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1 Introduction

If two nodes in a wireless netwrok transmit at the same time, their signals

will interfere and the reciever might not be able to seperate the two signals.

It is called collision. It is assumed in this paper that , in the event of collsion

none of the messages are delivered.The function of MAC layer or Medium Access

Control layer is to regulate the access to a shared communication channel so that

e�cient data transfer can take place with minimal collisions, high bandwidth

e�cency and so on. The challenge is to construct a MAC protocol with the given

constraints of limited power, limited information exchange and limited error

frequencies. One of the most common used approach to MAC is TDMA or Time

Division Multiple Access. Time is divided into equal units called frames and

frames are further divided into equal units called slots. Users agree upon using

speci�c slots without any con�icts and transmit their messages in those slots in

each frame. The schedulding part of the TDMA is usually centralized, i.e the

slots are alloted with certain involvement from an external server or something

of that sort. In this paper I analyse a simple but completely decentralized

schedulding algorithms which will work in the framework of TDMA. Clearly, no

deterministic algorithm is going to work here as the users are assumed to be

indistinguishable. So, the users are going to do trial and error by attempting to

send message during carefully chosen random slots and hope for the best.

Unless otherwise mentioned I assume that the time is divided into frames

of size N slots, where each slot is a period extending for t seconds. Slots are

numbered 1 to N and there are N users U1through UN who are trying to share

the medium. I also assume each user(node) Ui will attempt to send a message

in exaclty one slot in each frame. If collision occurs, their message is not send

and get an immediete negetive feedback acknowledging the collision. If the

no other users try to send a message in the same slot as a user, then its the

message is transmitted successfully, they immedietly get a positive feedback.

This the only feed back the users get. For example the users cannot listen to

the network and �nd out which all slots are being used in the current frame.

Topology of the network will be ignored and all the users will be assumed to

be synchronized in time. This is actually not completely necessary since we

only need synchronization upto slots. That is slot which U1 Slot 1 could be

Slot 4 for U3 as long as starting and ending points of the slot are synchronized.

One important e�ciency indicating parameter in these kind of problems is the

expected settling time (denoted by TN which is de�ned to be the average time
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(measured in number of frames) before all the users are assigned a slot averaged

over the random bits the users use for randomization.

2 Description of the Algorithm

A simple algorithm which the users can excecute independently can be descirbe

as follows:

Algorithm X :

(1)Attempt to transmit in one of the slots in the current frame by choosing

1among N slots uniformly at random

(2)In case of a successful transmition go to step (3), else go to step (1) (after

the current frame ends)

(3)Continue to transmit in the same slot in the future frames.That is he has

been assigned that particular slot for future transmissions

Although in the algorithm described, the unsettled slots (i.e the slots without

a single success till now) are attempted by unsettled users (i.e , the users who

haven't been assigned a slot) unifromly, the users also attempt to transmit

messages in already settled slots. This might make the algorithm sub optimal.

On obvious remedy would be to make users learn which all slots are already

settled with the help of the minimum feedback they recieve and not try to

attempt those slots in the future. An algorithm of this sort is described in [3].But

any such method will lead to unwanted localization in case of false detection.

Although this would make the settling time smaller in some cases, the author

conjuctures that Algorithm X is optimal, when what we are trying to minimize

is the expected time.

3 Exact expected settling time

Denote by TN,m, the expected additional settling time when m users are already

settled (i.e assigned a slot) and the remaining N −m users are still trying. Also

denote by qN,m,i the probability that an additional i users will settle in the

next frame when m users are already settled. Then we havethe basic recurrence

relation
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TN = TN,0, = qN,0,0(TN,0 + 1) + qN,0,1(TN,1 + 1)..+ qN,0,N−1(TN,N−1 + 1) + qN,0,N

which on simplifcation gives, TN,0 = 1
1−qN,N,0

∑N−1
i=1 qN,0,iTN,i and more

generally we have, TN,m = 1
1−qN,m,0

∑N−m−1
i=1 qN,m,iTN,m−i for 0 ≤ m ≤ N − 2.

We also have the initial condition

TN,N−1 =

∞∑
i=1

i

N

(
N − 1

N

)i−1
= N

Hence we can get the exact expected settling time once we calculate qN,m,i.We

have

qN,m,i =

(
N −m

i

)2

PN,m,i

where PN,m,i is the probability that exactly some speci�c set of i new users

get settled in the �rst i unused slots when m users are already settled.Now

PN,m,i = i!
Ni

(N−i)N−m−i

NN−m−i qN−i,m,0. Now we can calculate 1 − qN−i,m,0 can be

calculated by using inclusion exclusion formula. It is the probability that alteast

on among the N − r users will settle.

1− qN−i,m.0 =

N−i−m∑
j=1

(−1)j−1
(
N − i−m

j

)2

j!
(N − i− j)N−m−i−j

(N − i)N−m−i

hence, we have

qN,m,i =

(
N −m

i

)2

i!
(N − i)N−m−i

NN−m [1−
N−i−m∑
j=1

(−1)j−1
(
N − i−m

j

)2

j!
(N − i− j)N−m−i−j

(N − i)N−m−i
]

4 A Complexity Upper Bound

Although it is possible to compute exactly the expected settling time, it doesn't

help us much in �guring out its complexity. Here I will provide a simple upper

bound.
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Figure 3.1: Graph of qN,m,ivs i when N = 50

Figure 3.2: Graph of qN,m,ivs i when N = 60
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Lemma. Let Tn and Xn asn varies from 0 to N be positive random variables

whereXn can takes only integer values between 0 and n such that T0 = 0 and

Tn = 1 + Tn−Xn .Also suppose E[Xn] is non decreasing in n. Then for n ≥ 1

E[Tn] ≤
n∑
j=1

1

E[Xj ]

Proof. We will prove it by induction on n . For n = 1 , since E[X1] = q1, where

q1, is the probality that X1 = 1 and T1is a random variable with geometric

distribution with mean 1
q1

we the inequality , E[T ] = 1
E[T1]

. Let pi = P [Xm = i]

Assume its for n ≤ m− 1. Le

E[Tm] = pm + pm−1(T1 + 1) + pm−2(T2 + 1) + ..+ p0(Tm + 1) (4.1)

(1− p0)E[Tm] = 1 +

m−1∑
i=1

pm−iTi (4.2)

(1− p0)E[Tm] ≤ 1 +

m−1∑
i=1

pm−i

i∑
j=1

1

E[Xj ]
(4.3)

(1− p0)E[Tm] ≤ 1 +

m−1∑
i=1

pm−i(

m∑
j=1

1

E[Xj ]
−

m∑
j=i+1

1

E[Xj ]
) (4.4)

(1− p0)E[Tm] ≤ 1 + (1− p0 − pm)

m∑
j=1

1

E[Xj ]
−

m∑
i=1

pm−i(m− i)
E[Xm]

(4.5)

(1− p0)E[Tm] ≤ 1 + (1− p0 − pm)

m∑
j=1

1

E[Xj ]
− E[Xm]−mpm

E[Xm]
(4.6)

(1− p0)E[Tm] ≤ (1− p0 − pm)

m∑
j=1

1

E[Xj ]
+

mpm
E[Xm]

(4.7)

(1− p0)E[Tm] ≤ (1− p0)
m∑
j=1

1

E[Xj ]
− mp

E[Xm]
+

mpm
E[Xm]

(4.8)

(1− p0)E[Tm] ≤ (1− p0)
m∑
j=1

1

E[Xj ]
(4.9)

E[Tm] ≤
m∑
j=1

1

E[Xj ]
(4.10)

I have used the induction hypothesis in (4.1) and used the monotonicity of
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expectation in (4.6) and (4.8)

It can be also noted that it is impossible to get a lower bound solely in

terms of expectation. If XN takes the value n with probability α and 0 with

probability 1− α, then E[TN ] is independent of E[Xn] if n < N . The equality

holds when all E[Xn] are the same. The author also noted that a more general

version of this lemma is proved in [2]

Here is an attempt to get a lower bound.De�ne a markov chain with states

Sn as n varies from 0 to N such that Xn is the expected length of state tran-

sition when you are at state Sn. The Markov chain should be also such that

the transition probabilities pijare only non zero when i ≥ j.E[TN ] is just the

expected time before one reach S0.Suppose one reaches the state S0 through

the following transitions : Sn = Si1 → Si2 → ..Sim = S0. Then for all i from 1

to N De�ne ti =
1

ir−ir+1
where r is such that ir ≥ i and ir+1 < i .Then clearly

E[TN ] ≥
∑N

1=1 ti (The only time missing will be the times at which the state

remain unchanged). Now let us calculate the E[ti] by conditioning on those

Sir (call the corresponding events ek's). Then by Jenson's inequality we have

E[ti|ek] = E[ 1
Xk
|Xk > k − i] ≥ 1

E[Xk|Xk>k−i] . Then if we could �gure out an

upper bound for E[Xk|Xk > k− i], then we have ourselves a lower bound given

by

E[Tn] ≥
n∑
j=1

1

max
k≥i≥j

{E[Xi|Xi ≥ i− j]}

Fact. Suppose there are k balls and n bins out of which n− k bins are occupied

(i.e there is already a ball in it). Also suppose that each of the k balls try to

select one among the n bins uniformly at random, Then the expected number of

balls getting their own bins ( ie, there is no other ball is there in the bin they

attempted) is given by

ek,n =
k2

n
(1− 1

n
)k−1 ≈ k2

n
exp(

−k + 1

n
)

Proof. If r balls are thrown into S bins, then the expected number of balls

givern by fr,s = r(1 − 1
s )
r−1. To see that, let Xi , 0 ≤ i ≤ r denote the

random variable which is zero when ith ball doesn't get a bin of its own and 1

otherwise. Then we are looking at the expectation of
∑r
j=1Xj which is equal

7



to
∑r
j=1 P [Xj = 1] = rP [X1 = 1] = r(1− 1

s )
r−1

Now if Y denote the random variable counting the number of balls getting

their own bin, then the required expectation. Let Embe the event that m balls

attempt already occupied bins

E[Y ] =

k−1∑
m=0

E[Y |Em]P [Em] (4.11)

=

k−1∑
m=0

fk−m,k

(
k

m

)
(
n− k
n

)m(
k

n
)k−m (4.12)

=

k−1∑
m=0

(k −m)(
k − 1

k
)k−m−1

(
k

m

)
(n− k)mkk−m

nk
(4.13)

=
k

nk

k−1∑
m=0

(k −m)(k − 1)k−m−1
(
k

m

)
(n− k)m (4.14)

=
k

(k − 1)nk

k∑
m=0

m

(
k

m

)
(k −m)(k − 1)k−m(n− k)m (4.15)

=
k

(k − 1)nk
× k(k − 1)(n− 1)k−1 =

k2

n
(1− 1

n
)k−1 (4.16)

Now the following directly follows from the lemma and the fact above (It

is straightforward to verify that E[Xn] is non decreasing in n in this case. See

Appendix)

Theorem. Let Tn denote the expected time before everyone gets their own slots,

if each of the n users attempt n slots by choosing 1 of them uniformly at random,

until a successful transmission occurs, after which he sticks with the same slot ,

then we have

Tn ≤
n∑
k=1

n

k2
(1− 1

n
)1−k

Since (1 − 1
n )

1−k ≤ (1 − 1
n )

1−n ≤ 1
e and

∑∞
k=1

1
k2 = π2

6 , we have Tn ≤
π2

6en.Hence Tn is at most O(n) .As seen from the Figure 4.2, the error increases

as n increases. This is also clear from the proof in which the errors add up
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Figure 4.1: Graph of E[Xk] vs k when N = 20
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Figure 5.1: Graph of T32,n0vs n0

inductively. It should be noted that all arguments made above holds with minor

modi�cations when we relax the condition that the number of users is the same

as the number of slots. (That is, if we only need an ordering ). In the appendix

I have stated some of the corresponding results without proof.

5 APPENDIX

Fact. Suppose there are k balls and n + n0 bins out of which n − k bins are

occupied (i.e there is already a ball in it). Also suppose that each of the k balls

try to select one among the n+n0 bins uniformly at random, Then the expected

number of balls getting their own bins ( ie, there is no other ball is there in the

bin they attempted) is given by

ek,n,n0 =
k(k + n0)

n+ n0
(1− 1

n+ n0
)k−1

and hence

Theorem. Let Tn,n0
denote the expected time before everyone gets their own

slots, if each of the n users attempt n+n0 slots by choosing 1 of them uniformly
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at random, until a successful transmission occurs, after which he sticks with the

same slot , then we have

Tn,n0
≤

n∑
k=1

n+ n0
k(k + n0)

(1− 1

n
)1−k = Bn,n0

As expected it is decreasing in n0 at a very fast rate. Hence if the duration of

communication is small enough, it is better to have just an ordering instead of

one hundred percent e�cient slot assignment.Since the bounds are pretty close

to the actual values when n is small, Bn,0−Bn,n0
will give us a good measure of

how faster the settling time is in the situation with extra slots relative to the orig-

inal algorithm. We have now Bn,0−Bn,n0
≥
∑n
k=1(

n
k2 −

n+n0

k(k+n0)
)(1− 1

n+n0
)1−k.

But since (1− 1
n+n0

)1−k ≥ 1, we have Bn,n0
−Bn,0 ≥

∑n
k=1(

n
k2 −

n+n0

k(k+n0)
). It is

easy two see that n
k2 −

n+n0

k(k+n0)
= n0(n−k)

k2(k+n0)
is a decreasing function function in n.

Hence we have
∑n
k=1

n0(n−k)
k2(k+n0)

≥ n0n
1+n0

+
´ n
1

n0(n−k)
k2(k+n0)

dk. This integral is evalu-

ated to be (n−1)+
(
n
n0

+ 1
)
(log(n+ n0)− log(n0(n0 + 1))) whose derivate with

respect to n0is
n(log(n0)+log(n0+1)−log(n+n0))

n2
0

−
(
n
n0

+ 1
)(

1
n0+1 −

1
n+n0

+ 1
n0

)
.

Hence for small n0 the decrement is around log(n0).

Fact. f(k) = k(k+n0)
n+n0

(1− 1
n+n0

)k−1 is non decreasing for k in [1, n] for all non

negetive n0

Proof. f(k+1)
f(k) = (1− 1

n+n0
)(1 + 1

k )(1 +
1

k+n0
) which is greater than or equal to

(1− 1
n+n0

)(1 + 1
n )(1 +

1
n+n0

) = (1− 1
(n+n0)2

)(1 + 1
n ) which is at least 1− 1

n3 +
1
n −

1
n2 ≥ 1

5.1 A lower bound

Fact. Suppose there are k balls and n bins out of which n− k bins are occupied

(i.e there is already a ball in it). Also suppose that each of the k balls try to

select one among the n bins uniformly at random, Then we have the followng

bound for the expected number of balls getting their own bins ( ie, there is no

other ball is there in the bin they attempted) conditioned on the fact that at least

r balls gets their own bin given by

ek,n,r ≤
(k − r)2

n
(1− 1

n
)k−r−1 + r
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Proof. The required exectation will be atmost the expectation obtained by con-

ditioning on some �xed r balls getting their own bin. (Essentially we are the

splitting calculation of expectation (of a positive random variable) by condition-

ing over non disjoint events).Hence ek,n,r ≤ ek−r,n + r.

Hence with same notations as above, we haveE[Xk|Xk > k− i] ≤ (i−1)2
n (1−

1
n )
i−2 + k − i+ ≤ n− i+ (i−1)2

n (1− 1
n )
i−2. And hence we will have the bound

TN ≥
∑N
i=1(n − i +

(i−1)2
n (1 − 1

n )
i−2)−1. As expected this bound turns out to

be extremely weak. Computations show that the sum is bounded above by 2.

The weakness is due to the weakness of the bound on the expectation.
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