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ABSTRACT 

 

KEYWORDS: Interference Mitigation, Kernel Density Estimate, Gaussian Mixture, 

Expectation-Maximization, OFDM systems 

 

Wireless communication systems employ universal frequency reuse to 

accommodate more users per area and hence co-channel interference and its 

mitigation have gained importance. Though Linear Minimum Mean Square Error 

(LMMSE) is commonly preferred, they may not be the optimal choice when the noise 

is not Gaussian. This is the case when the interference is high and the interference 

plus noise becomes non-Gaussian. We want to look at the performance of receivers 

that model the interference plus noise as non-Gaussian. The interference plus noise 

can be modeled as a probability density function that can be estimated using various 

machine learning techniques. 

In this thesis, we use a parametric Gaussian Mixture Model (GMM) and a 

non-parametric Kernel Density Estimation (KDE) method to estimate the 

probability distribution function (pdf) of interference plus noise over a frequency 

selective channel OFDM channel without considering any temporal variation. We 

study non-linear receivers that use ML detection considering GMM and KDE and try 

to compare their performance.  
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CHAPTER 1 

INTRODUCTION 

 

Frequency reuse is deployed in wireless systems in order to increase the 

number of users that can be accommodated per square area at the same time. 

Multiple links using common resources are active simultaneously because of the 

demand for higher data rate made by the increased number of users. Therefore co-

channel interference comes into the picture. Increasing the transmit power does not 

help in fighting inter-cell interference. Hence signal to interference noise (SINR) 

becomes the bottleneck in achieving good throughput performance or lower bit error 

rate (BER). So the need for receiver architecture that is capable of interference 

mitigation arises. Good interference mitigation at the receiver can improve quality of 

each link in the network thereby leading to a significant improvement in the overall 

system level performance.  

1.1 Interference Mitigation: 

           In this thesis, we are mainly concerned with co-channel interference (CCI). 

Interference cancellation or mitigation techniques can be employed either at the 

transmitter or the receiver. This thesis is concerned with only receiver based 

techniques. 

1.1.1   Receiver based Interference mitigation:    

            Some of the traditionally used receiver techniques in presence of interference 

are as follows 

1. Maximal Ratio Combining (MRC): 

It is a diversity combining technique in which the signal at the receive antenna 

is weighed by a factor that is proportional to amplitude of the desired signal. It 

can be thought of as being equivalent to a spatial matched filtering at each 
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antenna and then summing up all the signals. The received signals coherently 

add up to give the maximum output Signal-to-Noise Ratio (SNR). This 

combining technique is not very effective in presence of interference and is 

not an interference cancellation technique. 

2. Zero Forcing (ZF) combining: 

In this method, the interference is cancelled by projecting the received signal 

into the subspace orthogonal to the interferers.  It might lead to loss of 

amplitude of desired signal if the spatial signature is not orthogonal to 

interferer and is optimal at high SNR.    

3. Linear Mean Square Error Interference cancellation (LMMSE-IC): 

The signals are weighted such that the Mean Square Error (MSE) between 

estimate and the actual symbol is minimized. It essentially does matched 

filtering at low SNR and Zero forcing at high SNR achieving the tradeoff 

between eliminating interference and maximizing desired signal power. 

 

Vaishnavi(2012) showed that in presence of non-gaussian noise, LMBER 

methods outperform LMMSE and also that LMBER techniques do not work well in 

presence of heterogenous interferers. Performing ML detection on the conditional 

pdf gives optimal error rate performance compared to using linear receivers. 

 

1.2  System Model: 

           In our model, we consider multiple transmitters and a single receiver antenna. 

Let the transmitters be T1, . . . , Tn   where the desired transmitter is T1 and the 

remaining transmitters are interferers and R be the receiver antenna. 
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Figure 1.1: System Model 

 
             The communication system used is a 10MHz Orthogonal Frequency 

Division Multiplexing (OFDM) multi-carrier system. 1024 point IFFT/ FFT is used 

for OFDM modulation/demodulation. There are 1024 subcarriers out of which 212 

in the beginning, 513th (dc sub carrier) and the last 211 subcarriers are nulled. No 

transmissions in these subcarriers as these are guard bands. Data is transmitted only 

in the remaining 600 subcarriers. The guard band interval is sufficient to eliminate out 

of band radiation. Channel delay spread is less than the cyclic prefix (CP) length at 

the receiver and hence there is no inter symbol interference (ISI). Doppler is not 

considered  in the model. So the model is essentially an OFDM system with no 

temporal variation.  

             The channel is modeled based on the Power Delay Profiles (PDP) of the 

ITUR Pedestrian outdoor channel A (Ped A), Pedestrian outdoor channel B (Ped B) 

and vehicular test environment channel A (Veh A) (Jain, 2007). In this thesis we only 

consider Ped A and Ped B channels. 

 

             Let 𝑋𝑛 [𝑘],𝐻𝑛 [𝑘],𝑌[𝑘],𝑁[𝑘] be the transmitted symbol, Channel frequency 

response, received symbol and the noise corresponding to the kth subcarrier in the 

frequency domain and n denotes the user. Here the noise 𝑁 𝑘   is taken to be zero 

mean Gaussian.  
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              𝑌 𝑘 =  𝑋𝑛  𝑘 𝐻𝑛 𝑘 
𝑁
𝑛=1  + 𝑁 𝑘                               

                          = 𝑋1 𝑘 𝐻1 𝑘 +  𝑋𝑛  𝑘 𝐻𝑛  𝑘 
𝑁
𝑛=2  + 𝑁 𝑘         

                          =  𝑋1 𝑘 𝐻1 𝑘 + 𝑁′ 𝑘                                   

             Here the noise 𝑁′ 𝑘  is the net interference plus the Gaussian noise. 
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CHAPTER 2 

DENSITY ESTIMATION METHODS 

 

We have discussed that in presence of strong interferers, the interference plus 

noise cannot be modeled as Gaussian. We try to model the conditional pdf of the 

interference plus noise using GMM-EM or KDE. This chapter deals with these 

standard density estimation methods. First the GMM-EM algorithm is introduced 

and then non-parametric KDE method is discussed. 

2.1 Gaussian Mixture Model-EM Algorithm: 

In this method, we assume that the underlying distribution is a mixture of 

Gaussians. The GMM consisting of K components is defined as 

            𝑝 𝑥 =  𝜋𝑘𝐶𝑁(𝑥|𝜇𝑘 , Σ𝑘

𝐾

𝑘=1

)                  

 𝑤𝑕𝑒𝑟𝑒 𝜋𝑘 , 𝜇𝑘  𝑎𝑛𝑑 Σ𝑘𝑑𝑒𝑛𝑜𝑡𝑒 𝑡𝑕𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖ty, mean and variance of the kth component    

  

Assuming the means, variances and probabilities are known for each 

component; the likelihood can be calculated and maximized. Consider N data points 

for training. The log likelihood is given by 

           ln𝑝 𝑋|π, μ, Σ =  ln⁡{ 𝜋𝑘𝐶𝑁(𝑥𝑛 |𝜇𝑘 , Σ𝑘

𝐾

𝑘=1

)}

𝑁

𝑛=1
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EM Algorithm: 

   The EM algorithm is an iterative algorithm that tries to calculate the 

parameters of the GMM while maximizing the log likelihood. 

 The following are the steps of the EM algorithm: 

1. Initialize the means μk, covariances Σk and mixing coefficients πk, and 

evaluate the initial value of the log likelihood.  

2. Expectation step. Υn,k denotes the responsibility kth component takes for 

explaining data point xn. Evaluate the responsibilities using the current parameter 

values 

           γn,k =
𝜋𝑘𝐶𝑁(𝑥𝑛 |𝜇𝑘 , Σ𝑘)

 𝜋𝑗𝐶𝑁(𝑥𝑛 |𝜇𝑗 , Σ𝑗 )𝐾
𝑗=1

                  

 

 

3. Maximization step. Re-estimate the parameters using the current responsibilities 

     μk
new =

1

𝑁𝑘

  γn,k𝑥𝑛

𝑁

𝑛=1

               

                                               Σk
new =

1

𝑁𝑘

  γn,k(𝑥𝑛 −

𝑁

𝑛=1

μk
new )(𝑥𝑛 − μk

new )𝑇                

  πk
new =

𝑁𝑘

𝑁
               

𝑤𝑕𝑒𝑟𝑒 Nk =   γn,k

𝑁

𝑛=1
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4. Evaluate the log likelihood 

           ln𝑝 𝑋|π, μ, Σ =  ln⁡{ 𝜋𝑘𝐶𝑁(𝑥𝑛 |𝜇𝑘 , Σ𝑘

𝐾

𝑘=1

)}

𝑁

𝑛=1

                  

 

and check for convergence of either the parameters or the log likelihood. If 

the convergence criterion is not satisfied return to step 2. 

2.2 Kernel Density Estimation: 

Kernel Density Estimation is a non-parametric density estimation method. In 

non-parametric density estimation, we do not make restrictive assumptions about the 

distribution of the underlying data and let the data speak for itself. Let us understand 

KDE through the naïve estimator. 

Parzen window or the naive estimator: 

. Consider X1, X2, ….., Xn  are the data points . From the definition of a 

probability density, if the random variable X has density f, then  

           𝑝 𝑥 = lim
𝑕→𝑖𝑛𝑓

𝑃(𝑥 − 𝑕 < 𝑋 < 𝑥 + 𝑕)              

For any given h, we can estimate P(x-h<X<x+h)by the proportion of the 

sample falling in the interval (x-h, x+h) .Thus a density estimate can be given by 

choosing a small number h  and setting  

           𝑝 𝑥 =
1

2𝑛𝑕
{𝑁𝑜. 𝑜𝑓 𝑋1,𝑋2 …𝑋𝑛  𝑓𝑎𝑙𝑙𝑖𝑛𝑔  𝑖𝑛 (𝑥 − 𝑕, 𝑥 + 𝑕)}             

  To find the number of data points that fall within the region we define Kernel 

function K(x). 

           𝐾 𝑥 =
1

2
        𝑖𝑓  𝑥 < 1 

                             = 0       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒        
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  This kernel which corresponds to a unit hyper-cube centred around origin is 

called the Parzen window or naive estimator. The estimator can be written as 

           𝑝 𝑥 =
1

𝑛
 

1

𝑕
𝐾(

𝑥 − 𝑋𝑖

𝑕
)

𝑛

𝑖=1

                  

This idea can be extended to d dimensions. Assume the region R is a d-

dimensional hypercube with hi being the length of an edge in ith  dimension. The 

volume of the hypercube is given by  

          𝑉 = 𝑕𝑖
𝑑                   

  Parzen window estimate can be thought of as sum of windows or boxes which 

are centred around the data points.  

Consider the histogram constructed from the data using bins of width h. 

Assume that no observations lie exactly at the edge of a bin. If x  happens to be at the 

centre of one of the histogram bins, the naive estimate p(x) will be exactly the 

ordinate of the histogram at x . The naive estimate tries to construct a histogram 

where every point is the centre of a sampling interval, freeing the histogram from a 

particular choice of bin positions.  

The choice of bin width remains and is governed by the parameter h   which 

controls the smoothing. It is not a continuous function, but has jumps at the points 

Xi+h and Xi-h and has zero derivative everywhere else. All points have equal weight, 

irrespective of their distance from the estimation point x. 

It is easy to generalize the estimator to overcome some of the difficulties 

discussed above. Use a kernel function K which satisfies the condition  

           𝐾(𝑥)𝑑𝑥

𝑖𝑛𝑓

−𝑖𝑛𝑓

 = 1                
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Usually, but not always, K will be a symmetric probability density function, the 

normal density, for instance, or the weight function used in the definition of the naive 

estimator. By analogy with the definition of the naive estimator, the kernel estimator 

with kernel K is defined by  

           𝑝 𝑥 =
1

𝑛𝑕
 𝐾(

𝑥 − 𝑋𝑖

𝑕
)

𝑛

𝑖=1

                  

where h is the window width , also called the smoothing parameter or 

bandwidth .  

Let X1, X2, ….., Xn   be a sample of d-variate  random vectors drawn from a 

common distribution described by the density function ƒ. The multivariate kernel 

density estimate is defined to be 

           𝑝𝐻 𝑥 =
1

𝑛𝑕
 𝐾𝐻(

𝑥 − 𝑋𝑖

𝑕
)

𝑛

𝑖=1

                  

  H is the bandwidth (or smoothing) 𝑑𝑥𝑑 matrix which is symmetric and 

positive definite K is the kernel function . 

Just as the naive estimator can be considered as a sum of boxes centred at the 

observations, the kernel estimator is a sum of `bumps' placed at the observations. 

The kernel function K determines the shape of the bumps while the window width h 

determines their width.  

Kernel estimation of pdfs is characterized by the kernel, K, which determines 

the shape of the weighting function, and the bandwidth, h, which determines the 

“width” of the weighting function and the amount of smoothing. The two 

components determine the properties of p(x). K and h are to be selected in order to 

optimize the properties of p(x). 

Density estimation aims at taking a finite sample of data and makes inferences 

about the underling probability density function everywhere including where no data 

are observed. In kernel density estimation, the contribution of each data point is 
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smoothed out from a single point into a region of space surrounding it. Aggregating 

the individually smoothed contributions gives an overall picture of the structure of 

the data and density function.  

 

Complexity: 

If the density is being estimated at m points and the given data contains n 

samples of training data, the complexity of KDE is 𝑂(𝑚𝑛). 

  

Optimizing the kernel density estimate: 

Consider the mean squared error (MSE) and its two components, namely bias 

and variance.  

𝑀𝑆𝐸  𝑝 𝑥  = 𝐸 𝑝 𝑥 − 𝑓 𝑥  
2

       

                                                           =  𝐸𝑝 𝑥 − 𝑓 𝑥  
2

+ 𝐸  𝑝 𝑥 − 𝐸 𝑝 𝑥   
2

 

                                                           = 𝑏𝑖𝑎𝑠2𝑝 𝑥 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑝 𝑥 )        

A measure of the global accuracy of p(x) is the mean integrated squared error 

(MISE) 

𝑀𝐼𝑆𝐸  𝑝 𝑥  = ∫ 𝐸 𝑝 𝑥 − 𝑓 𝑥  
2
𝑑𝑥       

                                                       = ∫ 𝑏𝑖𝑎𝑠2𝑝 𝑥 𝑑𝑥 + ∫ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑝 𝑥 )𝑑𝑥      

  It can be derived that    

  

𝑀𝐼𝑆𝐸  𝑝 =
1

4
𝑕4𝑘2

2  𝛽 𝑓 +
1

𝑛𝑕
𝑗2        

where 𝑘2 = ∫ 𝑧2 𝐾 𝑧 𝑑𝑧   ,  𝑗2 = ∫𝐾(𝑧)2 𝑑𝑧  and  𝛽 𝑓 =    ∫ 𝑓"2(𝑥)𝑑𝑥               
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Of central importance is the way in which MISE(p)changes as a function of 

the bandwidth h. For very small values of h the second term becomes large but as h 

gets larger so the first term increases. There is an optimal value of h which minimizes 

MISE(p). 

Optimal bandwidth Expression is the measure that we use to quantify the 

performance of the estimator. We can find the optimal bandwidth by minimizing 

with respect to h. The first derivative is given by 

𝑑(𝑀𝐼𝑆𝐸  𝑝 𝑥  )/𝑑𝑕 = 𝑕3𝑘2
2𝛽 𝑓 − (

1

𝑛𝑕
)2𝑗2       

  Setting this equal to zero yields the optimal bandwidth, h_{opt}  , for the 

given pdf and kernel 

𝑕𝑜𝑝𝑡 = (
1

𝑛

𝛾(𝐾)

𝛽 𝑓 
)1/5       

where 𝛾(𝐾) = 𝑗2𝑘2
−2

     

  We note that 𝑕𝑜𝑝𝑡  depends on the sample size, n, and the kernel, K. However, 

it also depends on the unknown pdf f, through the functional 𝛽 𝑓  . Thus as it stands 

expression is not applicable in practice.  

 

Choice of Kernel function: 

The MISE can also be minimized with respect to the kernel used. It can be shown 

(see, e.g., Wand and Jones, 1995) that Epanechnikov kernel is optimal in this respect. 

           𝐾 𝑥 =
3

4 5
(1 −  

1

5
𝑥2)       𝑖𝑓  𝑥 <  5 

= 0       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒        

 

The efficiency of a kernel, K, relative to the optimal Epanechnikov kernel, 𝐾𝐸𝑃  , is 

defined as  
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𝐸𝑓𝑓 𝐾 = 𝑀𝐼𝑆𝐸𝑜𝑝𝑡   𝑝 𝑥  𝑢𝑠𝑖𝑛𝑔 𝐾𝐸𝑃/𝑀𝐼𝑆𝐸𝑜𝑝𝑡   𝑝 𝑥  
5/4

    

The selection of kernel has rather limited impact on the efficiency as 

mentioned in [5].  

 

Bandwidth selection: 

The problem of choosing h is crucial in density estimation. A large h will over-

smooth the pdf and mask the structure of the data. A small h will yield a spiky pdf 

which would be difficult to interpret. We would like to find a value of h that 

minimizes the error between the estimated density and the true density. 

Univariate: 

Subjective Selection  

The natural way for choosing h   is to plot out several curves and choose the 

best estimate. It is not practical in pattern recognition since we typically have high-

dimensional data. 

Selection with reference to a standard distribution: 

Assume a standard density function and find the value of the bandwidth that 

minimizes the integral of the square error MISE. If we assume that the true 

distribution is Gaussian and we use a Gaussian kernel, it can be shown that the 

optimal value of h is 𝑕𝑜𝑝𝑡 = 1.06σN−1/5 

 Cross validation:  

The ML estimate of 𝑕 is degenerate since it yields h=0 , a density estimate 

with Dirac delta functions at each training data point. A practical alternative is to 

maximize the “pseudo-likelihood” computed using leave-one-out cross-validation. 

𝑕𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥{
1

𝑛
 𝑝−𝑛(𝑥𝑖)

𝑛

𝑖=1

 }     
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                           𝑝−𝑛 𝑥𝑖 =   
1

𝑕(𝑛 − 1)
    𝐾(

𝑥𝑖 − 𝑥𝑚
𝑕

)

𝑛

𝑚=1,𝑚 !=𝑖

 }     

Multivariate data: 

Kernel density estimation for multivariate data is an important technique that 

has a wide range of applications. However, it has received significantly less attention 

than its univariate counterpart. The lower level of interest in multivariate kernel 

density estimation is mainly due to the increased difficulty in deriving an optimal 

data- driven bandwidth as the dimension of data increases.  

The choice of the kernel function K is not crucial to the accuracy of kernel 

density estimators while the choice of the bandwidth matrix H is the single most 

important factor affecting its accuracy since it controls the amount of and orientation 

of smoothing induced. One basic difference between multivariate and univariate case 

is that the bandwidth matrix also induces an orientation which is not defined for 1D 

kernels.  

 We use subjective selection to fix the bandwidth in our case by using trial and 

error.    
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CHAPTER 3 

OPTIMAL SINGLE ANTENNA RECEIVERS 

 

Introduction: 

As discussed earlier, we try to model the conditional pdf of the interference 

and noise mixture as a non-Gaussian pdf. After the conditional pdf is obtained, the 

probability of correct decision is maximized by using the Maximum Likelihood (ML) 

rule and not the minimum distance rule. Performing ML detection on the conditional 

pdf should give optimal error rate performance compared to linear receivers. We first 

study the pdf of the interference in the presence of a single antenna receiver .This can 

later be extended for the case of multiple antenna receivers. 

ML estimate is given by 

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝(𝑦 − 𝑕1𝑥) }    

 

Single Antenna : 

 The system in this case involves a single QPSK interferer. The SNR is varied 

between 5-25 dB. The graphs plotted are for Ped B channel. The conditional pdf is 

estimated using KDE and GMM-EM considering a range of frequencies. The size of 

the training data is taken as a multiple of the frequency range assigning a fixed 

number of data points per each frequency. 

 We first try to fix number of points in training data. The following graphs 

indicate that the BER floors after training data per frequency of 10 for interference 

values of -3 dB, 0 dB and 3 dB.  
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3.1 BER Vs Training data per frequency : 

a) Frequency Range=8 

 

Fig 3.1 BER Vs Training data per frequency for GMM-EM and KDE for   

frequency range=8 at SNR =20 dB 
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b) Frequency Range=12 

 

 

Fig 3.2 BER Vs Training data per frequency for GMM-EM and KDE for   

frequency range=12 at SNR =20 dB 
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c) Frequency Range=18 

 

 

Fig 3.3 BER Vs Training data per frequency for GMM-EM and KDE for   

frequency range=18 at SNR =20 dB 

. 
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3.2 BER Vs SNR: 

a) Interferer at -3 dB 

 

 

3.4: Performance (BER Vs SNR) Comparison of GMM-EM 

and KDE for interferer at -3 dB 
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b) Interferer at 0 dB 

 

3.5: Performance (BER Vs SNR) Comparison of GMM-EM 

and KDE for interferer at 0 dB 
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c) Interferer at 3 dB 

 

3.6: Performance (BER Vs SNR) Comparison of GMM-EM 

and KDE for interferer at 3 dB 

 

The value of  training data per frequency=10 is used to plot BER curves. For 

each interference value, GMM-EM and KDE are compared for frequency range of 8, 
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12 and 18 carrier frequencies We observe that at all three values of SINR, for a range 

of frequencies around 8, the performance of GMM is better. As the range increases 

to 12 and 18, KDE is observed to perform better at higher SNR. The crossover is 

typically seen to occur at SNR=15dB and in between frequency range of 8-10. 

 We now compare the SNR for the different interference values. 

3.7: Performance (BER Vs SNR) Comparison of GMM-EM 

and KDE for frequency range=18 
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We observe that the BER decreases with the increase in the power of the 

interferer. This is seen for SNR values of 5 to 20. However, at SNR value of 25, it 

seems a bit ambigious. 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

 

4.1 Conclusion: 

In the presence of strong interference, the interference plus noise is no longer 

Gaussian and the commonly used methods like LMMSE are not very effective. There 

is a need to design more sophisticated receivers than can handle interference 

mitigation.  

The Gaussian Mixture Model-Expectation Maximization algorithm was 

studied for a simple static flat faded Rayleigh channel. We now try to extend the 

GMM-EM to a frequency selective OFDM channel (without temporal variation). 

Over the frequency selective channel, small ranges of frequency are considered and 

the average pdf is estimated using both the methods. Over a slightly higher range of 

frequencies, GMM component parameters might tend to a mean of its parameters for 

each channel. So another method is considered that does not assume any parameters 

for the underlying pdf and sees the data as it is. This method is the non-parametric 

Kernel Density Estimation.  

The performance of an ML receiver with both the methods is studied with 

BER as the performance indicator. It is observed that the performance of GMM-EM 

over smaller frequency range (<8-10) of the frequency selective channel was better 

than that of KDE but as the frequency range is slightly increased (12-18) , both the 

methods perform equally well at SNR upto 15 dB with KDE surpassing the 

performance of GMM after 15 dB. This was observed over 3 different values of the 

SINR. 
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4.2 Future Work:  

The work can be extended to the case of multiple interferers and also multiple 

receiver antenna case.  

 The complexity of the KDE algorithm can be reduced but at the cost of 

accuracy. The accuracy and cost tradeoff can be studied. 

We have considered only frequency selective OFDM system and that too 

varying only across a few resource blocks. It would be interesting to study the 

behavior of KDE and GMM when temporal variation is introduced.  

It would be useful to study the performance of the channel when coding is 

introduced. Instead of finding the mean pdf of interference plus noise as the channel 

changes slowly, it would be useful to track the pdf over the channel change.  

 

. 

 

 

 

 

 

 

 

 

 

 



25 

 

REFERENCES 

 

[1] Tse, D. and P. Viswanath, Fundamentals of Wireless communication, 

Cambridge University Press, 2005.  

[2] Vaishnavi, J. (2012). Advanced Receiver Techniques based on Density 

Estimation for Inter-cell Interference Mitigation. Masters thesis, Department 
of Electrical Engineering, IIT-Madras.  

[3] Cho, Y. S., J. Kim, W. Y. Yang, and C.-G. Kang, MIMO-OFDM Wireless 
Communications with MATLAB. John Wiley & Sons, 2010. 

[4] Bishop, C., Pattern Recognition and Machine Learning. Springer, 2006. 
[5] B. Silverman, Density estimation for statistics and data analysis. Chapman & 

Hall, 1986, vol. 26. 
[6] Walter Zucchini (October 2003), Applied Smoothing Techniques. 

http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf 
 
 
 

http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf

