
Hand Talk: Assistive Technology for the Speech

Impaired

A Project Report

submitted by

ANISH TAMSE

(EE09B006)

in partial fulfilment of the requirements

for the award of the degrees of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

MAY 2013

PROJECT CERTIFICATE

This is to certify that the project titled Hand Talk: Assistive Technology for the

Speech Impaired, submitted by Anish Tamse (EE09B006), to the Indian Insti-

tute of Technology, Madras, for the award of the degree of Bachelor of Tech-

nology, is a bona fide record of the project work done by him under my super-

vision. The contents of this report, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. Nagendra Krishnapura
Project Guide
Associate Professor
Dept. of Electrical Engineering
IIT Madras, Chennai 600 036

Prof. Enakshi Bhattacharya
Head
Dept. of Electrical Engineering
IIT Madras, Chennai 600 036

Place: Chennai

Date: June 7, 2013

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who helped me in one

way or the other with regard to the project. I would especially like to extend

my appreciation to the following.

I thank my guide Dr. Nagendra Krishnapura, for his support and guidance

during the course of the project

I would like to thank my friends Girish, Celestine and Sujan for their help

with developing program on Android platform.

Last but not the least I would like to thank my family for their immense

support and motivation during the four years and before that.

i

ABSTRACT

KEYWORDS: Flex sensors; Assistive technology; Data glove.

People who are speech impaired face great difficulty in daily life while com-

municating with others who do not understand sign language. This project

proposes a low cost solution in the form of a glove. The glove is fitted with

flex sensors which sense the bending of the finger joints. This data is sent wire-

lessly over Bluetooth. It is received and processed to understand the gesture

being represented. Finally text to speech on an Android phone speaks out the

gesture.

The flex sensors used in this project are not the commercially available ones.

They are fabricated in lab using a piezoresistive material called velostat. The

sensors made using velostat are much less expensive which helps in keeping

the cost of the device low. The glove prototype is built and tested and various

algorithms are discussed. Also the sensor construction and behaviour are dealt

in detail.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vii

ABBREVIATIONS viii

1 INTRODUCTION 1

1.1 American Sign Language (ASL) 2

2 IMPLEMENTATION 4

2.1 Visual Sensing . 4

2.2 Hardware Sensing . 4

2.3 Hardware Implementation . 6

2.3.1 Glove . 6

2.3.2 Multiplexer . 8

2.3.3 Analog to Digital Converter (ADC) 8

2.3.4 Microcontroller . 8

2.3.5 Bluetooth Module . 9

2.4 Software Implementation . 9

2.4.1 Microcontroller Program 9

2.4.2 MATLAB Code . 9

2.4.3 Mobile Software . 10

3 CIRCUIT DETAILS 11

3.1 Analog Multiplexer - MPC506A 12

3.2 Analog to Digital Converter – TLC549C 12

3.3 Microcontroller – MSP430G2231 13

iii

3.4 Bluetooth module – EZ430RF2560 13

4 FLEX SENSORS 14

4.1 Construction . 16

4.2 Modification . 17

5 ALGORITHMS 19

5.1 Orthogonal Symbol Algorithm 19

5.2 Least Mean Square Algorithm 20

5.3 ASL (American Sign Language) Algorithm 21

6 RESULTS AND CONCLUSION 27

6.1 Scope for further development 28

6.2 Other Applications . 28

A Codes 30

A.1 Microcontroller Code . 30

A.2 MATLAB Codes . 33

A.2.1 Mean Square Error Algorithm 33

A.2.2 ASL Algorithm . 35

LIST OF TABLES

5.1 The ten finger joints for all the gestures of ASL for English letters
classified as being fully open (1), fully closed (0) or indeterminate
(x). The joints are numbered from 1 to 10 according to Figure 1.1. 22

v

LIST OF FIGURES

1.1 The gestures for all the English alphabets in ASL [8]. 3

2.1 The fifteen enumerated finger joints of our hand [7]. 5

2.2 The flow diagram briefing the high level implementation of the
device. 5

2.3 A nitrile glove. 7

2.4 A cotton glove. This glove is placed within the nitrile glove for
comfortable wearing. 7

3.1 Schematic of the system. 11

3.2 Pin diagram of the multiplexer MPC506A [9]. 12

3.3 Pin diagram of the ADC TLC549C [10]. 13

3.4 Pin diagram of the microcontroller used MSP430G2231 [11]. . 13

3.5 Bluetooth transceiver EZ430RF2560 [12]. 13

4.1 Typical resistance versus bend of the flex sensor fabricated for
this project. The resistance change is very steep for bending angle
between 40◦ and 80◦. 15

4.2 Output voltage of the resistive divider circuit versus bending
with Vcc = 3.5V and Rfixed = 56kΩ. 16

4.3 Exploded view showing the internal structure of the sensor. . 16

4.4 The velostat layer is sandwiched between two layers of aluminium
foil. Contact wires are yet to be placed. 17

4.5 A complete flex sensor. The setup of Figure 4.4 is now enclosed
between layers of acetate sheet. 17

4.6 The modified flex sensor. This is the equivalent of two flex sen-
sors. The gap between two different pieces of velostat is visible.
One of the wires runs common to the two sensors. 18

4.7 Comparision between the gloves implemented with separate and
combined sensors. 18

5.1 The ten finger joints are assigned numbers. This assignment is
used in Table 5.1 [7]. 21

vi

5.2 Decision chart for the first group of characters, wherein the four
middle joints are closed. 24

5.3 Decision chart for the second group of characters, wherein three
of the middle joints are closed. 25

5.4 Decision chart for the third group of characters. 26

6.1 The sensor data plotted in MATLAB for the glove being opened
and closed repeatedly. The number of the plot refers to the joint
according to Figure 5.1. The maximum value it can take is 255
(28 − 1) which comes about due to the 8 bit quantization of the
ADC. 27

vii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

ASL American Sign Language

ESD Electrostatic-Sensitive Device

IC Integrated Circuit

UART Universal Asynchronous Receiver/Transmitter

SPI Serial Peripheral Interface

viii

CHAPTER 1

INTRODUCTION

Devices and gadgets that aid the differently-abled to lead normal and conve-

nient lives has always been an area that has attracted innovation. Recent ad-

vancements in technology, like low-power electronics and wireless devices and

ability to design both the analog front-end and digital processing back-end as

integrated circuits has inspired a new range of wearable micro-devices. This

project aims at developing a device with a motive to provide a low-cost so-

lution to enable speech impaired persons to communicate using an artificial

voice.

People who are speech impaired have difficulty to communicate with oth-

ers who do not understand sign language. If there is an interface to convert

the already existing sign language to speech, the ease of communication for

speech impaired with others is increased significantly. The idea proposed in

this project is to develop a glove with required sensors placed appropriately to

capture the finger bends when worn. This data is then processed to recognize

the gesture being shown. The glove would also have the additional capability

of being able to learn new gestures from users, so that it can convert more ges-

tures into speech across a wide pool of users and even in different languages.

The sensors being used on the glove are called flex sensors. These are pas-

sive sensors, resistive in nature. The resistance of the sensor decreases when

the sensor is bent. The type of sensors used is limited only to flex sensors, i.e.

other form of sensors like accelerometers and gyrometers are not used keep-

ing in mind the cost effectiveness of the complete device. For this reason, it is

difficult to capture the dynamic motion of the entire hand required for certain

gestures. Dynamic gestures are the gestures involving motion of hand. This

imposes certain limitations on the device.

The glove as a hardware is generic in nature, i.e. it can be used to learn any

required gesture. But for implementing a practical sign language conversion on

the device, many factors need to be looked at for choosing the sign language.

Following are some of the important factors

• Popularity of the language

• Number of gestures in the language

• Number of dynamic gestures (involving complete hand movements)

• Ease of use of the language (whether the language communicates letter
by letter or word by word)

Considering these factors into consideration, American Sign Language (ASL)

is used in the project as it satisfies majority of the requirements.

1.1 American Sign Language (ASL)

American Sign Language is a very widely used sign language among the deaf

communities of the world. It is the national sign language in United States,

Canada, parts of Africa and some countries in South East Asia. Apart from

these countries it is significant use in many other countries as well including

India. The number of users for ASL in United States is estimated to be around

2,50,000 to 5,00,000 [3].

2

Figure 1.1: The gestures for all the English alphabets in ASL [8].

ASL has a gesture for each letter of the alphabet including gestures for com-

mon words as well. This project aims at converting the gestures for letters of

this language. Also among the gestures for the letters only two involve hand

movements. This helps reduce the complexity of the device significantly and

makes the use of just flex sensors a feasible idea.

The disadvantage of using ASL in this manner is that the user needs to com-

municate letter by letter, instead of word by word. This makes the communica-

tion slower but possible nevertheless.

3

CHAPTER 2

IMPLEMENTATION

The previous implementations of the similar concept can be categorized into

two types.

• Visual sensing

• Hardware sensing

2.1 Visual Sensing

In this method a camera is used to capture the image of the hand making the

gesture. Various techniques in image processing are then used to decide which

gesture is being represented by the hand. The advantage of this method is the

accuracy of the gesture recognized is very high. But the problem associated

with this method is that the system becomes bulky as the camera needs to be

carried around. Also since image processing is involved, the processing is fairly

intensive. Various aspects of this method are addressed in detail in [1].

2.2 Hardware Sensing

This method makes use of sensors such as flex sensors, accelerometers, gyrom-

eters etc. to recognize the gesture being represented. The major advantage of

this implementation is the whole product can be made very compact.

In this project, the implementation is done using only flex sensors. Also

these flex sensors are fabricated from a material called velostat in the lab and

are much less expensive than commercially available ones. The fabrication pro-

cess is described in detail in Section 4.1. We will also look at the limitations of

constraining ourselves to using just flex sensors.

Figure 2.1: The fifteen enumerated finger joints of our hand [7].

Our hand has fifteen finger joints, three joints on each finger. But the joints

near the finger tips except for the thumb (joints 6, 9, 12 and 15) are not totally

independent, i.e. these joints move only when the middle joint (joints 5, 8, 11

and 14) of the corresponding finger is completely closed. Hence for recognizing

the gestures, these joints are not very significant. Hence in this project only the

remaining ten joints are considered for guessing the gesture. Most of the signs

in American Sign Language can be interpreted in this manner, by using these

ten joints.

Figure 2.2: The flow diagram briefing the high level implementation of the de-

vice.

The implementation is summarized in Figure.2.2. The glove is designed

with sensors to capture bending of all the fingers. This bending is converted

5

to a change in the voltage level. Thus for ten sensors, we monitor ten voltage

levels. These voltage levels are then time multiplexed into a single signal which

is read and decoded by a microcontroller. The microcontroller is interfaced

with a Bluetooth module which sends data to a processor. In this project the

processing is demonstrated using MATLAB. The processor then receives the

data and processes it to understand which symbol is being represented by the

hand. Once a whole word is received, the text to speech algorithm available on

the phone converts it to voice. The actual components used and the circuit level

implementation are shown in Chapter 3.

2.3 Hardware Implementation

This section describes the different parts of the hardware.

2.3.1 Glove

The glove on which the sensors are attached is a nitrile glove. This glove is

elastic in nature. This property helps the glove follow the contours of the hand

closely. Thus the sensors attached on top of the glove give a close estimate of

the bending. The glove when used over a long period of time becomes sticky on

the inside and isn’t very comfortable to use. Hence a cotton glove is provided

on the inside for comfort of the user.

6

Figure 2.3: A nitrile glove.

Figure 2.4: A cotton glove. This glove is placed within the nitrile glove for com-

fortable wearing.

The glove is implemented with ten flex sensors, two on each finger. The con-

struction and properties of the flex sensors are dealt with in detail in Chapter

4. The change in the resistance of the flex sensors is significant (over ten times).

Hence the variation in the resistance of the flex sensor is converted to voltage

variation with a simple resistive divider. Thus in total, we have ten voltage

dividers and ten voltage levels to be monitored.

7

The voltages are sampled and then multiplexed. The sampling rate is not

critical as hand movements are much slower than the working frequencies of

the ICs used. Choosing a high sampling rate unnecessarily increases the pro-

cessing required by the microcontroller. Hence we chose the lowest sampling

rate which serves our purpose. A sampling rate of 20 Hz was chosen as it

seemed sufficient to capture quick hand movements.

2.3.2 Multiplexer

These ten voltage variations are time multiplexed using an analog multiplexer

(MPC506A). The multiplexer is controlled by the microcontroller. The multi-

plexer reads each sensor data for 5ms. Hence for once cycle of readings, the

time taken is 50ms. Thus we get 20 readings every second.

2.3.3 Analog to Digital Converter (ADC)

The signal from the multiplexer is then fed into an Analog to Digital Converter

(TLC549C). The ADC used has an 8 bit resolution. The ability of this ADC to

serialize the digital output code and the ability to use an external clock con-

trol to tap out the digital data at our own convenience makes it adaptable and

increases the ease of interfacing it with the microcontroller.

2.3.4 Microcontroller

This stream of data is then taken by the microcontroller (MSP430G2231) and

de-multiplexed. The microcontroller packs the 8 bit values for each of the ten

sensors into one large array. A marker byte is prefixed to this array. This ar-

ray is sent out serially using the available UART interface. The microcontroller

acts as an interface between the ADC, multiplexer and the Bluetooth module.

It controls the multiplexer by giving it the address of the voltage level to be

sent through. The microcontroller then reads the digital signal from ADC se-

rially. The microcontroller is capable of serial data transmission and reception,

which has been made use of for on-board communication. The processing on

8

the microcontroller is minimal so that a more powerful processor can be used

to do the processing off board. This is important especially keeping because the

device is a communication device for the differently abled and lag in the device

response becomes an inconvenience.

2.3.5 Bluetooth Module

A Bluetooth module (EZ430RF2560) receives this array using its UART inter-

face. The module is coded to transmit the data received as it is over Bluetooth

wirelessly. It transmits the data to MATLAB running on PC using SPI (Serial Pe-

ripheral Interface) protocol. The baud rate being used for this communication

is 11520. The Bluetooth communication link is chosen because of the popular-

ity of Bluetooth. Further, most modern day mobile phones support Bluetooth;

hence the final text to speech can be implemented on any phone.

2.4 Software Implementation

This section deals with the software functionalities and how they are imple-

mented.

2.4.1 Microcontroller Program

The code on the microcontroller receives the data from the ADC serially and

de-multiplexes it. The data is then arranged in the form of a packet with a

marker character and sent to the Bluetooth module for transmitting. The com-

munication with the Bluetooth module is through serial interface using UART

protocol. The code is provided in Appendix A.1.

2.4.2 MATLAB Code

MATLAB is chosen for processing because it offers a very good interface for

testing and visualizing data and debugging different algorithms and approaches.

9

MATLAB receives the data over Bluetooth link using SPI protocol. The baud

rate used is 11520. The code then searches for appropriate marker byte and

maps the sensor values to the corresponding fingers. These sensor values are

used as input data for the algorithm to be used.

For the orthogonal symbol algorithm, the sensor values are converted to 1s

or 0s, which correspond to a particular joint being open or closed respectively.

This is then compared against an available database of gestures to recognize the

gesture being represented.

For the least mean square algorithm, a database of values for different ges-

tures is maintained. The mean square error between the values which are read

and each of the gestures in the database is found. The one with the least mean

square error is given as the correct guess.

For the ASL (American Sign Language) algorithm, the code goes through

a tree which is designed specifically for the purpose, and determines the clos-

est alphabet being represented. The various algorithms for different purposes

are described in detail in Chapter 5. The result is then sent to the mobile for

converting the text to speech.

2.4.3 Mobile Software

The mobile program is written for Android platform. It receives the data char-

acter by character over Bluetooth link using SPI protocol. The baud rate used is

11520. Android provides a native speech synthesiser feature. This is made use

of to convert the received text to speech.

10

CHAPTER 3

CIRCUIT DETAILS

The open state resistance of the sensors is more than 800kΩ and the resistance

when the sensors are fully bent is around 20kΩ. Since the change is quite signifi-

cant, just using the sensor in a resistive divider configuration suffices to convert

the resistance variation to voltage variation. No amplifier or signal condition-

ing circuitry is required which helps to maintain a low cost.

Figure 3.1: Schematic of the system.

Looking at the highest and lowest values for the flex sensor, i.e. 800kΩ and

20kΩ, a series resistance of 56kΩ is chosen to obtain a suitable change in de-

tected voltage between the two states. The other components used in the circuit

are described in detail below.

3.1 Analog Multiplexer - MPC506A

This is a single ended 16 channel CMOS analog multiplexer. It can operate for

analog signals ranging between -15V and 15V, though in the circuit, it is being

used only between 0V and 3.5V. It requires a minimum supply voltage of 3.5V.

It consumes an idle state power of 7.5mW. The pin diagram for the multiplexer

is given in Figure 3.2.

Figure 3.2: Pin diagram of the multiplexer MPC506A [9].

3.2 Analog to Digital Converter – TLC549C

This is an 8 bit resolution analog to digital converter. It takes input as a dif-

ferential voltage. Since in the circuit, the voltage requiring conversion is not

differential, the negative reference voltage for the ADC is grounded. It takes a

maximum time of 17µs to convert the voltage to a digital value. The IC operates

over a supply range of 3V to 6V. The maximum power consumption of the IC

is 15mW. The digital output is given serially. The pin diagram for the ADC is

given in Figure 3.3.

12

Figure 3.3: Pin diagram of the ADC TLC549C [10].

3.3 Microcontroller – MSP430G2231

This is a 16 bit microcontroller and works over a supply range of 1.8V to 3.6V. It

has universal serial interface supporting SPI which is being used in the project.

It consumes power of 0.5mW in active mode. Pin diagram for the microcon-

troller is given in Figure 3.4

Figure 3.4: Pin diagram of the microcontroller used MSP430G2231 [11].

3.4 Bluetooth module – EZ430RF2560

This can send and receive data over Bluetooth. It works over a supply range of

3V to 5V. In the project it is being used to send data serially at a baud rate of

11520.

Figure 3.5: Bluetooth transceiver EZ430RF2560 [12].

13

CHAPTER 4

FLEX SENSORS

The sensors which are used for sensing the bends on the glove are called flex

sensors or bend sensors. There are ten such sensors placed on the glove, two

sensors for each finger. These sensors are available commercially, but keep-

ing in mind different lengths of sensors required for each joint and overall cost

effectiveness of the project, these sensors were handmade. The sensors are con-

structed from a material called velostat. Velostat is a packaging material used

for transporting items or devices prone to damage from electrostatic discharge

(ESD). It is a polymer which is impregnated with carbon black to make it con-

ducting. It is available for a very low cost in the form of ESD bags [13].

Velostat has piezo-resistive properties, i.e. its resistance changes when pres-

sure is applied on it. This property of velostat is leveraged in making of the

flex sensor. The idea of using velostat for making flex sensors has been used

by hobbyists for various projects as a low cost alternative [5], [6]. The idea of

velostat flex sensors being used for interpreting sign language is original. The

project also makes a few modifications to the construction to suit the purpose

of glove based gesture recognition.

The flex sensor has two terminals. The resistance between these terminals

varies according to the bend of the sensor, the more the bending the lower the

resistance. The variation of resistance with the bend is linear in the commer-

cially available sensors. The trade-off with using the sensor made using velostat

is the change is non linear (resistance changes rather abruptly after particular

degrees of bend) and the sensor is less robust physically.

Figure 4.1: Typical resistance versus bend of the flex sensor fabricated for this

project. The resistance change is very steep for bending angle be-

tween 40◦ and 80◦.

The resistance changes between 1MΩ to 0.05MΩ. Since the change in resis-

tance is significant, a simple resistive divider with one of the arms as the sensor

suffices to convert the bending into voltage.

The output voltage of the voltage divider is given by VCC
Rsensor

Rsensor+Rfixed
. Fig-

ure 4.2 shows how the voltage of the resistive divider varies with the bending.

It can be seen that the plot is very noisy when the sensor is being bent. Once it

is held stationary at a particular angle of bend, the noise is reduced. In the plot

after reaching a bend of 135◦, the bending is stopped and reduction in noise can

be seen.

15

Figure 4.2: Output voltage of the resistive divider circuit versus bending with

Vcc = 3.5V and Rfixed = 56kΩ.

4.1 Construction

The basic idea behind the construction of the velostat flex sensor is that the

velostat layer should be pressed between two pieces of a flexible material when

bent. The flexible material used here is acetate sheet. The sheet of velostat

placed in the sensor is bi-layered. This was decided after experimenting with

different number of layers. Using two layers gives the best variation in resis-

tance.

Figure 4.3: Exploded view showing the internal structure of the sensor.

Two pieces of required dimension of velostat is cut out and aluminium foil

is placed on either sides of the two layered velostat as shown in Figure 4.3. The

aluminium foil is used to make proper contact with the velostat. After this, two

16

wires are placed touching the aluminium foil, one on either side. These wires

act as the terminals of the sensors.

Figure 4.4: The velostat layer is sandwiched between two layers of aluminium

foil. Contact wires are yet to be placed.

Now this whole setup is sandwiched between two layers of acetate sheet.

Acetate sheet is a transparent plastic layer which is flexible. Doing this gives the

required elasticity to the sensor while maintaining the flexibility, i.e. the sensor

comes back to its original shape after bending. Also it serves the important

purpose of applying pressure on the velostat when the sensor is bent, as the

velostat is sandwiched between two layers of the sheet.

Figure 4.5: A complete flex sensor. The setup of Figure 4.4 is now enclosed

between layers of acetate sheet.

4.2 Modification

We require two of these sensors on each finger to sense the bending in the two

joints. But having two on each finger makes the glove very cluttered and more

prone to damage due to exposed connections. Thus pair of these sensors is

placed together and one terminal is made common for the (ground). Also all

17

the three wires are brought out from the same side, making the glove tidier.

Figure 4.6: The modified flex sensor. This is the equivalent of two flex sensors.

The gap between two different pieces of velostat is visible. One of

the wires runs common to the two sensors.

Figure 4.6 shows the modified sensor. The advantage of using the modified

sensor for neatness can be seen in Figure 4.7.

Figure 4.7: Comparision between the gloves implemented with separate and

combined sensors.

After placing all the sensors on the glove, all the grounds are brought to-

gether and the ten sensor terminals are pulled out in the form of a ten pin con-

nector.

18

CHAPTER 5

ALGORITHMS

Once we have received the raw data from the sensors, we need to have appro-

priate algorithms to make sense out of it and assign it to the closest gesture

known. As we have seen in Chapter 4 the unbent and bent state values for the

sensors are distinctly different. Hence we can easily detect at least 210 different

gestures with very high accuracy. But not all of the symbols of the American

Sign Language (ASL) belong to these 1024 gesture set, i.e. most of the sym-

bols have some joints which are half bent. Hence we need to rely on modified

algorithms for better gesture recognition for various purposes.

5.1 Orthogonal Symbol Algorithm

This is the most rudimentary form of gesture recognition. This allows only for

the gestures which have joints which are either fully bent or unbent. The joints

cannot be bent halfway.

Given the constraints, there are 210 distinct orthogonal gestures possible.

Each of these gestures or a subset of the same is mapped to a letter/word. A

look-up table is then created and any new symbol can be added to the database.

Next a threshold vector is stored, which essentially means the threshold

value for each of the sensors above which they are deemed unbent and be-

low that bent. When a gesture is represented, the sensor values are compared

against the threshold and another binary vector is created, with 1 representing

open and 0 representing closed. This is then looked up against the look-up table

and the matching symbol is given as output.

Since this doesn’t allow joints which are bent halfway, it means that none

of the practical sign languages can be implemented using this method. But a

major advantage is it offers very high accuracy for the gestures it recognizes.

Another advantage is the number of gestures possible is quite high (1024). This

means that apart from just letters, we can also map complete words. Thus the

large number of gestures combined with high accuracy still keeps this method

as a contender for the choice of algorithms.

Thus if one is willing to map a new set of gestures to words/letters and learn

them, this algorithm proves to be an effective method.

5.2 Least Mean Square Algorithm

Here we store the sensor values associated with each of the gestures unlike the

previous method where only the binary values are stored. When a new gesture

is made, the sensor values are compared with all the stored values and the

closest match is given as output. This is done as follows.

• Read the sensor value vector from the glove.

• Subtract the sensor value vector from the stored vectors for each gesture
to compute the error vector with respect to each gesture.

• Compute the mean square error for each gesture by squaring and adding
the elements in each error vector.

• Find the lowest of these errors and the gesture corresponding to it.

This method can also be thought of as mapping the recorded gestures on a

ten-dimensional vector space. This is the signal constellation of the database.

When a new gesture is made, it is placed on this signal constellation and the

gesture from database at the least distance from the new gesture is given as the

result. Also we can always add a new symbol to the database

Naturally the accuracy of this method is only as good as the separation of

the database gestures in the signal constellation. If the separation is large and

uniform among the symbols, the accuracy will tend to be better.

The advantage of this method is that we can now have half bent joints,

which in principle allows any kind of gesture. When we implement this method

for alphabet of a language, there is a possibility of confusion between letters of

20

similar gestures (example: for American Sign Language, it will most likely con-

fuse between I and J, G and Q, and U and V). This can effectively be solved

by implementing spell check and autocorrect (Example: if the complete word

is being spelled as JCE in ASL, it could equally likely mean ICE which is most

probably the correct word). The different possibilities for the autocorrect can be

obtained by asking the code for two most likely output alphabets instead of a

single output.

The disadvantage of this method is that it always gives a result no matter

how different the represented gesture is. This can be countered by including a

threshold value for the mean squared error such that the output is given only if

it is below the threshold.

5.3 ASL (American Sign Language) Algorithm

Since we are designing the glove for ASL, we have all the gestures at our dis-

posal beforehand. Therefore we can take advantage of this knowledge and al-

gorithm for detecting gestures can be specifically tailored for these signs. Table

5.1 is developed after referring to the Figure 1.1, which shows the various ges-

tures for English alphabets in ASL. The cells with 1 refer to corresponding joint

being open. Cells with 0 refer to the joint being closed. If a cell is marked x, it

means that the joint is neither completely open nor completely closed.

Figure 5.1: The ten finger joints are assigned numbers. This assignment is used

in Table 5.1 [7].

21

Table 5.1: The ten finger joints for all the gestures of ASL for English letters

classified as being fully open (1), fully closed (0) or indeterminate (x).

The joints are numbered from 1 to 10 according to Figure 1.1.

Letter\Joint No. 1 2 3 4 5 6 7 8 9 10

A 1 1 0 0 0 0 0 0 0 0

B 1 1 1 1 1 1 1 1 1 1

C X 0 1 0 1 0 1 0 1 0

D X X 1 1 1 0 1 0 1 0

E 0 0 1 0 1 0 1 0 1 0

F X X X 0 1 1 1 1 1 1

G 1 1 0 1 0 0 0 0 0 0

H X X 0 1 0 1 0 0 0 0

I X X 0 0 0 0 0 0 1 1

J X X 0 0 0 0 0 0 1 1

K 1 1 1 1 0 1 0 0 0 0

L 1 1 1 1 0 0 0 0 0 0

M 0 0 1 0 1 0 1 0 0 0

N 0 0 1 0 1 0 0 0 0 0

O 1 X 1 0 1 0 1 0 1 0

P 1 1 1 1 0 1 0 0 0 0

Q 1 1 0 1 0 0 0 0 0 0

R X 1 1 1 1 1 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0

T X 1 0 X 0 0 0 0 0 0

U 0 1 1 1 1 1 0 0 0 0

V 0 1 1 1 1 1 0 0 0 0

W 0 1 1 1 1 1 1 1 X 0

X X 0 1 0 0 0 0 0 0 0

Y 1 1 0 0 0 0 0 0 1 1

Z X X 0 1 0 0 0 0 0 0

After studying the signs for all the alphabets, they can be classified into three

22

broad categories.

• Group 1 -The four middle joints 4,6,8 and 10 are closed

• Group 2 -Three of the four middle joints are closed

• Group 3 -Others

The reason for using the middle joints for the broad classification is that

the middle joints are totally uncorrelated with the other joints. That is, the

knuckle joints (3,5,7 and 9) are correlated with their corresponding neighbour-

ing knuckle joints. (Example: If joint 5 is bent fully, the joints 3 and 7 are also

bent to some extent because of their close placement on the glove.) Hence their

values are not as reliable as the middle joints.

We have roughly equal number of letters in each category. Now, the letters

in each category are further classified based on the differences. The differentia-

tion for each of the categories is described further using flowcharts.

23

Figure 5.2: Decision chart for the first group of characters, wherein the four

middle joints are closed.

24

Figure 5.3: Decision chart for the second group of characters, wherein three of

the middle joints are closed.

25

Figure 5.4: Decision chart for the third group of characters.

This method is an provides an original classification of the letters of the ASL

for glove based gesture recognition. We can see that most of the alphabets can

be classified, except three groups each of two characters, namely I and J, G and

Q and U and V.

26

CHAPTER 6

RESULTS AND CONCLUSION

The data from the sensors can be visualized after having received it using MAT-

LAB. Figure 6.1 shows the sensor data for the ten joints in a particular case. The

glove was being closed and opened repeatedly, hence the wavy nature of the

plot.

Figure 6.1: The sensor data plotted in MATLAB for the glove being opened and

closed repeatedly. The number of the plot refers to the joint accord-

ing to Figure 5.1. The maximum value it can take is 255 (28 − 1)

which comes about due to the 8 bit quantization of the ADC.

When implemented using orthogonal symbol algorithm, the gesture recog-

nition works with an almost 100 percent accuracy as expected. But it has its

own limitation, that is half bent joints not being allowed.

The mean square error algorithm works quite well for some gesture set and

not so well for others. The accuracy for this depends totally on the gesture set

and cannot be quantified in general.

The ASL algorithm works with 80 to 90 percent accuracy for most of the

symbols, the exception being confusion between gestures I and J, gestures G

and Q and gestures U and V.

6.1 Scope for further development

Currently the glove is being implemented only using flex sensors. If additional

sensors like accelerometers and gyrometers are added, the glove would be able

to capture dynamic motions also. This will significantly improve the range

of gestures which can be recognized by the device. Another area to develop

further would be the algorithm for recognizing gestures. More robust machine

learning algorithms can be used to improve gesture recognition accuracy.

6.2 Other Applications

The use of the glove need not be limited to just conversion of sign language to

speech. It is a very generic hardware and finds many applications in today’s

world. Another bio-medical application for this glove could be to measure the

developments in hand paralysis patients. The glove can quantify the strain a

person can exert and hence quantify the improvement.

The glove could be used as a 3-D mouse for computers. The conventionally

used mouse provides data for the pointer location along two axes. A 3-D mouse

adds data along a third axis. This can be implemented based on the bending

of any three fingers. The more a finger bends, the faster the movement in cor-

responding direction. 3-D mouse can be used for improving the ease to work

with applications such as 3-D modelling, 3-D graphic designing or working

with various CAD tools.

Another computer related application could be the use of the glove as a

28

gaming device [14]. A similar glove was launched by Nintendo as an addi-

tional hardware for their gaming platform. This glove could prove a low cost

alternative to the same.

For applications involving robotic arms where in a person’s hand move-

ments are needed to be mimicked, the glove can prove as a good sensory mech-

anism.

29

APPENDIX A

Codes

A.1 Microcontroller Code

The microcontroller receives time multiplexed data, demultiplexes it, packages

it in the form of an array and forwards it to the bluetooth module using the

serial port. Following is the code snippet used to implement this functionality.

The read function demultiplexes the input data.

int read(void) { int i=0,fac=0,data=0,temp;

P1OUT=P1OUT|BIT5;

__delay_cycles(100);

P1OUT=P1OUT^BIT5;

__delay_cycles(100);

if (P1IN&BIT6)

{

data+=128;

}

i=0;

while(1)

{

P1OUT=P1OUT|BIT4; //P1.0 is clock also connected to red LED

__delay_cycles(100);

P1OUT=P1OUT&(~BIT4);

__delay_cycles(100);

if(i==0) fac=64;

else if(i==1) fac=32;

else if(i==2) fac=16;

else if(i==3) fac=8;

else if(i==4) fac=4;

else if(i==5) fac=2;

else if(i==6) fac=1;

if (P1IN&BIT6) //P1.7 takes input from ADC

data+=fac;

if(i==7){

return(data);}

i++;

}}

The address function calculates the address to be sent to the multiplexer.

void address(int a)

{ if(a==0) P1OUT=P1OUT&(~(BIT0+BIT2+BIT3+BIT7));

else if(a==1)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT0;

else if(a==2)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT2;

else if(a==3)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT0+BIT2;

else if(a==4)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT3;

else if(a==5)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT0+BIT3;

else if(a==6)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT2+BIT3;

else if(a==7)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT0+BIT2+BIT3;

else if(a==8)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT7;

else if(a==9)

P1OUT=(P1OUT&(~(BIT0+BIT2+BIT3+BIT7)))+BIT0+BIT7;

__delay_cycles(100);

}

31

Next is the main function.

int main(void)

{ int a,b,c,j=0,temp;

if (CALBC1_1MHZ==0xFF)

{ while(1);// do not load, trap CPU!! }

WDTCTL = WDTPW + WDTHOLD;

DCOCTL = 0;

BCSCTL1 = CALBC1_1MHZ;

DCOCTL = CALDCO_1MHZ;

P1OUT = 0x00; // Initialize all GPIO

P1SEL = UART_TXD;

P1DIR=BIT0+BIT2+BIT3+BIT4+BIT5+BIT7+BIT1;

P2OUT = 0x00;

P2SEL = 0x00;

P2DIR = 0xFF;

__enable_interrupt();

TimerA_UART_init();

TimerA_UART_print("G2xx1 TimerA UART\r\n");

TimerA_UART_print("READY.\r\n");

int ans[10]=0,i=0,x=0,y=0,sum[10]=0;

P1OUT=BIT5;

__delay_cycles(100);

P1OUT=0;

for (;;) {

//TimerA_UART_tx(’U’);

address(i);

ans[i]=read();

i++;

if(i==10)

{ i=0;

TimerA_UART_tx((char)0);

TimerA_UART_tx((char)ans[0]-1);

TimerA_UART_tx((char)ans[1]-1);

32

TimerA_UART_tx((char)ans[2]-1);

TimerA_UART_tx((char)ans[3]-1);

TimerA_UART_tx((char)ans[4]-1);

TimerA_UART_tx((char)ans[5]-1);

TimerA_UART_tx((char)ans[6]-1);

TimerA_UART_tx((char)ans[7]-1);

TimerA_UART_tx((char)ans[8]-1);

TimerA_UART_tx((char)ans[9]-1);

}}}

A.2 MATLAB Codes

MATLAB was used for processing the sensor data and guessing the gesture.

There are two codes in this section, each implementing a different algorithm.

The .mat files used in the codes store the sensor values for various gestures.

A.2.1 Mean Square Error Algorithm

% initialization code

% clear all;

% global s1;

% s1=serial(’COM11’,’BAUDRATE’,115200);

fopen(s1);

while(1)

reply = input(’tRain/Test/eXit/Pause [R/T/X/P]: ’, ’s’);

if isempty(reply)

reply = ’T’;

end;

if reply==’R’

trainLetter=input(’Which letter?: ’, ’s’);

if isempty(reply)

continue;

else

33

trainer(trainLetter)

end

elseif reply==’T’

guess=testletter();

disp(guess);

%fwrite(s2,guess);

elseif reply==’P’

disp(’resume to continue’);

pause;

elseif reply==’X’

fclose(s1);

disp(’Exiting’);

break;

end;

end;

function trainer(Letter)

disp(’Training... take your position!’);

pause(1);

sum=readbt();

disp(’Training done!’);

load(’data.mat’);

load(’letters.mat’);

data=[data, sum];

letter=[letter, Letter];

save(’letters.mat’,’letter’);

save(’data.mat’,’data’);

end

function letterGuess=testletter()

load(’data.mat’);

load(’letters.mat’);

sum=readbt();

ssq=zeros(1,length(letter));

for i=1:length(letter)

34

ssq(i)=sumsqr(data(:,i)-sum);

end

index=find(ssq==min(ssq));

letterGuess=letter(index);

end

function sum=readbt()

global s1;

i=1;

N=25;

sum=0;

fopen(s1);

while(1)

A=fread(s1,1);

if A==0

b=fread(s1,10);

b(find(b==0))=256;

i=i+1;

A=0;

sum=sum+b;

end

if i==N+1

break;

end

end;

sum=sum/N;

end

A.2.2 ASL Algorithm

For this algorithm, only the test function varies from the previous code. The

new test fuction is given below.

function data=test()

load(’openData.mat’);

35

load(’closeData.mat’);

data=read();

dataCopy=data;

data1=(data-openData).^2;

data2=(data-closeData).^2;

for i=1:length(data)

if(data1(i)>data2(i)) data(i)=0;

else data(i)=1;

end

end

guess=’NotDefined’;

nonBends=data(4)+data(6)+data(8)+data(10);

if nonBends==0

disp(’FirstGroup’);

if(data(9)==0&data(7)==1&data(3)==1)

guess=’M’;

elseif(data(9)==0&data(5)==1)

guess=’N’;

elseif(data(9)==0&data(3)==1)

guess=’X’;

elseif(data(3)==1&data(5)==1&data(7)==1&data(9)==1)

if(data(2)==1)

guess=’C’;

elseif(data(1)==1)

guess=’O’;

else guess=’E’;

end

else

if(data(2)==1)

guess=’A’;

elseif(data(1)==1)

guess=’T’;

else guess=’S’;

36

end

end

elseif nonBends==1

disp(’SecondGroup’);

if(data(4)==1)

if((data(5)==1)&(data(7)==1)&(data(9)==1))

guess=’D’;

elseif(data(3)==1)

guess=’L’;

elseif(dataCopy(6)<100)

guess=’Z’;

else guess=’GQ’;

end

elseif(data(10)==1)

if(data(2)==1)

guess=’Y’;

else guess=’IJ’;

end

else guess=’?’;

end

guess

end

37

REFERENCES

[1] D. J. Sturman and D. Zeltzer, "A survey of glove-based input," IEEE Com-

puter Graphics and Applications vol. 14, pp. 30–39, 1994.

[2] A. Mulder. (1994). How to build an instrumented glove

based on the Powerglove flex sensors. [Online]. Available:

http://xspasm.com/x/sfu/vmi/PCVR.html

[3] R. Mitchell, T. Young, B. Bachleda, M. Karchmer, "How Many People Use

ASL in the United States?: Why Estimates Need Updating," Sign Language

Studies, Gallaudet University Press, 2006.

[4] D. Armstrong, M. Karchmer, "William C. Stokoe and the Study of Signed

Languages," in The Study of Signed Languages, Gallaudet University, pp.

xi–xix, 2002.

[5] The Velostat sensor (n.d.) [Online]. Available:

http://www.pulsar.org/archive/int/timswork/Velostat.html

[6] How to Make Bi-Directional Flx Sensors (2009, July 25) [Online]. Available:

http://www.instructables.com/id/How-to-Make-Bi-Directional-Flex-

Sensors

[7] Hand schematic (2010, March 23) [Online].

Available: http://www.idrawdigital.com/wp-

content/uploads/2010/03/hand01.jpg

[8] Sign Language (2007) [Online]. Available:

http://lifeprint.com/asl101/fingerspelling/images/signlanguageabc02.jpg

[9] Single-Ended 16-Channel/Differential 8-Channel CMOS

Analog Multiplexers (2003) [Online]. Available:

http://www.ti.com/lit/ds/symlink/mpc506.pdf

38

[10] 8-Bit Analog-to-Digital Converters with Serial Control (1996) [Online]. Avail-

able: http://www.ti.com/lit/ds/symlink/tlc549.pdf

[11] Mixed Signal Microcontroller (2010) [Online]. Available:

http://www.ti.com/lit/ds/symlink/msp430g2231.pdf

[12] EZ430-RF256x (2013, April 18) [Online]. Available:

http://processors.wiki.ti.com/index.php/EZ430-RF256x

[13] Plastic and Glass Electromagnetic Field Shielding Material (n.d.) [Online].

Available: http://www.lessemf.com/plastic.html

[14] T. Shiratori and J. K. Hodgins, “Accelerometer-based user interfaces for the

control of a physically simulated character,” ACM Transactions on Graphics,

vol. 27, no. 5, pp. 1–9, 2008.

39

