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Figure B.2: A plot showing the coefficients of p5 (B.5). Asn — 01in (2.2), we have an

and

exponential production function p (x) = fe~*. Without loss of generality,
let v = 1. Then, the Taylor series coefficients are a = 1, b = 3, ¢ = —B/2,
and d = #/6. From (B.5), we get o = #e2/4 — raf6. Since He2/4 > nafs, Hopf
bifurcation oscillations are always supercritical (us > 0) for the equation

x(t) = Be T — 2 (t).

O —cosOsin® 3 afp
Ha = 3 - ( L)a

Osin’0 11—/

bt

60 (10 — cos 20 + 6cos ©) — 18sin © — 35sin 20
/6@(5+4 cos ©) sin? © sin? %
—7sin 30 + 9s8in40 — sin 560 — 2sin 66
2 (320° /15 — 8o [yt — 6804 — 20°/12(4 + 3b7,) + /(59 — 18b7,) — 3(2 — 11b7.))

3b7.(5 — 49/p) (1 — a/p)(1 + a/p)?
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