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ABSTRACT

KEYWORDS: Compound TCP; virtual queue management; non-linear sys-

tems; local stability; Hopf bifurcation.

Compound TCP (C-TCP) is currently the default transport layer protocol in the

Windows operating system. We study a non-linear fluid model of Compound

along with Virtual Queue (VQ) management schemes in network routers. One

can implement virtual queue policies either non-adaptively or adaptively. The

Adaptive Virtual Queue (AVQ), in particular, has the objective of driving the

link utilisation to a desired level.

The stability analysis of non-adaptive virtual queues reveals that smaller

virtual buffer sizing rules help stability. Small virtual buffers would quite nat-

urally reduce queueing delays in routers. Some guidelines for Compound and

network parameters to ensure local stability are outlined. Analysis of the AVQ

policy shows that the system is prone to losing local stability with large feed-

back delays, high link capacities, and with variations in the AVQ damping fac-

tor. We further show that the loss of local stability would occur via a Hopf

bifurcation. Based on the analysis, our recommendation is that a virtual queue,

with small buffer sizes, could be an attractive queue management scheme.
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CHAPTER 1

Introduction

The design of transport protocols influences the performance of Internet ap-

plications. Active Queue Management (AQM) schemes, which aim to provide

timely indications of incipient congestion in the network to end-systems, also

play an important role in Quality of Service (QoS). For an end-to-end perspec-

tive, it is natural to study the interaction of a transport protocol along with

a queue management scheme. Compound TCP (C-TCP) (17) is today widely

implemented in the Windows operating system, and there are numerous pro-

posals for AQMs in the literature.

Queueing delay, in the Internet, is undesirable and specially hurts the per-

formance of delay sensitive applications (11). It is being recognised that net-

work latency is predominantly due to large router buffers without effective

queue management (4). It is difficult for end-systems to compensate for queue-

ing delay, and thus the design of AQMs remains an important aspect of net-

work research. A number of AQM schemes, with different objectives, have

been proposed in the literature. For example, Random Early Detection (RED)

(3) strives for small average queue sizes, Adaptive Virtual Queue (AVQ) (10) tar-

gets a desired link utilisation, Random Exponential Marking (REM) (1) aims for

both small queue sizes and high link utilisation, and CODEL (11) specially aims to

control queueing delay. However, a simple Drop-Tail queue policy is often used

as there is no consensus on an optimal AQM scheme. Drop-Tail, as the name

suggests, simply drops packets that arrive to find a full buffer. For our study,

we focus on a class of virtual queue schemes as they aim to provide early indi-

cations of congestion. We study a non-adaptive Virtual Queue (VQ) (9) and the

Adaptive Virtual Queue (AVQ) (10).

Stability is a key performance metric since feedback, from the network to

end-systems, is usually time delayed. So the analysis of non-linear, time de-

layed, fluid models for transport protocols can help guide protocol or network



parameters, and ensure system stability. For example, non-linear models of

TCP Reno have been studied with different buffer sizing regimes (14) (15), with

the AVQ (10), and also with Drop-Tail (12). These papers have highlighted

that the underlying models can readily lose stability with variations in system

parameters. Hence any analysis should consider both stability and bifurcation

phenomena (6).

In this paper, we analyse a recently proposed non-linear model of Com-

pound (16) with a VQ (9) and with the AVQ (10). Local stability analysis with

the VQ policy reveals that smaller virtual buffer sizing rules help stability. Small

virtual buffers would also lead to lower latency in network routers. We out-

line some guidelines for Compound and network parameters to ensure local

stability. Analysis of the AVQ shows that the system could readily lose local

stability with large delays, high link capacities, and with variations in the AVQ

damping factor. We show that loss of local stability would occur via a Hopf

bifurcation (8), which would give rise to a limit cycle. Based on the analysis, we

note that a virtual queue, with small buffer sizes, could be an appealing queue

management policy.

The rest of this paper is organised as follows. In Section 2, we outline mod-

els for Compound and for virtual queue management schemes. In Section 3

we conduct a stability analysis of the underlying models, and summarise our

contributions in Section 4.
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CHAPTER 2

Models

In this section, we outline models for Compound and the virtual queue policies

that form the basis for our analysis.

2.1 Compound TCP

The following many flows, non-linear, fluid model has been proposed for a gen-

eralised TCP (14):

dw(t)

dt
=
(
i
(
w(t)

)
− d
(
w(t)

)
p(t− τ)

)w(t− τ)

τ
, (2.1)

where w(t) is the congestion window, i(w(t)) is the increase in w(t) per positive

acknowledgement, d(w(t)) is the decrease in w(t) per negative acknowledge-

ment, p(t) represents an appropriate model at the resource, and τ is the feed-

back delay of the TCP flows present. An approximation for the average rate at

which packets are sent is x(t) = w(t)/τ .

In the regime where the queueing delay forms a negligible component of

the end-to-end delay, the following functional forms have been proposed for

Compound (16):

i
(
w(t)

)
=

αw(t)k

w(t)
, d

(
w(t)

)
= βw(t), (2.2)

where the parameters α, β and k influence the congestion window’s scalability,

smoothness and responsiveness respectively. The default values of these pa-

rameters are: α = 0.125, β = 0.5 and k = 0.75 (16). It should be noted that the

fluid model is valid when there are many simultaneous TCP flows present in a

high bandwidth-delay product environment.

The simplest queue management policy is Drop-Tail. In a regime where the

number of users are large, and the router buffer sizes are small, a simple fluid



model for Drop-Tail is (15):

p(t) =
(
x(t)/C

)B
, (2.3)

where B is the buffer size and C is the link capacity. For the requisite queueing

theoretic arguments behind the derivation of this fluid model the reader is re-

ferred to (15). Later in the paper, we will outline the impact this queue policy

can have on local stability.

2.2 Virtual Queues

Virtual queues have been proposed as possible queue management schemes;

for an early discussion on virtual queues, see (5). Figure 2.1 shows a basic

virtual queue algorithm. Packets arriving at the queue are added unless the

buffer occupancy exceeds B packets. A virtual queue operates with a service

rate and a buffer size that are both less than the real queue. The algorithm has

a parameter, 0 < κ ≤ 1, which can be tuned by the network provider. Any

arriving packet that would lead to the virtual queue exceeding the value κB is

marked to indicate the onset of congestion. Packets can also be dropped when

the virtual queue crosses the virtual buffer size. End-systems will realise that

their packets have been marked, or dropped at the queue, only after some time

delay. The central idea, for virtual queues, is to start giving early indications of

incipient congestion whenever the rate of offered traffic nears κ.

As a simple model, let us assume that the arriving traffic is a Poisson pro-

cess. The server will then just be an M/D/1/B queue. Consider an M/D/1/B

queue with arrival rate λ and a service every n units of time. The number of

packets in the queue, just after each service, forms a Markov process and it is a

straightforward exercise to calculate the stationary distribution of the process.

So we can readily deduce the packet loss probability and the utilisation of the

server. Such calculations would allow the network provider to better under-

stand the trade-offs between loss and utilisation. As feedback from the queue

to the end-systems is time delayed, another performance metric to consider is

stability.
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Figure 2.1: The real queue has the capacity to serve C packets per unit time and can
hold B packets in its buffer. The service rate and the buffer size of the
virtual queue are scaled down by a factor κ < 1. We assume there is a time
delay of τ time units before any feedback is received by the end-systems.

We now outline a model proposed in (9). Assume that a virtual buffer of

finite size B is maintained, and that from the time of a virtual buffer overflow

to the end of the virtual buffer’s busy period, all packets leaving the real queue

are marked. Thus the virtual buffer’s contents evolve as if overflow is lost,

while the real buffer may or may not have loss. Consider a Gaussian traffic

model: suppose that the workload arriving at the resource over a time period δ

is Gaussian, with mean xδ and variance xδσ2. For this model, the rate at which

workload exceeds the virtual buffer is (7)

L(x, C) = (C − x)

(
exp

{
2B(C − x)

xσ2

}
− 1

)
−1

,

and the proportion of workload marked is

p(t) = −
d

dC
L
(
x, C

)
,

which reduces to

p (t) =
r(t)er(t) − er(t) + 1

(er(t) − 1)
2 ,

where r(t) =
2B
(
C−x(t)

)
σ2x(t)

.

For the purpose of analysis and discussion, in this paper, we refer to the

above virtual queue based scheme as a non-adaptive Virtual Queue (VQ). We

now describe the Adaptive Virtual Queue (AVQ) policy which explicitly aims

5



for a desired and high link utilisation (10).

2.3 Adaptive Virtual Queue

Virtual queue management aims to provide early indications of congestion in

the network. This idea was extended to strive for high link utilisation through

the notion of an Adaptive Virtual Queue (AVQ) (10). The AVQ maintains a

virtual buffer whose size is the same as the real buffer. However, there is a

virtual capacity which is less than the real capacity, and this is adapted at the

queues to achieve high link utilisation.

At the packet-level, the AVQ is implemented as follows (10): when a packet

arrives, a fictitious packet is added to the virtual queue, if it is not already

full. If there is an overflow, the packet is discarded from the virtual queue and

marked/dropped in the real queue. At the fluid-level, the marking probability

p(t) is expressed in terms of the rate x(t) as well as the virtual capacity C̃(t).

The following functional form for the marking probability at the resource was

proposed in (10):

p(t) =
max{0,

(
x(t)− C̃(t)

)
}

x(t)
, (2.4)

where this function is differentiable in the region x > C̃. The virtual capacity C̃

is updated after every arrival epoch to achieve a desired utilisation. The AVQ

update model, at the router, is

dC̃(t)

dt
= θ

(
γC − x(t)

)
,

where θ > 0 is the damping factor and γ ≤ 1 allows one to choose the desired

utilisation. The factor θ determines how fast the marking probability adapts to

changing network conditions, and its choice is important to maintain stability.

Marking of packets is more aggressive when link utilisation exceeds the desired

level, and less aggressive otherwise. In the functional form (2.4) for the marking

probability, instead of adapting the virtual capacity we could use a static virtual

capacity which is strictly less than the real capacity.

6



Some key features of the AVQ scheme, which are different to the well-studied

RED proposal (3) are as follows: (i) The AVQ marks packets according to the

rate, and not the queue length or average queue length; (ii) The scheme explic-

itly regulates the link utilisation, and not the queue length; (iii) The virtual ca-

pacity is modified by the AVQ update model, and random number generations

at the queue to determine decisions to drop packets are not required.

The Compound fluid model (2.1) coupled with the AVQ update model for

the virtual capacity forms an end-to-end, non-linear, dynamical system. The

stability analysis of this system can help us understand trade-offs for design,

and guide parameters to ensure stable operation. A local stability analysis of

TCP Reno coupled with the AVQ model has been conducted in (10). Our focus

is on Compound TCP, and in the next section we study some stability properties

of both non-adaptive virtual queues and the AVQ scheme.
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CHAPTER 3

Analysis

In Section 3.1, we study some non-adaptive queue policies and in Section 3.2,

we analyse the AVQ policy with Compound TCP.

3.1 Virtual Queues

We recapitulate the fluid model for generalised TCP (2.1):

dw(t)

dt
=
(
i
(
w(t)

)
− d
(
w(t)

)
p(t− τ)

)w(t− τ)

τ
.

The function p(t) represents packet loss or marking probability of packets sent

at time t. The TCP increment and decrement functions are i(w) and d(w) respec-

tively. Recall that the approximation for the average rate of sending packets is

x(t) = w(t)/τ , where τ is the feedback delay of TCP flows. The above model

achieves equilibrium at

i(w∗) = d(w∗)p∗,

where w∗ and p∗ denote the steady state window size and the packet loss respec-

tively. For linearising the generalised TCP equation, consider w(t) = w∗ + u(t),

where u(t) is a small perturbation. This gives

du(t)

dt
= −au(t)− bu(t− τ), (3.1)

where

a = −
w∗

τ
(i′ − d′p∗)

b =
1

τ
(d(w∗)w∗p′) .

Note that p′ = dp

dw

∣∣
w=w∗

; i′ and d′ are similar representations. For Compound

TCP, the functional forms for i(w) and d(w) are outlined in (2.2). Substituting



these expressions into (3.1) gives

a =− (k − 2)
αw∗k−1

τ

b =
αw∗k−1

τ

w∗p′

p∗
,

(3.2)

where α, β and k are Compound parameters. Under the constraints that b >

a ≥ 0 and τ > 0, a sufficient condition for local stability of the linear system (3.1)

is (13)

bτ < π/2. (3.3)

We will refer to bτ as the stability factor. In our build up towards studying a non-

adaptive virtual queue (3.4) with Compound TCP, we first analyse two simple

models for the queue.

In a many flows regime, when the bandwidth-delay product is large and the

router buffers are small, the following fluid-level approximation has been pro-

posed for Drop-Tail queues (15):

p(t) =
(
x(t)/C

)B
.

Here B is the router buffer size and C is the link capacity. In this model there is

no explicit adaptation at the resource, and with Compound there is no control

over link utilisation. In this regime, it is assumed that the queue size fluctuates

so rapidly that TCP cannot control the queue size. In fact, it can only control its

distribution, and hence an explicit representation for the instantaneous queue

size does not feature in the model.

With the small buffer Drop-Tail model, a sufficient condition for local stabil-

ity with Compound is (16)

αw∗k−1B < π/2.

Note that this condition does not depend on the feedback delay or the link

capacity, but depends on the buffer size and the Compound parameters. This

very simple model alerts us to the fact that with large buffers the system could

be harder to stabilise.

9
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Figure 3.1: Marking probability of the virtual queue model (3.4), with variations in
B/σ2. Note that smaller buffer thresholds provide early indications of con-
gestion as the load increases.

We now consider a functional form for the resource, outlined in Section 2,

and proposed by (10):

p(t) =
max{0,

(
x(t)− γC

)
}

x(t)
,

where γ < 1, C is the link capacity, and there is no adaptation at the links.

For this resource model, p(·) represents the proportion of packets overflowing

a large buffer. With this functional form, the corresponding sufficient condition

for local stability with Compound is (16)

βγCτ < π/2.

This condition would clearly be difficult to satisfy with large feedback delays

and high link capacities. The models considered so far suggest that both Com-

pound and network parameters can readily influence stability. In particular,

buffer sizes play an important role and need to be chosen judiciously.

The marking probability for the virtual queue policy outlined in Section 2,

10



under a Gaussian traffic model, is

p(t) =
r(t)er(t) − er(t) + 1

(er(t) − 1)
2 , (3.4)

where r(t) =
2B
(
C−x(t)

)
σ2x(t)

.

Figure 3.1 depicts the marking probability, of this model, for varying val-

ues of the buffer size. Note that smaller values of B provide early indications

of congestion, as the load on the system increases. With k = 1, the sufficient

condition for stability is simply αwp′/p < π/2, at equilibrium. Observe the im-

portant role played by the derivative of the function p in maintaining stability.

Substituting (3.4) into the fluid model for Compound, a sufficient condition for

local stability can be written as

(
(r∗ − 2) e2r

∗

+ (r∗ + 2) er
∗

(er∗ − 1) (r∗er∗ − er∗ + 1)

)
C

x∗

2αB

σ2
< π/2,

where r∗ = 2B(C−x∗)
σ2x∗

. For stability there appears to be a requirement to jointly

design the protocol parameter α and the network parameter B. Larger values

of σ2, the variability of the traffic at the packet-level, appears to help stability. In

Figure 3.2, we plot the stability factor for different values of the Compound pa-

rameter α and the buffer size B. Note that both B and α have to be judiciously

chosen to ensure stability.

When the buffer threshold levels used to mark/drop packets are large enough

so that queueing delays are comparable to propagation delays, the above mod-

els do not accurately represent the resource. In such a regime, it is important

to model both the instantaneous queue size and the end-system rates in any

dynamic representation. The reader is referred to (14) (15) for the development,

and analysis, of some such models. With the models considered so far, we find

that small buffer sizes help maintain stability, and reduce latency, but there is

no explicit control over link utilisation. High link utilisation is one of the key

aims of the AVQ, and this model will now be analysed.

11
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the parameter α influence stability. We used C = 100, σ = 1, β = 0.5, k = 1.

3.2 Adaptive Virtual Queue

We now study Compound TCP with the AVQ policy whose objective is to target

a high link utilisation. The C-TCP/AVQ system is represented by the following

equations

dw(t)

dt
=
(
αw(t)k−1 − βw(t)p(t− τ)

) w (t− τ)

τ

dC̃(t)

dt
= θ
(
γC − x(t)

)
, (3.5)

where the marking probability takes the form (10)

p(t) =
max{0, (x(t)− C̃(t))}

x(t)
.

Recall that x(t) = w(t)/τ , where w(t) is the congestion window, x(t) denotes the

total flow into the link, and τ represents the feedback delay. The virtual capacity

of the link is represented by C̃ ≤ C. The default values of the Compound

parameters are α = 0.125, β = 0.5 and k = 0.75. The AVQ parameter γ ≤ 1

determines the link utilisation, and θ > 0 influences stability.

To study local stability, we first linearise system (3.5) about equilibrium. We

12



then derive the associated characteristic equation, and identify conditions un-

der which the roots lie in the left-half plane (i.e., if Γ is a root, Re(Γ) < 0).

At steady state, dw(t)
dt

= dC̃(t)
dt

= 0. Therefore

w∗ = τγC, C̃∗ = γC

(
1−

α

β
(τγC)k−2

)
(3.6)

which uniquely defines the equilibrium window size w∗ and virtual capacity

C̃∗ in terms of parameter values. To linearise the coupled system (3.5), let

w(t) = w∗ + u(t)

C̃(t) = C̃∗ + v(t),

where u and v are small increments of w∗ and C̃∗. We get

du(t)

dt
=
(α
τ
(k − 2)w∗k−1

)
u(t) +

(
β

τ
w∗

)
v(t− τ)

+

(
α

τ
w∗k−1 −

β

τ
w∗

)
u(t− τ)

dv(t)

dt
= −

θ

τ
u(t).

To obtain the characteristic equation of this linearised system we look for expo-

nential solutions, v = Aeλt, to get

λ2 + a0λ+ a1λe
−λτ + θa2e

−λτ = 0, (3.7)

where

a0 = −
α

τ
(k − 2)(τγC)(k−1)

a1 = −
1

τ

(
α(τγC)(k−1) − βτγC

)

a2 = βγC,

are assumed to be positive, and λ = σ + jω.

13



Local stability analysis

Consider the characteristic equation

λ2 + a0λ+ a1λe
−λτ + θa2e

−λτ = 0, (3.8)

where a0, a1, a2 > 0 are independent of the feedback delay τ and θ > 0. It is

straightforward to show that when τ = 0, all roots have negative real part and

so the corresponding linear system is stable. The roots of (3.8) are continuous

functions of system parameters. By keeping all the other parameters constant

and increasing τ , one can locate a τ̂ such that at least one of the roots hits the

imaginary axis. Thus for 0 ≤ τ < τ̂ , the roots of (3.8) will all have negative real

parts.

When one of the roots first lies on the imaginary axis, σ = 0. At this point,

let ω = ω0. The real and imaginary parts of (3.8) are, respectively,

ω0a1 sin(ω0τ) + θa2 cos(ω0τ)− ω2
0 = 0 (3.9)

ω0a1 cos(ω0τ)− θa2 sin(ω0τ) + a0ω0 = 0. (3.10)

Squaring and adding (3.9) and (3.10) yields

ω2
0 =

(a21 − a20) +
√

(a21 − a20)
2 + 4(θa2)2

2
. (3.11)

Eliminating sin(ω0τ) from (3.9) and (3.10) gives

cos(ω0τ) =
(θa2 − a0a1)ω

2
0

(θa2)2 + a21ω
2
0

, (3.12)

where ω0 is given by the positive square root of (3.11).

So all the roots of (3.8) have negative real parts for τ = 0, and τ̂ is the smallest

positive delay that satisfies (3.12). Hence for all 0 ≤ τ < τ̂ , the corresponding

linear system is stable.

14



Local Hopf bifurcation analysis

Consider a characteristic equation of the form

f(λ,K1, K2, ...., Kn) = 0,

where λ = σ + jω is a complex variable and the Ki’s are system parameters. To

satisfy the Hopf condition (8), with respect to a parameter Ki, we also need to

satisfy the transversality condition, i.e.

Re

(
dλ

dKi

) ∣∣∣∣
Ki=Ki,c

6= 0,

where Ki,c is the critical value of the parameter Ki beyond which the system is

driven to instability. Note that at Ki = Ki,c the eigenvalues lie on the imaginary

axis, and so σ = 0 and λ = jω0.

The characteristic equation we consider is (3.8), i.e

λ2 + a0λ+ (a1λ+ θa2) e
−λτ = 0,

where the critical values of the parameters are obtained from (3.12). We now

verify that the transversality condition is satisfied by the delay τ and the damp-

ing parameter θ.

Feedback delay as the bifurcation parameter

Differentiating (3.8) with respect to τ and rearranging gives

λ′ =
λe−λτ (a1λ+ θa2)

2λ+ a0 + e−λτ (a1 − a1λτ − θa2τ)
,

where λ′ = dλ
dτ

. From (3.8),

e−λτ = −
λ2 + a0λ

a1λ+ θa2
.
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Substituting for e−λτ and putting λ = jω0, we get

λ′ =
ω2
0 (θa0a2 − ω2

0a1 + jω0 (a0a1 + θa2))

θa0a2 − ω2
0 (a1 + θa2τ + a0a1τ) + jω0 (2θa2 + θa0a2τ − ω2

0a1τ)
.

It can be readily shown that

sign {Re (λ′)} = sign
{
θ2a20a

2
2 + 2θ2a22ω

2
0 + a21ω

4
0

}
,

which is always positive. As the transversality condition is satisfied, the asso-

ciated system will undergo a Hopf bifurcation for large values of the feedback

delay.

Damping factor as the bifurcation parameter

Differentiating (3.8) with respect to θ and rearranging gives

λ′ =
−a2e

−λτ

2λ+ a0 + e−λτ (a1 − a1τλ− θa2τ)
,

where λ′ = dλ
dθ

. Substituting for e−λτ and putting λ = jω0, we get

λ′ =
a2 (−ω2

0 + jω0a0)

(θa0a2 − ω2
0 (a1 + θa2τ + a0a1τ)) + jω0 (2θa2 + θa0a2τ − ω2

0a1τ)
.

We can show that

sign{Re(λ′)} = sign
{
a2ω

2
0

(
ω2
0(a1 + θa2τ) + θa0a2(a0τ + 1)

)}
,

which is always positive since a0, a1, a2 > 0. Thus variations in the damping

factor θ can also induce a Hopf bifurcation. An important parameter in the C-

TCP/AVQ model is θ, and variations in this parameter can lead to limit cycles

in the underlying non-linear system.

We have just shown that a class of linear equations, whose characteristic

equation is represented by (3.8), can lose stability with large delays and with

variations in the parameter θ. Further, both the delay and θ can induce a Hopf

bifurcation.
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Figure 3.3: Local stability chart of the C-TCP/AVQ model. The area below the curves
represents the stable region. Note the trade-offs among the system param-
eters to maintain stability. Variations in the AVQ damping factor θ can
induce a Hopf bifurcation. Compound parameters: α = 0.125, β = 0.5,
k = 0.75.

Impact of delays on stability of C-TCP/AVQ

The local stability analysis of a TCP Reno/AVQ model was conducted in

(10), which showed that large values of the delay can be destabilising. Follow-

ing a similar style of analysis, one can identify a τ̂ satisfying (3.12) such that

for τ < τ̂ , the C-TCP/AVQ system (3.5) is locally stable. Thus stability of the

C-TCP/AVQ model will not be assured for large feedback delays.

Impact of the damping factor on stability of C-TCP/AVQ

A key parameter in the AVQ policy is the damping factor θ, which deter-

mines the rate of adaptation at the resource. Figure 3.3 shows a stability chart,

highlighting the trade-offs between θ, the feedback delay and the effective link

capacity to maintain local stability. In AVQ, adaptation at the links was intro-

duced to target a high link utilisation at equilibrium. However, our analysis

shows that variations in this parameter can induce a Hopf bifurcation in the

C-TCP/AVQ model.
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Discussion

Virtual queue policies are attractive as they can provide early indications of

congestion to help end-systems adapt their rates. But this feature alone does not

guarantee stability in the presence of time delayed feedback. We highlighted

that small buffer thresholds help ensure stability, and would naturally reduce

latency. We then exhibited that virtual queues, with small thresholds, have a

stabilising effect but these thresholds have to be chosen in conjunction with

Compound parameters. So stability can be ensured, but there is no explicit

control over link utilisation.

The AVQ policy aims to achieve a desired link utilisation at equilibrium,

and introduces a damping factor θ at the resource. However, at sufficiently

high feedback delays the C-TCP/AVQ model is prone to losing local stability.

In fact, an increase in θ can induce a loss of stability via a Hopf bifurcation.

From the analysis in the paper, our recommendation is that a non-adaptive

virtual queue policy, with small virtual buffer sizing rules, is an attractive queue

management scheme.
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CHAPTER 4

Outlook

End-systems can detect congestion in the network via the loss of packets or by

increased latency. Today, transport protocols like Compound TCP use both loss

and delay as feedback to manage their flow and congestion control algorithms.

Queueing delay, specially at network routers, is increasing which can be detri-

mental to services and applications that require low latency for good quality

of service (11). Large buffers, without effective queue management, contribute

fairly substantially to latency in the network (4). A plausible way to reduce la-

tency from router buffers is to design appropriate Active Queue Management

(AQM) schemes. We note that feedback to end-users is always time delayed,

and so stability is a key performance metric.

Contributions

We studied some stability properties of a fluid model of the widely de-

ployed Compound TCP with virtual queue policies. Our investigation of a

non-adaptive Virtual Queue (VQ) revealed that small virtual buffer sizing rules

would help stability, and also reduce network latency. We showed that Com-

pound parameters can influence stability, and that unguided choice of parame-

ters can easily violate the stability conditions. Analysis of the AVQ showed that

large delays, high link capacities, and variations in the AVQ damping parame-

ter can render the system in a locally unstable state. Additionally, we explicitly

characterised the loss of local stability to occur via a Hopf bifurcation.

With a non-adaptive VQ we could have low latency and a stable system,

but no explicit control over link utilisation. The AVQ is designed to target a

desired and high link utilisation, but the AVQ damping factor can readily in-

duce a Hopf bifurcation. Thus a simple non-adaptive virtual queue policy, with

small router buffers, appears to be an appealing choice for queue management.



Avenues for further research

When a Hopf bifurcation condition is just violated, we can expect a limit

cycle branching from the fixed point (6). It would be important to determine if

the bifurcating limit cycle, with the AVQ, is asymptotically stable. One could

follow the style of analysis presented in (8) (13) to address this question. Feed-

back to end-systems could also be in the form of Explicit Congestion Notifica-

tion (ECN) (2). ECN allows routers to mark an IP packet when resources start

to get congested. Thus end-systems do not need to rely only on packet loss, or

latency, to infer the state of congestion in the network. It is natural to inves-

tigate the benefits of a virtual queue based scheme, with small router buffers,

employing ECN marks.
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APPENDIX A

Analytical characterisation: stability and periodicity

of bifurcating solutions

In Section 3, we proved that variations in the damping parameter θ can induce

a loss of stability in the C-TCP/AVQ system via a Hopf bifurcation. This leads

to the emergence of limit cycles. The next question to address would be the

nature of the Hopf and the stability of the ensuing limit cycles.

A Taylor expansion of the C-TCP/AVQ model (3.5) about the equilibrium

point (3.6) yields

du(t)

dt
= −

α

τ
u(t)− βC̃∗u(t− τ) + βw∗v(t− τ)

−
β

τ
u(t)u(t− τ)−

βC̃∗

w∗
(u(t− τ))2

+ βu(t)v(t− τ) + βu(t− τ)v(t− τ)

dv(t)

dt
= −

θ

τ
u(t).

We introduce an exogenous non-dimensional parameter κ = κc+µ, where κc =

1, and the Hopf bifurcation occurs at µ = 0. Substituting b1, b2, bc, b12, b22, b1c

and b for −α/T, −βC̃∗, βw∗, −β

τ
, −βC̃∗

w∗
, β and − θ

τ
respectively, we have:

du(t)

dt
= κb1u(t) + κb2u(t− τ) + κbcv(t− τ)

+ κb12u(t)u(t− τ) + κb22 (u(t− τ))2

+ κb1cu(t)v(t− τ) + κb1cu(t− τ)v(t− τ)

dv(t)

dt
= bu(t).

(A.1)

We will now perform calculations that will enable us to address questions

about the form of the bifurcating solutions of (A.1) as it transits from stability

to instability via a Hopf bifurcation. We follow the style of analysis provided in

(8).



Consider the following autonomous delay-differential system:

d

dt
u(t) = Lµut + F(ut, µ) (A.2)

where t > 0, µ ∈ R, and for T > 0,

ut(θ) = u(t + θ) u : [−T, 0] → R
2, θ ∈ [−T, 0].

Lµ is a one-parameter family of continuous (bounded) linear operators. The op-

erator F(ut, µ) contains the non-linear terms. Further assume that F is analytic

and that F and Lµ depend analytically on the bifurcation parameter µ for small

|µ|. Note that (3.5) is of the form (A.2), where u = [u, c]T . The objective now is

to cast (A.2) into the form:

d

dt
ut = A(µ)ut +Rut (A.3)

which has ut rather than both u and ut.

First, we transform the linear problem du(t)/dt = Lµut. From the Riesz

representation theorem, there exists an n × n matrix function η(·, µ) : [−T, 0] →

R
n2

, such that the components of η have bounded variation and for all φ ∈

C[−T, 0],

Lµφ =

∫ 0

−T

dη(θ, µ)φ(θ).

In particular,

Lµφ =

∫ 0

−T

dη(θ, µ)u(t+ θ). (A.4)

Observe that

dη(θ, µ) =


 (κb1δ(θ) + κb2δ(θ + τ))dθ κbcδ(θ + τ)dθ

bδ(θ)dθ 0




satisfies (A.4). For φ ∈ C[−T, 0], define

A(µ)φ(θ) =





dφ(θ)
dθ

,

∫ 0

−T
dη(s, µ)φ(s) ≡ Lµφ,

θ ∈ [−T, 0]

θ = 0

(A.5)
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and

Rφ(θ) =





0,

F(φ, µ),

θ ∈ [−T, 0]

θ = 0.

(A.6)

As dut/dθ = dut/dt, (A.2) becomes (A.3) as desired.

The bifurcating periodic solutions u
(
t, µ(ǫ)

)
of (A.2) have amplitude O(ǫ)

and non-zero Floquet exponent B(ǫ), where the expressions for µ and B are

given by

µ = µ2ǫ
2 + µ4ǫ

4 + · · ·

B = B2ǫ
2 + B4ǫ

4 + · · · .

The sign of µ2 determines the direction of bifurcation. µ2 > 0 represents a

supercritical bifurcation and µ2 < 0, a subcritical one. The sign of B2 determines

the stability of the limit cycle. Asymptotic orbital stability is maintained if B2 <

0, and it is unstable otherwise. These coefficients will now be determined.

We only need to compute the expressions at µ = 0, hence we set µ = 0. Let

q(θ) be the eigenfunction for A(0) corresponding to λ(0), namely

A(0)q(θ) = iω0q(θ)

To find ω0 and q(θ), let q(θ) = q0e
iω0θ, where q0 = [1, q02]

T . Substituting this in

the above equation and using the expression for A as in (A.5), we get:

ω0 =

√√√√(b22 − b21) +

√
(b22 − b21)

2
+ 4b2c

2

q0 =


 1

b
iω


 ≡


 q01

q02




(A.7)

Define the adjoint operator A∗(0) as

A∗(0)α(s) =





dα(s)
ds

,

∫ 0

−T
dηT (t, 0)α(−t),

s ∈ [0, T ]

s = 0.
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Note that the domains of A and A∗ are C1[−T, 0] and C1[0, T ] respectively. As

A(0)q(θ) = λ(0)q(θ),

λ(0) is an eigenvalue for A∗, and

A∗(0)q∗ = −iω0q
∗

for some non-zero vector q∗. For φ ∈ C[−T, 0] and ψ ∈ C[0, T ], define an inner

product

〈ψ,φ〉 = ψ
T
(0)φ(0)−

∫ 0

θ=−T

∫ θ

τ=0

ψ
T
(τ − θ)dη(θ)φ(τ)dτ. (A.8)

Then, 〈ψ,Aφ〉 = A∗〈ψ,φ〉 for φ ∈ Dom(A) and ψ ∈ Dom(A).

Let q∗(s) = Deiω0s be an eigenvector of A∗ corresponding to eigenvalue

−iω0. We will now find D such that the eigenvectors q and q∗ satisfy conditions

〈q∗, q〉 = 1 and 〈q∗, q〉 = 0. These two equations can be solved for variables D1

and D2, where D = [D1, D2]
T .

Following the analysis similar to the one leading to (A.7), we find that

q∗0 = D1

[
1 b1bc+iω0bc

−bbc+ib2

]
. (A.9)

Using the expression (A.8) for the inner product and on solving for D1, we get

D1 =
iω0 (bbc + iω0b2)

ω2
0 (b1b2 + bbc − b2)− b1bcb+ 2iω0bbc − e−iω0τ (bbc + iω0b2)

2 . (A.10)

For ut, a solution of (A.3) at µ = 0, define

z(t) = 〈q∗,ut〉

w(t, 0) = ut(θ)− 2RE(z(t)q(θ)).

Then, on the manifold, C0, w(t, θ) = w(z(t), z(t), θ), where

w(z, z, θ) = w20(θ)
z2

2
+w11(θ)zz +w02(θ)

z2

2
+ · · · . (A.11)

In effect, z and z are local coordinates for C0 in C in the directions of q∗

and q∗, respectively. Note that w is real if ut is real and we deal only with real
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solutions. The existence of the centre manifold enables the reduction of (A.3) to

an ordinary differential equation for a single complex variable on C0. At µ = 0,

z
′

(t) = 〈q∗,Aut +Rut〉

= iω0z(t) + q∗(0) · F
(
w(z, z, θ) + 2RE

(
zq(θ)

))

= iω0z(t) + q∗(0) · F′(z, z),

(A.12)

which can be abbreviated to

z
′

(t) = iω0z(t) + g(z, z). (A.13)

The next objective is to expand g in powers of z and z. However, we also

have to determine the coefficients wij(θ) in (A.11). Once the wij have been de-

termined, the differential equation (A.12) for z would be explicit [as abbreviated

in (A.12)] where expanding g(z, z) in powers of z and z, we have

g(z, z) = q∗(0) · F0(z, z)

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · .

Following (8), we write

w
′

= u
′

t − z
′

q − z
′

q

and using (A.3) and (A.13), we obtain

w
′

=





Aw − 2RE (q∗(0) · F0q(θ)) ,

Aw − 2RE (q∗(0) · F0q(0)) + F0,

θ ∈ [−T, 0]

θ = 0

which is rewritten as

w

′

= Aw + h(z, z, θ) (A.14)

using (A.11), where

h(z, z, θ) = h20(θ)
z2

2
+ h11(θ)zz + h02(θ)

z2

2
+ · · · . (A.15)
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Now on C0, near the origin,

w
′

= wzz
′

+wzz
′

.

Using (A.11) and (A.13) to replace wz, z
′

(and their conjugates by their power

series expansion) and equating this with (A.14), we get

(2iω0 −A)w20(θ) = h20(θ)

−Aw11(θ) = h11(θ)

−(2iω0 +A)w02(θ) = h02(θ).

(A.16)

We start by observing

ut(θ) = w(z, z, θ) + q(θ)z + q(θ)z

= w20(θ)
z2

2
+w11(θ)zz +w02(θ)

z2

2

+ q0e
iω0θz + q0e

−iω0θz + · · ·

from which we obtain ut(0) and ut(−T ). We have actually looked ahead and

we will only be requiring the coefficients of z2, zz, z2, z2z, hence we keep only

the relevant terms in the expansions that follow. We see that we have four non-

linear terms:

u (0)u (−τ) =


u (0)u (−τ) u (0) v (−τ)

v (0)u (−τ) v (0) v (−τ)



11

= e−iω0τz2 + eiω0τ z̄2 + sin (ω0τ) zz̄

+

(
w201(0)

2
eiω0τ + w111(0)e

−iω0τ

+ w111(−τ) +
w201(−τ)

2

)
z2z̄

26



u (−τ) u (−τ) =


u (−τ) u (−τ) u (−τ) v (−τ)

v (−τ) u (−τ) v (−τ) v (−τ)



11

= e−2iω0τz2 + e2iω0τ z̄2 + 2zz̄ + z2z̄

×
(
w201 (−τ) eiω0τ + 2w111 (−τ) e−iω0τ

)

u (0) v (−τ) =


u (0)u (−τ) u (0) v (−τ)

v (0) u (−τ) v (0) v (−τ)



12

= q02e
−iω0τz2 + q̄02e

iω0τ z̄2

+
(
q02e

−iω0τ + q̄02e
iω0τ
)
zz̄

+

(
w201(0)q̄02

2
eiω0τ + w111(0)q02e

−iω0τ

+ w112(−τ) +
w202(−τ)

2

)
z2z̄

u (−τ) v (−τ) =


u (−τ) u (−τ) u (−τ) v (−τ)

v (−τ) u (−τ) v (−τ) v (−τ)



12

= q02e
−2iω0τz2 + q̄02e

2iω0τ z̄2

+ (q02 + q̄02) zz̄ +

(
w201(−τ)q̄02

2
eiω0τ

+ w111(−τ)q02e
−iω0τ + w112(−τ)e−iω0τ

+
w202(−τ)eiω0τ

2

)
z2z̄,

where [wij1, wij2]
T = wij . Recall that,

g(z, z) = q∗(0) · F0(z, z) ≡ D1F01(z, z),

where [F01,F02]
T = F0 , and

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · .
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Comparing the two equations above, we get:

g02 =2D1κ
(
b12e

iω0τ + b22e
2iω0τ

+ b1cq̄02
(
eiω0τ + e2iω0τ

) )
(A.17)

g11 =D1κ
(
2b12 cos (ω0τ) + 2b22 + b1c

(
q̄02
(
1 + eiω0τ

)

+ q02
(
1 + e−iω0τ

) ))
(A.18)

g20 =2D1κ
(
b12e

−iω0τ + b22e
−2iω0τ

+ b1cq02
(
e−iω0τ + e−2iω0τ

) )
(A.19)

g21 =D1κ

(
b12

(
w201 (0) e

iω0τ + 2w111 (0) e
−iω0τ

+ 2w111 (−τ) + w201 (−τ)
)

+ b22
(
2w201 (−τ) eiω0τ + 4w111 (−τ) e−iω0τ

)

+ b1c

(
w201 (−τ)

(
1 + eiω0τ + q̄02e

iω0τ
)

+ w201 (0) e
iω0τ (1 + q̄02)

+ 2w111 (0) e
−iω0τ (1 + q02)

+ w202 (−τ)
(
1 + eiω0τ

)

+ 2w111 (−τ)
(
1 + 2e−iω0τ + q02e

−iω0τ
)

+ 2w112 (−τ)
(
1 + e−iω0τ

) )
)

For the expression of g21, we still need to evaluate w11(0), w11(−T ), w20(0) and

w20(−T ). Now for θ ∈ [−T, 0),

h(z, z, θ) = −2RE (q∗(0) · F0q(θ))

= −2RE (g(z, z)q(θ))

= −g (z, z)q(θ)− g(z, z)q(θ)

=

(
g20

z2

2
+ g11zz + g02

z2

2

)
q(θ)

−

(
g20

z2

2
+ g11zz + g02

z2

2

)
q(θ),
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which, compared with (A.15), yields

h20(θ) = −g20q(θ)− g02q(θ)

h11(θ) = −g11q(θ)− g11q(θ).

From (A.5) and (A.16), we get

w
′

20(θ) = 2iω0w20(θ) + g20q(θ) + g02q(θ) (A.20)

w
′

11(θ) = g11q(θ) + g11q(θ). (A.21)

Solving the differential equations (A.20) and (A.21), we obtain:

w20(θ) = −
g20
iω0
q0e

iω0θ −
g02
3iω0

q0e
−iω0θ + ee2iω0θ (A.22)

w11(θ) =
g11
iω0
q0e

iω0θ −
g11
iω0
q0e

−iω0θ + f (A.23)

for some e = [e1, e2]
T and f = [f1, f2]

T , which we will determine now. For

h(z, z, 0) = −2RE (q∗(0) · F0q(0)) + F0,

h20(0) =− g20q(0)− g02q(0) +


 g20/D1

0




h11(0) =− g11q(0)− g11q(0) +


 g11/D1

0


 .

Again, from (A.5) and (A.16), we obtain

g20q(0) + g02q(0) =


 g20/D1

0




+


 κb1w201(0) + κb2w201(−τ) + κbcw202(−τ)− 2iω0w201(0)

bw201(0)− 2iω0w202(0)




(A.24)

29



g11q(0) + g11q(0) =


 g11/D1

0


+


 κb1w111(0) + κb2w111(−τ) + κbcw112(−τ)

bw111(0)


 .

(A.25)

Substituting the expression for wijk(x), x ∈ [−T, 0] from (A.22) and (A.23)

into (A.24) and (A.25), and finally solving for e1, e2, f1 and f2, we obtain:

e ≡


 e1

e2


 =




n1m2−n2m1

l1m2−l2m1

n1l2−n2l1
l2m1−l1m2


 (A.26)

and

f ≡


 f1

f2


 =


 (ḡ11 − g11) /iω0(

2− 1
D1

)
g11
κ

+ b
ω2

0

(g11e
−iω0τ + ḡ11e

iω0τ )− b2w111 (−τ)




(A.27)

where

l1 = b, m1 = −2iω0, n1 =
g20 − g02
g20 − ḡ02

,

l2 = κe−2iω0τ (b1 + b2)− 2iω0, m2 = κbce
−2iω0τ ,

n2 = g20

(
1−

1

D1

)
+ g02 +

κb1
iω0

(
g20 +

ḡ02
3

− 2iω0

)

+
κb2
iω0

(
g20e

−iω0τ +
ḡ02
3
eiω0τ

)
−

κbcb

ω2
0

(
g20e

−iω0τ −
ḡ02
3
eiω0τ

)

.

Using the values of e and f in (A.22) and (A.23), followed by substitut-

ing θ = 0 and −T , we can obtain the values for w11(0), w11(−T ), w20(0) and

w20(−T ). Using these, g21 can be evaluated. Hence, we finally have the expres-

sions for g20, g11, g02 and g21.

We now compute the values of α
′

(0) = RE
(
dλ
dκ

)
and ω

′

(0) = IM
(
dλ
dκ

)
at

κ = κc, where IM(x) denotes the imaginary part of x. We start with our char-

acteristic equation (3.7)

λ2 + κa0λ+ κa1λe
−λτ + κθa2e

−λτ = 0.
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Substituting λ = jω0, differentiating and rearranging using (8), we obtain

dλ

dκ
=

−ω2
0 (a2 + jω0a1)

(a0 + 2iω0) (a2 + jω0a1) + jω0 (a0 + jω0) (τa2 − a1 + jω0a1τ)
.

We find that
dλ

dκ
= α

′

(0) + jω
′

(0).

This yields

sign

(
dλ

dκ

)
= sign

(
−ω2

0

(
a0a

2
2 − ω2

0 (a2 (τa2 − a1))− ω4
0

(
a21τ
)))

6= 0,

which proves the transversality condition with respect to κ. All the quantities

required for the computations associated for the stability analysis of the Hopf

bifurcation are completed. We can now comment on the nature of our Hopf

bifurcation using the values of µ2 and B2 (8)

µ2 =
−RE

(
c1(0)

)

α′(0)

B2 = 2RE
(
c1(0)

)
,

(A.28)

where, as in (8),

c1(0) =
i

2ω0

(
g20g11 − 2|g11|

2 −
1

3
|g02|

2

)
+

g21
2
. (A.29)

Under the condition α
′

(0) > 0, if RE
(
c1(0)

)
< 0, then µ2 > 0 denotes a super-

critical Hopf bifurcation and B2 < 0, a stable limit cycle, and vice versa. Also,

the expression for the Floquet exponent B (ǫ) is given by

B (ǫ) = B2ǫ
2 +O

(
ǫ4
)
,

ǫ =

√
µ

µ2
.

(A.30)

For the C-TCP/AVQ system, consider the following values of the parame-

ters at the Hopf condition:

α = 0.125, β = 0.5, k = 1, τ = 1, γC = 2.7, θc = 0.449.
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The bifurcation parameter µ is chosen as 0.1θc. This yields

µ2 = −1.9, β2 = 2.34. (A.31)

Thus, the system undergoes a subcritical Hopf, and the ensuing limit cycles are

unstable.
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Figure A.1: Bifurcation diagram generated with variation in damping factor θ. The

Hopf is found to be subcritical, and the limit cycles unstable (A.31).
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