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ABSTRACT

KEYWORDS: TCP Reno; NetFPGA; queue management; stability; Hopf bi-

furcation; packet-level simulations; NetFPGA experiments.

Using a combination of analysis, numerical computations and packet-level simula-

tions, we study the dynamics of TCP Reno which is a standardised transport protocol

for the Internet. We systematically study local stability and the local Hopf bifurca-

tion properties, of a fluid model for TCP Reno coupled with four queue management

schemes in routers. Models for the widely deployed Drop-Tail queue policy, over two

different router buffer sizing regimes are considered. We also consider a model for

a threshold based queue policy and a Drop-Tail queue policy with bursty flows. We

explicitly show that variations in parameters like the buffer size can produce Hopf

induced limit cycles in the queue size. It is practically important, and theoretically

demanding, to characterise the existence, uniqueness and stability of the bifurcating

periodic solutions. Using the theory of normal forms and the center manifold theorem,

we establish that the Hopf bifurcation is indeed supercritical. Packet-level simulations

and NetFPGA emulations for the Drop-Tail queue policy corroborate our theoretical

analysis. Some design considerations to ensure stability of queue sizes for high-speed

communication networks are outlined.
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CHAPTER 1

Introduction

1.1 Motivation

The Transmission Control Protocol (TCP) plays a critical role in providing end-to-

end performance for applications that run over the Internet. Traditionally, the analysis

of transport protocols has been performed using discrete-event packet-level simula-

tions (1). Another approach for performance analysis is to construct fluid models

for the underlying packet based system, and then use the stability properties of the

model to guide design and performance considerations. Fluid based analysis of trans-

port protocols are useful as they allow the study of network dynamics in a scalable

and computationally inexpensive way. For motivation on the model for TCP Reno,

see (9; 11; 12).

With increasing traffic in the Internet, congestion avoidance and control assumes

significance. The key elements of congestion control are the congestion avoidance al-

gorithms embedded in transport protocols. When queues are overloaded, they drop

packets. Such dropped packets serve to provide indications of congestion, in the net-

work, to end-systems. Thus queue management policies and the size of router buffers

also play an integral part in network performance. For early work on router buffer

sizes see (12; 15), and for some queuing models, see (7; 12). We note that there is still

no agreement on the optimal design choices for transport protocols, queue policies, or

router buffer sizes.

One way to approach the problem is to study the dynamics of existing congestion

control systems using a combination of analysis, numerical computations and packet-

level simulations. Once the short-comings are exposed, the ways to address them can

be explored.



1.2 Problem Description

In this thesis, we focus on the standardized TCP Reno and study it in combination

with four different queue management models. The models for queue management

we study are a Drop-Tail queue policy for smooth flows, with an intermediate and

a small buffer regime, a Drop-Tail queue policy for bursty flows with a small buffer

regime, and a threshold based queue management policy. Using a combination of

queuing, control, and bifurcation theory supplemented with numerical and packet-

level simulations, we analyse the underlying models for their local stability and Hopf

bifurcation properties.

We also study the system by emulating with NetFPGA (4), an open networking

platform accelerator that enables researchers and instructors to build working pro-

totypes of high-speed, hardware-accelerated networking systems. NetFPGA based

routers have often been deployed in the Internet for experimental purposes and have

been shown to be more precise than software based traffic generators (2). Other than

transmitting experimental TCP Reno traffic, NetFPGA also supports traffic from rout-

ing protocols thereby providing a more realistic scenario for conducting experiments.

The NetFPGA emulation further supplements our local stability and Hopf bifurcation

analysis.

1.3 Contributions

In this thesis, we first proceed to outline sufficient conditions for local stability, and

characterise the necessary and sufficient conditions. The associated stability charts for

these conditions inform us that minor variations in parameters at the router-level algo-

rithms can make the system enter a locally unstable state. We show that this transition

occurs via a Hopf bifurcation as parameters like buffer size are varied. A practical

manifestation of a Hopf bifurcation, in communication networks, is the formation of

limit cycles in the queue size. Employing the theory of normal forms and the cen-
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ter manifold theorem, we show that the Hopf bifurcation is supercritical. Thus we are

able to theoretically characterise the existence, uniqueness and stability of the bifurcat-

ing periodic solutions. The existence of the theoretically predicted stable limit cycles

are validated with packet-level simulations using Network Simulator (NS2) (16) and

emulation using NetFPGA.

1.4 Organisation

The rest of this thesis is organised as follows. In Chapter 2, we present a non-

linear fluid model for TCP Reno and we outline the four queue management strategies.

Chapter 3 contains the local stability analysis and some robustness considerations for

the system. In Chapter 4, we confirm that the local Hopf bifurcation is supercritical.

In Chapter 5, we provide evidence of limit cycles in the queue size dynamics using

packet-level simulations and NetFPGA emulation. In Chapter 6, we summarize our

contributions. To support the results in Chapter 4, a complete characterization of local

Hopf bifurcation analysis is presented in a self contained Appendix.
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CHAPTER 2

Models

2.1 Non-linear fluid model for TCP Reno

Consider a collection of N TCP flows with common round-trip time τ , subject to

a common packet loss probability p(x(t)). The average window size of all N flows

at a time t is given by w(t), measured in packets, so that the average sending rate

becomes x(t) = w(t)/τ . For TCP Reno, the window w(t) increases by 1 every τ , and

decreases by w(t)/2 in case packet loss is detected due to congestion. The form of p(t)

determines the queue management policy adopted in the network. The fluid model

for the congestion avoidance phase of TCP Reno is given by

dw(t)

dt
=

1

τ
− w(t)

2

(

x(t− τ)p(t− τ)
)

. (2.1)

There are arguments in favour of such a non-linear model for TCP Reno in (11). In the

next section, we describe fluid models for the different queue management policies

under consideration.

2.2 Models for Queue Management

We consider four models for packet drop policy. These are: small buffer Drop-

Tail for smooth and bursty flows, intermediate buffer Drop-Tail and a threshold based

drop policy. Let the drop probability be given by p(x). Then the four models can be

described as follows:

1) It is suggested that for a large number of flows, the blocking probability of a

M/M/1 queue is a reasonable model for the packet loss incurred by a small buffered



router that implements the Drop-Tail mechanism (11; 12). A packet is dropped if it

arrives at the queue to find at least B packets already present. Thus, the fluid-level

representation for the queue may be given by

p(x) =
( x

C

)B

, (2.2)

where C is the link capacity and B is the buffer size.

2) In a Drop-Tail scheme, data packets that arrive later get dropped when a buffer

overflows in the router. The loss probability of such a queue may be modelled as a

M/M/1/B queue, where B is the buffer size. For such a system we have,

p(x) =
(1− ρ)ρB

1− ρB+1
,

where ρ = x/C. If the arrival rate x, capacity C, and the buffer size B are scaled by a

factor β, as in many-flows large-deviation scaling, then by letting β → ∞ we get,

lim
β→∞

(1− ρ)ρBβ

1− ρBβ+1
=

(

x− C

x

)+

. (2.3)

Note that in a fluid model, this denotes the fraction of fluid lost when the arrival is

greater than the capacity. This models an intermediate buffer Drop-Tail queue man-

agement scheme (8; 12).

3) For the purpose of defining the threshold algorithm for queue management,

we assume the workload arriving at the receiver over a time-period τ as having a

Gaussian distribution, with a mean xτ and variance xτσ2. If the workload exceeds a

threshold level B, then the incoming packet is dropped. The expression for the the

queue management strategy is obtained from (7), and is given by

p(x) = exp

(−2B(C − x)

xσ2

)

. (2.4)

4) For packets arriving in bursts, we consider a batch Poisson traffic model. In a
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queue fed by a Poisson process of rate x/n, each Poisson arrival represents the arrival

of a burst of n packets. Then a simple fluid model for the queue could be

p(x) =
( x

C

)B/n

. (2.5)

For more motivation on the model, see (12; 13).

The expressions for the drop probabilities, (2.2), (2.3), (2.4), and (2.5) are substi-

tuted into the non-linear model for TCP Reno obtained from (2.1). On substituting, we

obtain four TCP Reno-queue management models, referred to in the rest of the thesis

as Models I, II, III and IV.
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CHAPTER 3

Local Stability

In this chapter, we proceed to determine the steady state solution for the non-

linear model for TCP Reno for a general p(x). We then linearise the model about the

state steady state point and determine the necessary and sufficient conditions for local

stability. We also construct relevant stability charts.

Equation (2.1) can be written as

dx(t)

dt
=

1

τ 2
− x(t)

2

[

x(t− τ)p(x(t− τ))
]

, (3.1)

since the packet drop probability is a function of the rate x and w(t) = x(t)τ .

The equilibrium for equation (3.1) occurs at x0 = 1
τ

√

2
p
. The equilibrium is unique

as sending rates have to be non-negative. On linearising about the equilibrium, we get

dx(t)

dt
=

−x0
2
p(x0)(x(t)− x0)

−x0
2

(

x0p
′(x0) + p(x0)(x(t− τ)− x0)

)

.

(3.2)

Substituting u(t) = x(t) − x0 and u(t− τ) = x(t − τ)− x0 in equation (3.2), we get

the linearised delay-differential equation in the standard form given by

du(t)

dt
= − au(t)− bu(t− τ).



Table 3.1: Necessary and sufficient conditions for local stability for Models I, II, III
and IV

Necessary and sufficient condition for local stability

I
1

ws

√

B(B + 2) < cos−1

(

− 1

B + 1

)

II
Cτ

2

√

2ws

Cτ
− 1 < cos−1

(

− 2

w2
s

)

III
ws

2
p(ws)

√

2BCτ

σ2ws
< cos−1

(

− σ2ws

σ2ws + 2BCτ

)

IV
1

ws

√

(B/n)(B/n+ 2) < cos−1

(

− 1

B/n+ 1

)

For a ≥ 0, b > 0, b > a and τ > 0, it can be shown that (10)

bτ <
π

2
, (3.3)

is a sufficient condition for local stability. The necessary and sufficient condition for

local stability is given by

τ
√
b2 − a2 < cos−1

(

−a
b

)

. (3.4)

Using results (3.3) and (3.4), we now find expressions for the necessary and suffi-

cient condition for local stability. For Models I, II, III and IV, the necessary and suf-

ficient conditions for local stability are presented in Table 3.1. From these we obtain

sufficient conditions for stability which are presented in Table 3.2.

Figure 3.1 shows the stability charts for Models I, III and IV for link capacity C =

140 packets/second, σ2 = 3 packets and n = 10. The stability charts clearly show that

the system is stable only in the small buffer regime. Model II is always unstable except

for small values of τ and link capacity C.

In the parameter space where the system is stable, it is possible to obtain a neces-

sary and sufficient condition for the existence of overdamped solutions. Consider the

8



Table 3.2: Sufficient conditions for local stability for Models I, II, III and IV

Sufficient condition for local stability

I
B + 1

ws
<

π

2

II ws < π

III wsp(ws)

(

1 +
2BCτ

σ2ws

)

< π

IV
B/n+ 1

ws
<

π

2

characteristic equation of the system reproduced here:

λ+ a + b exp(−λτ) = 0. (3.5)

Let λ = σ + jω. For an overdamped response, σ < 0 and ω = 0. For λ = σ, we have

σ + a + b exp(−στ) = 0. (3.6)

For the above characteristic equation to have solutions with σ < 0, the minima of

f(σ) = σ + a + b exp(−στ) must be less than zero. From this we get the necessary and

sufficient condition for the existence of overdamped solutions as

bτ < exp(−aτ − 1). (3.7)

The necessary and sufficient conditions for the existence of over-damped solutions for

Models I, II, III and IV have been compiled in Table 3.3. It is easy to see that

bτ < exp(−1), (3.8)

is a necessary condition for the existence of over-damped solutions.

9



0 50 100
0.0

0.2

0.4

Stable region

Unstable region

Model I

Buffer size B (pkt)
R

T
T

 (
s)

0 50 100
0.0

0.2

0.4

Stable region

Unstable region

Model III

Buffer size B (pkt)

R
T

T
 (

s)

0 50 100
0.0

0.1

0.2

Stable region

Unstable region

Model IV

Buffer size B (pkt)

R
T

T
 (

s)

Figure 3.1: Stability charts for Models I, III and IV for link capacity C = 140
packets/second. The dashed line represents the boundary of the stable region in

which the necessary and sufficient condition for stability given in Table 3.1 is
satisfied. The solid line represents the boundary of the region in which sufficient

condition for stability given in Table 3.2 holds true.

The results in this section show that in case of Models I, III and IV, using small

buffers will ensure local stability. In the case of Model II, the equilibrium window size

must be extremely small to ensure local stability.

10



Table 3.3: Necessary and sufficient conditions for the existence of overdamped
solutions for Models I, II, III and IV

Necessary and sufficient condition for the

existence of over-damped solutions

I
B + 1

ws
< exp

(

− 1

ws
− 1

)

II
ws

2
< exp

(

− 1

ws
− 1

)

III
ws

2
p(ws)

(

1 +
2BCτ

σ2ws

)

< exp

(

− 1

ws
− 1

)

IV
B/n+ 1

ws
< exp

(

− 1

ws
− 1

)

Robustness Considerations

The models considered in this thesis have uncertainty, both in the form of parameter

variations and in the form of neglected dynamics. It is rather important that we quan-

tify the variation in system stability and performance due to the before mentioned

uncertainties. In this section, we use the Vinnicombe metric (14) to tackle the issue of

parametric uncertainty in Model I. The approach can be extended to the other models.

Consider two transfer functions P1 and P2. Define d(P1, P2) as

d (P1, P2) = sup
ω

|P1 (iω)− P2 (iω)|
√

(

1 + |P1 (iω)|2
) (

1 + |P2 (iω)|2
)

, (3.9)

where d (P1, P2) ∈ [0, 1] . Let C be the set of all pairs (P1, P2) such that the functions

f1 = 1 + P1(s)P1(−s) and f2 = 1 + P2(s)P1(−s) have the same number of zeros in the

right half-plane. The Vinnicombe metric is defined as

δv(P1, P2) =











d(P1, P2), if (P1, P2) ǫ C

1 otherwise.

(3.10)
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The Vinnicombe metric is a distance metric that serves as a proxy for similarity in

stability properties and performance. In general, larger buffer sizes give higher link

utilisation (12). Thus, it makes sense to operate the system along the edge of stability

(given by the solid line in Figure 3.2). But then we run the risk of moving into the

region of instability in the presence of parametric variations. One way of dealing with

this is to operate at a new system operating point (given by the dashed line in Figure

3.2) at a distance given by a Vinnicombe metric of 0.1 from the edge of stability.

For Model I, we have assumed that there is no uncertainty in capacity C, buffer

size B and the model. Uncertainty is present in the round-trip time. The loop transfer

function for the linearised model is

P (s) =
((B + 1) /wsτ) exp(−sτ)

s+ (1/wsτ)
. (3.11)

P1(s) is set up to correspond to the system operating at the edge of stability. The round-

trip time is then varied in P2(s) to obtain the operating point which is at distance given

by a Vinnicombe metric of 0.1.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

Stable region

Unstable region

Buffer size B (pkt)

R
T

T
 (

s)

Figure 3.2: The solid line represents the edge of stability and the dashed line
represents a collection of operating points at a distance given by a Vinnicombe metric

of 0.1 from the edge of stability.

In the next chapter, we perform a Hopf bifurcation analysis of the system by forcing

the system to transit into a region of instability using a system based parameter.
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CHAPTER 4

Local Hopf Bifurcation

The non-linear model for TCP Reno is of the form

d

dt
w(t) = αf(w(t), w(t− τ)). (4.1)

Here α is a nondimensional exogenous parameter and w(t) denotes window size at

the time instant t.

The function αf(w(t), w(t− τ)) is dependent on the system parameters. It is possi-

ble to drive the system to the edge of stability using combinations of system parameter

values. The system then undergoes a Hopf bifurcation if

Re

(

dλ

dα

)

α=1

6= 0, (4.2)

the transversality condition of the Hopf spectrum, is satisfied. Here Re(.) represents

the real part.

We single out buffer size B as our parameter of interest. For a particular value of

link capacity C, we now construct the bifurcation diagrams for Models I, III and IV.

For these models, we have a Hopf bifurcation for a particular value of buffer size B

(= Bc) for which the system transits from stability to instability. The transition occurs

when the system moves away from a parameter space in which the conditions in Table

3.1 hold. The bifurcation point also needs to satisfy the transversality condition

Re

(

dλ

dB

)

B=Bc

6= 0. (4.3)

The general expression for the transversality condition for Models I, II, III and IV is



given by
db

dB

∣

∣

∣

∣

B=Bc

(a+ b2τ)

b (1 + 2aτ + b2τ 2)
6= 0. (4.4)

Since a ≥ 0, b > 0, b > a and τ > 0, we see from (4.4) that for the transversality

condition to hold true, we just need

db

dB

∣

∣

∣

∣

B=Bc

6= 0. (4.5)

For Models I, III and IV, (4.5) evaluates to a nonzero quantity. Thus the transversal-

ity condition (4.3) is satisfied.

The bifurcation diagrams, in Figure 4.1 are constructed for a link capacity C of 140

packets/second (with σ2 = 3 packets for Model III). The figures highlight the link

between system stability and the parameter B.

We now highlight the differences in the non-linear structure of Models I, II, III and

IV, and perform an analytical characterization of the Hopf bifurcation.

Non-linear structure of Models I and II

Following the analysis in (6; 10), we preserve the non-linearity of (4.1) by retaining

the quadratic and cubic terms in the Taylor series approximation about the equilibrium

point. For convenience, we use u(t) ≡ w(t)−ws, x ≡ w(t) and y ≡ w(t− τ). Thus (4.1)

transforms into

d

dt
u(t) = αξxu(t) + αξyu(t− τ) + αξxxu

2(t)

+αξxyu(t)u(t− τ) + αξyyu
2(t− τ)

+αξxxxu
3(t) + αξxxyu

2(t)u(t− τ)

+αξxyyu(t)u
2(t− τ) + αξyyyu

3(t− τ)

+O(u4), (4.6)

14



0 50 100
0

75

150
Model I

Buffer size B (pkt)

S
en

di
ng

 r
at

e 
x 

(p
kt

/s
)

0 50 100
0

75

150
Model III

Buffer size B (pkt)

S
en

di
ng

 r
at

e 
x 

 (
pk

t/s
)

0 75 150
0

75

150
Model IV

Buffer size B (pkt)

S
en

di
ng

 r
at

e 
x 

 (
pk

t/s
)

Figure 4.1: Bifurcation diagrams for Models I, III and IV showing the emergence of
limit cycles as the buffer size increases beyond a certain threshold. Observe that

system stability can be ensured only with small buffers and that the system performs
better in the presence of bursty flows.
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Table 4.1: Linear, quadratic and cubic terms of Models I and II

Model I Model II

ξx −wsp(ws)

2τ
−ws −Cτ

2τ

ξy −wsp(ws)

2τ
(B + 1) −ws

2τ

ξxx 0 0

ξyy −p(ws)

2
(B + 1) 0

ξxy −p(ws)

4
B(B + 1) −1

2

ξxxx 0 0

ξxxy 0 0

ξxyy −p(ws)τ

4ws
B(B + 1) 0

ξyyy −p(ws)τ

12ws
B(B − 1)(B + 1) 0

where

ξxiyj =
1

(i+ j)!

∂i+j

∂xi∂yj
f

∣

∣

∣

∣

x=xs,y=ys

. (4.7)

In Table 4.1 we have listed out the linear, cubic and quadratic terms (4.7) for Models

I and II, to highlight the differences in their non-linear structure. The linear and higher

order terms for Models III and IV can be calculated using (4.7) but are not shown. The

ξxiyj ’s are used to analytically characterise the Hopf bifurcation. The complete local

Hopf bifurcation analysis is shown in the Appendix.

In the Appendix, we describe two quantities, µ2 and β2, used to analytically char-
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Table 4.2: Period of Hopf Bifurcations for Models I, III and IV

Period of Hopf Bifurcations

I

2πτ

cos−1

(

− 1

B + 1

)

III

2πτ

cos−1

(

− σ2ws

σ2ws + 2BCτ

)

IV

2πτ

cos−1

(

− 1

B/n+ 1

)

0 5 10 15 20 25 30

−0.10

−0.05

0.00
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Buffer size B (pkt)

µ2

β2

Figure 4.2: Variation of µ2 and β2 with buffer size for Model I for a large
bandwidth-delay product. Note that µ2 > 0 and β2 < 0 for all values of buffer size.

Thus, the Hopf bifurcation is always supercritical. See the Appendix for all
definitions and associated analysis.

acterise the Hopf bifurcation; see A.8. Figure 4.2 is representative of the variation of

µ2 and β2 with buffer size B for Models I, III and IV for a link capacity of C of 140

packets/second and τ = 200 ms. From the figure, we see that µ2 > 0 and β2 < 0 for

all values of buffer size B. Hence, we conclude that the Hopf bifurcation is always

stable and supercritical (see end of Appendix). In Table 4.2 we present the period of

the (emergent) periodic orbits at the Hopf bifurcation point for Models I, III and IV. In

the next chapter, we show using packet-level simulations that, in a practical scenario,

limit cycles in the queue size manifest as synchronized flows.
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CHAPTER 5

Packet-level simulations and NetFPGA emulation

The analyses conducted using the fluid model in the previous chapters indicate that

the system will be unstable when operating with large buffer sizes. In this chapter we

perform packet-level simulations using the network simulator-2 (NS2) (16) and TCP

Reno under the Drop-Tail queue management strategy. We also perform emulation

using a hardware NetFPGA (4) based router. Both are conducted on a single bottle-

neck topology. Our aim is to find out whether the results of the analysis will be valid

for a real network during the congestion control phase of TCP Reno.

5.1 NS2 simulations

0 50 100 150 200
0

50

100

150

200

Phase plot of queue dynamics

q(t−RTT) (pkt)

q(
t)

 (
pk

t)

B=100
B=200

Figure 5.1: Phase diagram for queue size dynamics generated using data from
packet-level simulations. Note the existence of limit cycles as buffer size varies. The

time plot for the same is shown in the right hand side of Figure 5.2.

The following parameters were used for our simulations: buffer size = 10, 100 and

200 packets, with round-trip time τ = 200 ms, bottleneck link capacity C = 100 Mbps,
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Figure 5.2: Packet-level simulations over a single bottleneck topology with link
capacity = 100 Mbps, 60 flows with a τ of 200 ms and packet size of 1500 bytes. In the

left, with small buffer sizes, we do not observe any limit cycles. On the right, as
buffer sizes get larger, we witness the emergence of limit cycles [solid line represents

100 packets and dashed line represents 200 packets].

number of flows N = 60 and packet size = 1500 bytes. We observed the behaviour of

the queue size in our simulations.

It has been shown in (7; 11), that even minor variations in buffer size can readily

lead to instability. Figure 5.1 shows the phase diagram for the queue sizes. It is seen

that the system does not converge and that with increasing τ the bounds for these

cycles also increase. Figure 5.2 clearly shows that queue lengths are stochastically

stable for a buffer size of 10 packets and that as the buffer size is increased to 100 and

200 packets, there is synchronization of flows. Such flow synchronization establishes

the existence of stable limit cycles observed in Model I.
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5.2 NetFPGA emulation

NetFPGA, developed at Stanford University, is a research and development platform

to evaluate high speed networks (4). It consists of a Field Programmable Gate Array,

which can handle switching, routing and data path processing. Gateware based on

Verilog can be synthesized and logic mapped using Xilinx’s ISE tools onto the FPGA.

NetFPGA uses peripheral communication interconnect (PCI) expansion slot to com-

municate with the Linux operating system based host machine. The software interface

for the NetFPGA consists of a Linux driver which allows user space software to com-

municate with the NetFPGA device and its registers. Other than collecting statistics

about network traffic, these registers also act as a communication point between the

host and the NetFPGA. The details about these registers are available in the NetFPGA

documentation.

We used the NetFPGA platform’s gateware and software based reference full line-

rate internet router for our experiments. Our focus is confined to a single link topology,

which is shown in Figure 5.3. We configured two computer systems that contained

a 2.5 GHz Intel quad core processor and Intel dual port e1000 PCI express x4 NIC. A

NetFPGA card was connected to Host 1. The parameters used in the experiments are

outlined in Table 5.1.

Figure 5.3: Emulation setup uses 2 Linux machines running TCP client, server and a
NetFPGA hardware router. The NetFPGA router is connects through a single

bottleneck link to the server.

We now outline how the various parameters, that are used in the experiments, are

varied. Varying the buffer size is straight forward in NetFPGA. The round-trip time

can be varied using the Netem tool; this tool allows link delays to be emulated, and

thus we can vary the round-trip time. We used the NetFPGA platform’s rate limiter
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Table 5.1: Parameters used in the NetFPGA experiments

Parameter Value

Buffer size 16, 128 packets
Round-trip time 100 milliseconds

Capacity 946 Mbps
Number of TCP connections 100

Packet size 1500 bytes
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Figure 5.4: With increase in buffer size from 16 to 128, the onset of synchronization
with long-lived flows is clearly visible. This confirms the existence of stable limit

cycles.

module to limit the data transmission rate on the ethernet port. For generating TCP

traffic, and for configuring the number of TCP connections, we used the Iperf tool.

The Iperf clients were run on Host 1 and the server was run on Host 2. There is an

important difference between the NS2 simulations and the NetFPGA experiments. In
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NetFPGA, the data traffic includes packets generated from routing protocol like Open

Shortest Path First (OSPF), whereas in the case of NS2 these packets are absent.

The onset of synchronization due to variations in buffer size is observed in Fig-

ure 5.4. This constitutes a qualitative change in the dynamics of the system; a phe-

nomena which appears when the buffer size is increased beyond a few dozen packets.
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CHAPTER 6

Outlook

In modern communication networks, end-to-end delays associated with process-

ing, queuing, or physical transmission are inherent. Thus delay equations, and their

stability and bifurcation analysis, provide a natural setting for understanding some of

the aspects of network dynamics.

6.1 Contributions

We conducted a local stability and a detailed Hopf bifurcation analysis of a fluid

model for TCP Reno coupled with four queue management policies in network routers.

For queue management, we considered the currently implemented Drop-Tail queue

policy, in a small and an intermediate buffer regime, and a model for a threshold based

queue policy. The Drop-Tail queue policy was investigated in the presence of smooth

as well as bursty flows. The local stability analysis, of the various underlying models,

allowed us to capture relationships between protocol and queue management param-

eters to ensure stability. Variations in these parameters, like the router buffer size,

was shown to readily induce a Hopf bifurcation. An analytical characterisation of the

existence, uniqueness and stability of the bifurcating solutions was conducted using

the theory of normal forms and the centre manifold theorem. Practically, stable limit

cycles in the queue size can hurt end-to-end performance; and their existence was

substantiated via packet-level simulations NetFPGA emulation.

Stability of queues, and low latency, in communication networks are both impor-

tant metrics for performance evaluation and quality of service. Implementation of the

suggested design considerations would ensure both stable queue size dynamics and

low latency networks.



6.2 Avenues for further study

The analysis described in the thesis can be extended to queue management strategies

such as RED (3) and other TCP congestion avoidance algorithms. A natural extension

would be to analyse a multi-bottleneck link as well as a combination of short-lived

and long-lived flows in the network. We could also extend the work to other types of

TCP like CUBIC (5), which use data loss as the type of feedback signal in the network.
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APPENDIX A

Analytical characterisation of Hopf Bifurcation

The structure of this Appendix is as follows: In an autonomous non-linear equa-

tion with a single discrete delay we first give conditions for the loss of local stability

to occur via a Hopf bifurcation (6). Then following the analysis outlined in (6), we per-

form the necessary calculations to determine the type of the Hopf bifurcation and the

asymptotic form of the bifurcating solutions just as local instability sets in.

Consider the non-linear delay-differential equation:

d

dx
x(t) = κf(x(t), x(t− τ)), (A.1)

where f has a unique equilibrium point denoted by (x∗, y∗) and κ, τ > 0. Define

u(t) = x(t) − x∗, and take a Taylor expansion of (A.1) including the linear, quadratic,

and cubic terms to obtain (4.6). Remember that in (4.6),

ξxiyj =
1

(i+ j)!

∂i+j

∂xi∂yj
f

∣

∣

∣

∣

x=xs,y=ys

. (A.2)

Consider the linearised form of (A.1), namely

d

dx
x(t) = κξxu(t) + κξyu(t− τ). (A.3)

The stability of (A.3) is given by the roots of the associated characteristic equation.

Theorem 1 (10) Consider a linear autonomous delay equation whose corresponding charac-

teristic equation is given by λ + κa + κbe−λτ = 0, where κ, a, b, τ > 0 and b > a. Then the

trivial solution of the corresponding system is stable for all κ ∈ (0, κc) and undergoes a Hopf

bifurcation at κ = κc, where κcτ = cos−1(−a/b)√
b2−a2

.



The calculations that follow will enable us to address questions about the form

of bifurcating solutions of (A.1) as it transits from stability to instability via a Hopf

bifurcation. For this we have to take the quadratic and the cubic terms of (A.1) into

consideration. Following the style of analysis in (6), we now perform the requisite

calculations.

Consider the autonomous delay-differential system:

d

dt
u(t) = Lµut + F (ut, µ) (A.4)

t > 0, µ ∈ R, where for τ > 0

ut(θ) = u(t+ θ) u : [−τ, 0] ∈ R, θ ∈ [−τ, 0].

Lµ is a one parameter family of continuous (bounded) linear operators defined as Lµ :

C[−τ, 0] → R. The operator F (ut, µ) : C[−τ, 0] → R contains the non-linear terms.

Further, assume that F (ut, µ) is analytic and that F and Lµ depends analytically on the

bifurcation parameter µ for small |µ|. The objective now is to cast (A.4) into the form,

d

dt
ut = A(µ)ut +Rut (A.5)

which has ut rather than both u and ut. First, transform the linear problem (d/dt)u(t) =

Lµut. By the Riesz representation theorem, there exists an n × n matrix valued function

η(θ, µ) : [−τ, 0] → Rn2

, such that each component of η has bounded variation and for

all φ ∈ C[−τ, 0]
Lµφ =

∫ 0

−τ

dη(θ, µ)φ(θ).

In particular

Lµut =

∫ 0

−τ

dη(θ, µ)u(t+ θ). (A.6)

Observe that

dη(θ, µ) = (κξxδ(θ) + κξyδ(θ + τ))dθ,
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where δ(θ) is the Dirac delta function, would satisfy (A.6).

For φ ∈ C1[−τ, 0], define

A(µ)φ(θ) =







dφ(θ)
dθ

, θ ∈ [−τ, 0]
∫ 0

−τ
dη(s, µ)φ(s) ≡ Lµφ, θ = 0

(A.7)

and

Rφ(θ) =







0, θ ∈ [−τ, 0]
F (φ, µ), θ = 0.

Then, as dut/dθ ≡ dut/dt, system (A.4) becomes (A.5).

The bifurcating periodic solutions u(t, µ(ǫ)) of (A.4) (where ǫ ≥ 0 is a small param-

eter) have amplitude O(ǫ), period P (ǫ), and nonzero Floquet exponent β(ǫ), where µ,

P and β have the following (convergent) expansions:

µ = µ2ǫ
2 + µ4ǫ

4 + ...

P =
2π

ω0

(1 + T2ǫ
2 + T4ǫ

4 + ...

β = β2ǫ
2 + β4ǫ

4 + ...

(A.8)

These coefficients will now be determined. Since we only need to compute the expres-

sions at µ = 0, we set µ = 0. Let q(θ) be the eigenfunction for A(0) corresponding to

λ(0),

A(0)q(θ) = iω0q(θ),

and define the adjoint operator A∗(0) as

A∗(0)α(s) =







−dα(s)
ds

, s ∈ (0, τ ]
∫ 0

−τ
dηT (t, 0)α(−t), s = 0,

where ηT denotes the transpose of η.
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The domains of A and A∗ are C1[−τ, 0] and C1[0, τ ]. As

Aq(θ) = λ(0)q(θ)

λ̄(0) is an eigenvalue for A∗, and

A∗q∗ = −iω0q
∗

for some nonzero vector q∗. For φ ∈ C[−τ, 0] and ψ ∈ C[0, τ ] define an inner product

〈ψ, φ〉 = ψ̄(0) · φ(0)−
∫ 0

θ=−τ

∫ θ

ζ=0

ψ̄T (ζ − θ)dη(θ)φ(ζ)dζ, (A.9)

where a · b means
∑n

i=1 aibi. Then 〈ψ,Aφ〉 = 〈A∗ψ, φ〉 for φ ∈ Dom(A), ψ ∈ Dom(A∗).

Let q(θ) = eiω0θ and q∗(s) = Deiω0s be the eigenvectors for A and A∗ corresponding to

the eigenvalues +iω0 and −iω0. With

D =
1

1 + τκξyeiω0τ
,

we get 〈q, q∗〉 = 1 and 〈q∗, q̄〉 = 0. Using (A.9), we first confirm 〈q∗, q〉 = 1

〈q∗, q〉 = D̄ − D̄κ

∫ 0

θ=−τ

θeiω0θ(ξxδ(θ) + ξyδ(θ + τ))dθ

= D̄ + D̄κτξye
−iω0τ

= 1.

Similarly we can show that 〈q∗, q̄〉 = 0. Again, using (A.9), we get

〈q∗, q〉 = D̄ +
D̄κ

2iω0

∫ 0

θ=−τ

θ(e−iω0θ − eiω0θ)(ξxδ(θ)

+ξyδ(θ + τ)dθ

= D̄ +
D̄κ

2iω0
ξy(e

iω0τ − e−iω0τ )

= 0.
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For ut, a solution of (A.5) at µ = 0, define

z(t) = 〈q∗, ut〉,

and

w(t, θ) = ut(θ)− 2Re{z(t)q(θ)}.

Then, on the manifold, C0, w(t, θ) = w(z(t), z̄(t), θ) where

w(z, z̄, θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ ... (A.10)

In effect, z and z̄ are local coordinates for C0 in C in the directions of q∗ and q̄∗, re-

spectively. Note that w is real if ut is real and we deal only with real solutions. The

existence of the center manifold C0 enables us to reduce (A.5) to an ordinary differen-

tial equation for a single complex variable on C0. At µ = 0, this is

z′(t) = 〈q∗, Aut +Rut〉
= iω0z(t) + q̄∗(0) · F (w(z, z̄, θ) + 2Re{z(t)q(θ)})
= iω0z(t) + q̄∗(0) · F0(z, z̄)

(A.11)

which is written in abbreviated form as

z′(t) = iω0z(t) + g(z, z̄). (A.12)

Our objective is to expand g in powers of z and z̄. We also have to determine the coef-

ficients wij(θ) in (A.10). Once the wij have been determined, the differential equation

(A.11) for z would be explicit [as abbreviated in (A.12)] where expanding the function

g(z, z̄) in powers of z and z̄ we have

g(z, z̄) = q̄∗(0) · F0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ ...
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Following (6) we write

w′ = u′t − z′q − z̄′q̄,

and using (A.5) and (A.12) we obtain

w′ =







Aw − 2Re{q̄∗(0) · F0q(θ))}, θ ∈ [−τ, 0)
Aw − 2Re{q̄∗(0) · F0q(0))}+ F0, θ = 0,

which is rewritten as

w′ = Aw +H(z, z̄, θ) (A.13)

using (A.10), where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ .... (A.14)

Now, on C0, near the origin

w′ = wzz
′ + wz̄ z̄

′.

Using (A.10) and (A.12) to replace wz, z′ (and their conjugates by their power series

expansion) and equating this with (A.13), we get (6)

(2iω0 − A)w20(θ) = H20(θ)

−Aw11(θ) = H11(θ)

−(2iω0 + A)w02(θ) = H02(θ).

We start by observing

ut(θ) = w(z, z̄, θ) + zq(θ) + z̄q̄(θ)

= w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2

+zeiω0θ + z̄e−iω0θ + ...

from which we obtain ut(0) and ut(−τ). We have actually looked ahead, and as we

will only be requiring the coefficients of z2, zz̄, z̄2, and z2z̄, we only keep these relevant
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terms in the following expansions:

u2t (0) = (w(z, z̄, 0) + z + z̄)2

= z2 + z̄2 + 2zz̄

+z2z̄(2w11(0) + w20(0)) + ...

ut(0)ut(−τ) = (w(z, z̄, 0) + z + z̄)

×(w(z, z̄,−τ) + ze−iω0τ + z̄eiω0τ )

= z2e−iω0τ + zz̄(eiω0τ

+e−iω0τ ) + z̄2eiω0τ

+z2z̄

(

w11(0)e
−iω0τ +

w20(0)

2
eiω0τ

+w11(−τ) +
w20(−τ)

2

)

+ ...

u2t (−τ) = (w(z, z̄,−τ) + ze−iω0τ + z̄eiω0τ )2

= z2e−2iω0τ + z̄2e2iω0τ + 2zz̄

+z2z̄(2e−iω0τw11(−τ)
+eiω0τw20(−τ)) + ...

u3t (0) = (w(z, z̄, 0) + z + z̄)3

= 3z2z̄ + ...

u2t (−τ)ut(0) = (w(z, z̄,−τ) + ze−iω0τ + z̄eiω0τ )2

×(w(z, z̄, 0) + z + z̄)

= z2z̄(e−2iω0τ + 2) + ...

u2t (0)ut(−τ) = (w(z, z̄, 0) + z + z̄)2

×(w(z, z̄,−τ) + ze−iω0τ + z̄eiω0τ )

= z2z̄(eiω0τ + 2e−iω0τ ) + ...

u3t (−τ) = (w(z, z̄,−τ) + ze−iω0τ + z̄eiω0τ )3

= 3z2z̄e−iω0τ + ...

Recall that
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g(z, z̄) = q̄∗ · F0(z, z̄) and

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ ....

After collecting the coefficients of z2, zz̄, z̄2, and z2z̄, we are in a position to calculate

the coefficients of g20, g11, g01, and g21, which are

g20 = q̄∗(0)κ[2ξxx + 2ξxye
−iω0τ + 2ξyye

−2iω0τ ] (A.15)

g11 = q̄∗(0)κ[2ξxx + 2ξxy(e
iω0τ + e−iω0τ ) + 2ξyy] (A.16)

g02 = q̄∗(0)κ[2ξxx + 2ξxye
iω0τ + 2ξyye

2iω0τ ] (A.17)

g21 = q̄∗(0)κ[2ξxx(2w11(0) + w20(0)) (A.18)

+ ξxy(2w11(0)e
−iω0τ + w20(0)e

iω0τ

+ 2w11(−τ) + 2w20(−τ))

+ ξyy(4w11(−τ))e−iω0τ + 2w20(−τ)eiω0τ )

+ 6ξxxx + ξxyy(2e
−2iω0τ + 4)

+ ξxxy(2e
iω0τ + 4e−iω0τ ) + 6ξyyye

−iω0τ ].

Observe that in the expression for g21 we have w11(0), w11(−τ), w20(0), and w20(−τ)
which we still need to evaluate. Now, for θ ∈ [−τ, 0]

H(z, z̄, θ) = −2Re{q̄∗(0) · F0q(θ)}
= −2Re{g(z, z̄)q(θ)}
= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= −
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ ...

)

q(θ)

−
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ ...

)

q̄(θ),

(A.19)

which when compared with (A.14) yields,

H20(θ) = −g20q(θ)− ḡ02q̄(θ)

H11(θ) = −g11q(θ)− ḡ11q̄(θ).
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We already noted that,

(2iω0 −A)w20(θ) = H20(θ) (A.20)

−Aw11(θ) = H11(θ) (A.21)

−(2iω0 + A)w02(θ) = H02(θ). (A.22)

From (A.7), (A.20), (A.21) we get the following equations:

w′
20(θ) = 2iω0w20(θ) + g20q(θ) + ḡ02q̄(θ) (A.23)

w′
11(θ) = g11q(θ) + ḡ11q̄(θ). (A.24)

Solving the differential equations (A.23) and (A.24) gives us

w20(θ) = − g20
iω0

q(0)eiω0θ − ḡ02
3iω0

q̄(0)e−iω0θ + Ee2iω0θ (A.25)

w11(θ) =
g11
iω0

q(0)eiω0θ − ḡ11
iω0

q̄(0)e−iω0θ + F (A.26)

for some E, F which will soon be determined. Now, for H(z, z̄, 0) = −2Re(q̄∗(0)) ·
F0q(0)) + F0,

H20(0) = −g20q(0)− ḡ02q̄(0)

+ κ(2ξxx + 2ξxye
−iω0τ + 2ξyye

−2iω0τ ) (A.27)

H11(0) = −g11q(0)− ḡ11q̄(0)

+ κ(2ξxx + ξxy(e
iω0τ + e−iω0τ ) + 2ξyy). (A.28)

From (A.7), (A.20), (A.21), we get

κξxw20(0) + κξyw20(−τ)− 2iω0w20(0)

= g20q(0) + ḡ02q̄(0)

− κ(2ξxx + 2ξxye
−iω0τ + 2ξyye

−2iω0τ )

(A.29)
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κξxw11(0) + κξyw11(−τ)

= g11q(0) + ḡ11q̄(0)

− κ(2ξxx + ξxy(e
iω0τ + e−iω0τ ) + 2ξyy).

(A.30)

We have the solution for w20(θ) and w11(θ) from (A.25) and (A.26), respectively. Hence,

evaluate w20(0), w20(−τ), w11(0), and w11(−τ), substitute in (A.29) and (A.30), respec-

tively, and calculate E, F as

E =
φ1

κξx + κξye−2iω0τ − 2iω0

F =
φ2

κξx + κξy

where

φ1 = (κξx − 2iω0)

(

g20
iω0

+
ḡ02
3iω0

)

+ κξy

(

g20
iω0

e−iω0τ +
ḡ02
3iω0

eiω0τ

)

+ RHS of (A.29)

φ2 = −(κξx)

(

g11
iω0

− ḡ11
iω0

)

− κξy

(

g11
iω0

e−iω0τ − ḡ11
3iω0

eiω0τ

)

+ RHS of (A.30).

All the quantities required for the computations associated for the stability analysis of

the Hopf bifurcation are completed. The analysis can be performed using

c1(0) =
i

2ω0

(

g20g11 − 2|g11|2 −
1

3
|g02|2

)

+
g21
2

(A.31)

µ2 =
−Rec1(0)

α′(0)
(A.32)

P =
2π

ω0
(1 + ǫ2T2 +O(ǫ4)) (A.33)

T2 = −
(

Imc1(0) + µ2ω
′(0)

ω0

)

(A.34)

β = ǫ2β2 +O(ǫ4) β2 = 2Rec1(0) ǫ =

√

µ

µ2
, (A.35)
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where c1(0) is the lyapunov coefficient and g20, g11, g02, g21 are defined by (A.15)-(A.18),

respectively.

To use κ to induce instability let κ = κc+µ, where a Hopf bifurcation takes place at

µ = 0, where κc may evaluated from theorem 1. Then α′(0) and ω′(0) are the real and

imaginary components of (dλ/dκ) evaluated at κ = κc.

We now state the conditions that will enable us to verify the stability of the Hopf

bifurcation.

• The sign of µ2 determines the direction of bifurcation. If µ2 > 0 then the Hopf
bifurcation is supercritical and if µ2 < 0 it is subcritical.

• The sign of (the Floquet exponent) β2 determines the stability of the bifurcating
periodic solutions. The periodic solutions are asymptotically orbitally stable if β2 <
0 and unstable if β2 > 0.
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