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ABSTRACT

KEYWORDS: physiological models; local stability; rate of convergence;

Hopf bifurcation; robustness.

Mathematical models for pupillary light reflex are well documented in the

literature. But research has focused primarily on the biological aspects of the

pupillary response. Analysis from the perspective of design requires techniques

from control theory and dynamical systems analysis.

In this paper, we investigate a non-linear, time delayed model of pupillary

light reflex. Using time and frequency domain analysis, we study its stabil-

ity properties and offer guidelines on parameter values, that guarantee local

stability. Trade-offs between system parameters are explored with the help of

stability charts. It is shown that a desired rate of convergence can be achieved

in the transient response by tuning parameters appropriately. The robustness

of the model is measured for uncertainties in parameter values using the Vin-

nicombe metric. We prove that each parameter can induce a loss in stability via

a Hopf bifurcation. Further, the stability and periodicity of the ensuing limit

cycles are characterised analytically using normal forms and centre manifold

theorem. Bifurcation diagrams accompany our results. We establish that the

limit cycles generated are always stable in nature. In fact, large neural con-

stants give rise to limit cycles through a subcritical Hopf, which is undesirable.

The analysis reveals that the pupillary reflex model is not easy to control once it

loses stability. Our work provides design-friendly guidelines to ensure stability

and achieve a desired level of performance and robustness.
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CHAPTER 1

Introduction

Biological systems as they exist today are the result of years of evolution. Analysing

biological phenomena as dynamical systems involves a reverse engineering

process. A model is first proposed, and then continually fine-tuned to resem-

ble the actual response as closely as possible. A thorough investigation of the

model in terms of stability, transient behaviour and robustness is a critical re-

quirement for system designers. One aspect of biological systems that makes

this analysis challenging is the time delayed response of the feedback. Our pa-

per focuses on a model of pupillary light reflex, the mechanism that adjusts the

area of the pupil according to the intensity of light falling on it.

The phenomenon of pupillary light reflex was first studied as a mathemat-

ical model in (9). This paved the way for further analysis in the field. The

authors of (6) investigated the mechanism from a control theoretic perspective.

Their equation is used as the basis for any advanced research in the subject to-

day. Some of the biological aspects of the mechanism were analysed in (3) (4),

in an attempt to understand the cause of the time delay. The focus of research

has been to fine-tune existing models to better characterize pupillary reflex, and

relate it to other physiological responses. However, our work investigates the

problem from a design point of view, through key performance metrics like

stability, rate of convergence and robustness.

The focus of our analysis is the non-linear, time delayed model of pupillary

light reflex proposed in (6). We derive a linear transfer function model, show-

ing that the delay is an intrinsic parameter and not in the feedback. In terms of

analysis, we perform both a local stability and a local bifurcation analysis. We

establish the necessary and sufficient condition for local stability. A sufficient

condition for stability independent of the time delay is also proposed. The rate

of convergence in the stable region is analysed as a function of system parame-

ters. The robustness of the model is determined for uncertainties in parameter



values using the Vinnicombe metric. We also explicitly show that variation in

each parameter value can induce a loss of stability via a Hopf bifurcation. In

each case, the stability of the ensuing limit cycles is analytically characterised

using normal forms and the centre manifold theorem. Our analytical work is

accompanied by stability charts and bifurcation diagrams.

Each of the results we derive with respect to the performance metrics are

evaluated from the perspective of design. The sufficient conditions for stability

offer less leeway in terms of parameter values, but are easier to satisfy. Trade-

offs exist between the values of the neural delay, pupillary constant and neural

constant in order to maintain stability. The transient behaviour of the pupillary

response can be chosen to be underdamped or overdamped, as a function of

parameter values. Allowable uncertainties in parameter values are measured

so as to ensure robustness. We show that the limit cycles that arise via Hopf

bifurcations are always stable. But they may go through a subcritical Hopf

bifurcation in which case pupillary reflex becomes difficult to control once it

slips into instability.

Figure 1.1: Phenomenon of pupillary light reflex according to the Longtin-

Milton model. Change in the input intensity of light causes a change

in pupil area. The delay is intrinsic to the response.

The rest of the paper is organised as follows. In Chapter 2, we introduce the

Longtin-Milton model of pupillary reflex and linearise the associated delay-
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differential equation. In Chapter 3, we construct conditions on the parameters

that ensure local stability. The implications of these conditions are examined

using stability charts. In Chapter 4, we analyse local rate of convergence as a

function of parameter values. In Chapter 5, the robustness of the model is anal-

ysed for parameter uncertainties and in Chapter 6, a detailed Hopf bifurcation

analysis is carried out. In Chapter 7, we summarise our results and mention

avenues for further research.
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CHAPTER 2

Model

In this chapter, we introduce the Longtin-Milton model (6) of pupillary light re-

flex. The associated delay-differential equation is linearised to carry out further

analysis.

The authors of (6) used neurophysiological data to develop a model of pupil-

lary light reflex. This is expressed in terms of the following non-linear delay

differential equation

dg

dA

dA(t)

dt
+ αg(A) = γ ln

I(t− τ)A(t− τ)

ÎÂ
, (2.1)

where

A(t) = area of the pupil at a time t,

I(t) = intensity of light falling on the retina at a time t,

Î , Â = threshold values of I, A below which there is no pupillary response,

τ = pupillary latency or neural delay,

α = rate constant for pupillary movements or pupillary constant,

γ = rate constant for the neural firing frequency or neural constant, and

g(A) = feedback function relating changes in iris muscle activity to changes

in pupil area. The product φ(t) = I(t)A(t) is the retinal flux at time t.

Modelling the dynamics of pupillary response naturally involves certain bi-

ological constraints. The Longtin-Milton model accounts for the following:

1. The eye attempts to keep the retinal flux roughly constant. So an increase
in intensity causes a decrease in pupil area (constriction), while a decrease
in intensity causes an increase in pupil area (dilation).

2. Pupil dilation involves a larger change in area compared to constriction
for the same variation in intensity from a given state.



3. A finite time delay is involved as the pupil size varies with intensity, i.e.
the process is not instantaneous.

However, a limitation of this model is that the pupillary response is assumed

to be independent of other bodily functions. The reader is referred to (4) for a

detailed analysis, where the dynamic response of retinal cells is coupled with

pupillary reflex.

Note that τ , α and γ are the three independent parameters in system (2.1).

However, the work in (6) did not provide a range of values for the same. The

authors of (7) derived a numerical expression for (2.1) based on measured data,

dg

dA

dA

dt
+ 2.3026.g(A) = −0.45 ln

I(t− 0.18)A(t− 0.18)

5.02x10−5
, (2.2)

where area A is in the units of mm2, intensity I is in lumens/mm2, time t is in

seconds and

g(A) = tanh−1





2
√

A
π
− 4.9

3



 . (2.3)

Notice that the range of the tanh−1 function being (−1, 1) places restrictions on

the pupil area A as

2.84 < A < 49, (2.4)

which closely characterises the physical limits of pupil expansion and contrac-

tion (7).
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Linearisation
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Figure 2.1: Variation of equilibrium pupil area with input intensity. Note the

monotonicity, indicating a unique A∗ for every I∗, for a given set

of parameter values. We used α = 2.303/ sec, γ = −0.45/ sec, τ =

0.18 sec.

The equilibrium point of system (2.1) is obtained by putting dA(t)
dt

= 0 to get

αg(A∗) = γ ln
I∗A∗

ÎÂ
,

which defines the steady state area A∗ for a steady state intensity I∗. Note that

this point is unique (Figure 2.1), and dependent on values of parameters α and

γ. To linearise the system (2.1), assume a small perturbation in the pupil area as

A(t) = A∗ + y(t).

This gives

α−1dy(t)

dt
+ y(t) = Gy(t− τ), (2.5)

where gain G = γ

αβA∗
and β = dg

dA

∣

∣

∣

A=A∗

. Note that G < 0, that is, γ and β take

opposite signs to maintain negative feedback.

Now consider an input intensity I(t) = I∗ + x(t) causing a change in area as

A(t) = A∗ + y(t), where x(t) and y(t) are incremental. Putting this into (2.1), we

6



get

β
dy(t)

dt
+ αβy(t) = γ

y(t− τ)

A∗
+ γ

x(t− τ)

I∗
, (2.6)

which is the linearised input-output model. Taking the Laplace Transform and

rearranging terms gives

Y (s)

X(s)
= K

αGe−sτ/(s+ α)

1− αGe−sτ/(s+ α)
,

where K = A∗/I∗ and G = γ

αβA∗
. Again, note that G < 0 for negative feedback.

Thus,
Y (s)

X(s)
= H(s) = −K P (s)

1 + P (s)
, (2.7)

where P (s) = −αGe−sτ/(s + α) is the open loop transfer function. This consti-

tutes a transfer function model as shown in Figure 2.2. We find that the neural

delay is not part of the feedback, but is intrinsic to the pupillary response.

Figure 2.2: Block diagram for the linearised pupillary reflex model. Observe

that the neural delay is intrinsic to the response, and not part of the

feedback. Also, G < 0 constitutes negative feedback.

In the following chapter we carry out a systematic local stability analysis of

the pupillary reflex model.
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CHAPTER 3

Local Stability Analysis

In this chapter, we obtain conditions on parameter values for the pupillary re-

flex model to maintain local stability. For our analysis of the linearised Longtin-

Milton equation (2.5), we derive these conditions algebraically, and with the

help of Nyquist plots.

Notice that (2.5) can be expressed in the form

dy(t)

dt
= −ay(t)− by(t− τ), (3.1)

where a = α, b = −αG = − γ

βA∗
, and β = dg

dA

∣

∣

∣

A=A∗

. Note that a, b, τ > 0 and A∗

is the equilibrium pupil area. Substituting y(t) = eλt gives the corresponding

characteristic equation,

λ+ a+ be−λτ = 0, (3.2)

where λ = σ + jω. At the crossover between the regions of local stability and

instability, the eigenvalues become purely imaginary, so σ = 0 and ω = ω0. We

now have

jω0 + a+ b cos(ω0τ)− jb sin(ω0τ) = 0.

Equating the real and imaginary parts to zero gives

α + b cos(ω0τ) = 0, (3.3)

ω0 − b sin(ω0τ) = 0. (3.4)

Simplifying, we obtain

ω0 =
√
b2 − a2 =

1

τ
cos−1

(

−a
b

)

. (3.5)

The above equation gives us the condition for marginal stability. Under the as-

sumption that larger time delays can destabilise the associated system, the nec-



essary and sufficient condition condition for local stability is

τ
√
b2 − a2 < cos−1

(

−a
b

)

.

Observe that τ
√
b2 − a2 < bτ and π

2
< cos−1

(

−a
b

)

. Thus,

bτ <
π

2

becomes a sufficient condition for local stability.

The above conditions for stability are demonstrated with the help of the

Nyquist Stability Criterion. We construct the Nyquist contour that encircles the

right half plane, and the corresponding Nyquist plot for the function

H(s) = s+ a + be−sτ ,

for different parametric values of a, b and τ . The Nyquist plot of H(s), for a

stable system, should not encircle the origin. Observe that

min(real(H(s))) = a− b.

Thus,

a ≥ b,

is another sufficient condition for local stability, since the Nyquist plot will

never encircle the origin if it is satisfied.

Thus, we have shown that

a ≥ b, (3.6)

and

bτ < π/2 (3.7)

are sufficient conditions for local stability, and

τ
√
b2 − a2 < cos−1

(

−a
b

)

(3.8)

is the necessary and sufficient condition for local stability. We now apply these

9



conditions to derive the corresponding results for the pupillary reflex model.

Sufficient conditions for local stability

By substituting values from the linearised pupillary reflex model (3.1) into

the sufficient condition for stability (3.6), we obtain α ≥ −αG, or

G ≥ −1. (3.9)

If this is the case, the coefficient of y(t) in (3.1) is greater than that of the delay

term y(t − τ). Tuning the gain to satisfy (3.9) is the easiest method of guaran-

teeing local stability irrespective of the neural delay.

−100 −50 0 50 100

−
10

0
−

50
0

50
10

0

ℜ (H (s))

ℑ
(H

(s
))

τ = 0.11 sec
τ = 0.167 sec
τ = 0.257 sec

Figure 3.1: Keeping a = 3/ sec and b = 10 sec constant in the characteristic equa-

tion (3.2), we vary the delay parameter τ to analyse how the Nyquist

plot reflects the transition into instability. To ensure stability accord-

ing to the Nyquist criterion, the plot should not encircle the origin.
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Figure 3.2: For τ = 0.11 sec, bτ < π
2
. The only points on the real axis enclosed

by the plot lie in (a, a + b). Since a, b > 0, the plot does not encircle

the origin. For τ = 0.167 sec, bτ > π
2
. The plot still does not encircle

the origin, ensuring stability. Note that τ
√
b2 − a2 < cos−1

(

−a
b

)

. For

τ = 0.257 sec, bτ > π
2

and τ
√
b2 − a2 > cos−1

(

−a
b

)

. The plot encircles

the origin, denoting the transition to instability. This confirms our

assumption that for a particular value of a and b, large time delays

can destabilise the associated system.

Using the other sufficient condition for stability (3.7) gives

−αGτ < π

2
, (3.10)

which, by substituting for G = γ

αg′(A∗)A∗
, can be expressed as

−γτ < π

2
g′(A∗)A∗. (3.11)

This indicates that the known equilibrium condition A∗ can be used to restrict

the product of the neural constant γ and neural delay τ to ensure local stability.

Substituting for the parameters γ and α from the numerical model (2.2), the

11



restrictions on A from (2.4) cause the limits of G to be

−0.21 < G < −7x10−5,

which ensures stability of system (2.2) according to (3.9).
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Figure 3.3: Variation in the range of allowed values for α and γ at different neu-

ral delays and equilibria, to maintain stability. From (3.12), an in-

crease in τ further restricts this range. Note that stability is main-

tained for values above the constructed curves.

Necessary and sufficient condition for local stability

Substituting values from the linearised pupillary reflex model (3.1) into the

condition (3.8) yields

ατ
√
G2 − 1 < cos−1

(

1

G

)

,

which is the necessary and sufficient condition for local stability about (I∗, A∗).

Expressing this in terms of system parameters τ, α and γ and using β = g′(A∗),

we get

ατ

√

(

γ

αβA∗

)2

− 1 < cos−1

(

αβA∗

γ

)

. (3.12)

This condition is a complicated mathematical relationship compared to either

of the sufficient conditions (3.9)(3.11) and is clearly not easy to satisfy from a

12



design point of view. However it does give more leeway in terms of allowed

parameter values to maintain local stability.

The implications of the above conditions are explored by plotting stability

charts.

Stability charts

Conditions for local stability have been derived with respect to three in-

dependent system parameters. Stability charts provide an opportunity to un-

derstand the trade-offs between parameter values so as to keep the associated

system stable; the reader is referred to Figures 3.3, 3.4 and 3.5.

We will show in a later chapter that the stability curves represent the con-

dition for undergoing a Hopf bifurcation. Notice from the stability charts that

the independent parameters α, γ and τ play the major role in influencing local

stability, and not the equilibrium pupil area A∗. We can reduce the number of

parameters affecting local stability to two by ensuring that the sufficient condi-

tion (3.11)

−γτ < π

2
g′(A∗)A∗,

is satisfied. Thus, α could be chosen purely with the aim of achieving a desired

transient response, which is studied in the next chapter.

13
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tem (2.1) further into stability. Note that stability is maintained for

values below the curves.
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CHAPTER 4

Local Rate of Convergence

Rate of convergence refers to how quickly a dynamical system settles to its

new state, when perturbed by a small change in the input about its equilibrium

point. In our case, a fractional change in the ambient intensity of light causes

the pupil area to change incrementally. We analyse, in the region of locally sta-

bility, the rate at which the pupil area settles to its final value as a function of

system parameters. Parameter values determine if the pupillary response is

underdamped, critically damped or overdamped.

Consider a small step input I∗ + u(t) triggering a response A∗ + y(t), which

is found using the linearised model (2.6). Settling time ts is the time taken for

the response to achieve a state such that ∀t > ts,

|y(t)− y∞| < p% ∗ |y∞ − A∗| .

In other words, the output y(t) gets bound within a certain band (p%) around

the final value y∞. In our case, we choose p = 5. We now define local rate of

convergence as

RoC = 1/ts.

For our analysis, the linear system under consideration is (3.1)

dy(t)

dt
= −ay(t)− by(t− τ),

whose characteristic equation takes the form (3.2)

λ+ a+ be−λτ = 0,

where λ = σ + jω. For an overdamped response, σ < 0 and there are no



sinusiodal components, so ω = 0. Therefore, λ = σ, and

σ + a+ be−στ = 0.

For the above equation to have a solution in σ < 0, the minima of f(σ) =

σ + a + be−στ must be lesser than zero. The derivative of f(σ) is

f
′

(σ) = 1− bτe−στ ,

and it becomes zero at σmin = ln(bτ)/τ . Under the assumption thatmin(f(σ)) <

0, it can be readily shown that

bτ < e−aτ−1, (4.1)

which is the necessary and sufficient condition for an overdamped response.

We have plotted the different regions of overdamping, underdamping and in-

stability in Figure 4.1. For the pupillary reflex model (3.1), the condition on

parameters α, γ, τ from (4.1) is expressed as

γτ

g′(A∗)A∗
< e−ατ−1. (4.2)

A sufficient condition for stability (3.11) derived earlier was found to be inde-

pendent of the pupillary constant α. Comparing the above result (4.2) with

(3.11) shows how the pupillary constant now influences damping within the

region of local stability.

The reader is referred to Figures 4.2 and 4.3. We find that allowing the neu-

ral constant γ to vary can cause the pupillary response to swing between being

overdamped, underdamped and even unstable regardless of the other param-

eter values. However, by fixing γ and the time delay τ , we can guarantee that

the response remains either overdamped or underdamped irrespective of the

value of the pupillary constant α.
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Figure 4.1: Variation of transient response of dy(t)
dt

= −ay(t) − by(t − τ) with

values of a and b. Note how b governs stability and the nature of

damping to a larger extent than a. Choosing b appropriately can

guarantee an underdamped response for all a > 0. We used τ =

0.18 sec.
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Figure 4.2: Rate of convergence of the pupillary reflex model (3.1) as a function

of the neural constant γ. An increase in |γ| causes the pupil area

to settle faster, and makes the response underdamped. However,

a drastic drop in the rate is noted as the initial output peak of y(t)

goes beyond the ±5% range. We used equilibrium areaA∗ = 16mm2,
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CHAPTER 5

Robustness

Dynamical systems from the real world, modelled mathematically, naturally

come with certain uncertainties. These may take form in the model itself, or

in the values of parameters used. A robust model is one that ensures stability

and a desired level of performance even in the presence of these uncertainties.

In this chapter, we analyse the robustness of the pupillary reflex model under

consideration (2.1), as a function of parameter uncertainties.

The Vinnicombe metric (1) is used the measure the ‘difference’ between two

closed loop transfer functions. This can be interpreted as the difference between

the complementary sensitivity functions of the two systems under comparison.

Consider the associated process functions P1 and P2. The Vinnicombe metric is

defined as

d (P1, P2) = sup
ω

|P1 (iω)− P2 (iω)|
√

(

1 + |P1 (iω)|2
) (

1 + |P2 (iω)|2
)

,

where d (P1, P2) ∈ [0, 1] .We use the Vinnicombe metric as a robustness measure

by comparing a model containing uncertainty with the one without. From (1),

we apply the rule that if

d (P1, P2) < 1/3, (5.1)

the model is reasonably robust. Hence, bounds on the uncertainty in any pa-

rameter can be found to ensure reasonable robustness.

The loop transfer function for the pupillary reflex model is given by (2.5)

P (s) =
−αGe−sτ

s + α
,

where G = γ

αβA∗
, β = dg

dA

∣

∣

∣

A=A∗

and A∗ is the equilibrium pupil area. Let

P1 (s) = P (s) be the given function, and P2 (s) be the function containing an

uncertainty. We first assume that γ amd τ are known accurately and there ex-

ists an uncertainty in the pupillary constant α. Let α = αu in P2(s) and α = αc



in P1(s). On fixing αc and varying αu, one can compute the Vinnicombe metric

for all values of αu in the region of local stability. Where d (P1, P2) never exceeds

1
3
, the system is robust. A similar process is carried out for γ. The reader is re-

ferred to Figures 5.1 and 5.2, which offer guidelines to choose parameter values

in the stable region to ensure robustness.
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Figure 5.1: The allowed variations in pupillary constant α to ensure reasonable

robustness according to the condition (5.1). αc ∈ P1(s), the pro-

cess function and αu ∈ P2(s), the process function with uncertainty.

Observe that as αc approaches the limit for stability, the maximum

allowable uncertainity to ensure robustness, drops to 0. γ = −8/ sec,

τ = 0.18 sec, A∗ = 16mm2.
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Figure 5.2: The allowed variations in neural constant γ to ensure reasonable

robustness according to the condition (5.1). γc ∈ P1(s), the pro-

cess function and γu ∈ P2(s), the process function with uncer-

tainty. Observe that as γc approaches the limit for stablity, the

maximum allowable uncertainity to ensure robustness, drops to 0.

α = 2.303/ sec, τ = 0.18 sec, A∗ = 16mm2.
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CHAPTER 6

Local Bifurcation Analysis

We have so far studied the behaviour of the pupillary reflex model within its

range of local stability. In this chapter, a systematic local bifurcation analysis is

carried out. We prove that the loss of local stability is induced via Hopf bifurca-

tions. The bifurcation points are then analytically characterised, including the

types of Hopf induced, and the stability of the bifurcating solutions.

6.1 Existence of Hopf Bifurcations

Consider a characteristic equation of the form

f(λ,K1, K2, ...., Kn) = 0,

where λ = σ + jω is a complex variable and Ki’s are the system parameters.

The transversality condition states that a local Hopf bifurcation is induced with

respect to a parameter Ki if

ρ′(0) = Re

(

dλ

dKi

) ∣

∣

∣

∣

Ki=Ki,c

6= 0 (6.1)

whereKi,c is the critical value of the parameterKi satisfying the Hopf condition

(5). Choosing Ki = Ki,c + µ, where µ is called the bifurcation parameter, gives

rise to limit cycle oscillations. Note that at Ki = Ki,c the eigenvalues lie on the

imaginary axis, and so σ = 0 and λ = jω0.

The characteristic equation we consider is

λ+ a+ be−λτ = 0,

where the critical values of the parameters a, b, τ are obtained from (3.5). Dif-



ferentiating with respect to a gives

dλ

da
=

1

bτe−λτ − 1
.

Dividing the right hand side into real and imaginary parts and substituting

values using (3.5), we obtain

Re

(

dλ

da

) ∣

∣

∣

∣

a=ac

=
−(acτ + 1)

(acτ + 1)2 +
{

cos−1
(

−ac
b

)}

2
,

where ac is the critical value of the parameter a. Following a similar procedure

for b and τ yields:

Re

(

dλ

db

) ∣

∣

∣

∣

b=bc

=
bcτ + a/bc

(aτ + 1)2 +
{

cos−1
(

− a
bc

)}

2
,

Re

(

dλ

dτ

) ∣

∣

∣

∣

τ=τc

=

{

1
τc
cos−1

(

−a
b

)

}2

(aτc + 1)2 +
{

cos−1
(

−a
b

)}

2
.

We now substitute in these expressions, parameters from the pupillary reflex

model (2.1). The critical values of α, γ and τ are obtained from the condition for

marginal stability, (3.5)

ατ

√

(

γ

αβA∗

)2

− 1 = cos−1

(

αβA∗

γ

)

.

This gives

Re

(

dλ

dα

) ∣

∣

∣

∣

α=αc

=
−(αcτ + 1)

(αcτ + 1)2 +
{

cos−1
(

βA∗αc

γ

)}2 < 0, (6.2)

since αc, τ > 0,

Re

(

dλ

dγ

) ∣

∣

∣

∣

γ=γc

=
(1/βA∗)

(ατ + 1)2 +
{

cos−1
(

βA∗α

γc

)}2 > 0, (6.3)
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since β,A∗ > 0, and

Re

(

dλ

dτ

) ∣

∣

∣

∣

τ=τc

=

{

1
τc
cos−1

(

βA∗α2

γ

)}2

(ατc + 1)2 +
{

cos−1
(

βA∗α

γ

)}2 > 0. (6.4)

Thus, a loss in stability of the pupillary reflex model due to any parameter

occurs via a Hopf bifurcation. The pupillary response undergoes limit cycle os-

cillations when it transitions into instability. This behaviour is now analytically

characterised.

6.2 Analytical Characterization: Stability and Peri-

odicity of Solutions

Note that linearised pupillary reflex model (3.1) is a special case of the form

d

dt
x(t) = κf(x(t), x(t− τ)), (6.5)

where τ is a constant delay. According to the normal form of the Hopf bifur-

cation, the linear, quadratic, and cubic terms are required to characterise the

Hopf. Define u(t) = x(t)− x∗, y ≡ x(t− τ) and expand (6.5) as

d

dt
u(t) = κξxu(t) + κξyu(t− τ) + κξxxu

2(t) (6.6)

+ κξyyu
2(t− τ) + κξxxxu

3(t)

+ κξxxyu
2(t)u(t− τ) + κξxyyu(t)u

2(t− τ)

+ κξyyyu
3(t− τ) + O(u4),

where

ξx = f ∗

x , ξy = f ∗

y , ξxx =
1

2
f ∗

xx,

ξxy = f ∗

xy, ξyy =
1

2
f ∗

yy, ξxxx =
1

6
f ∗

xxx,

ξxxy =
1

2
f ∗

xxy, ξxyy =
1

2
f ∗

xyy, ξyyy =
1

6
f ∗

yyy.
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f ∗ indicates calculation of coefficients at equilibrium, and the system parame-

ters take values satisfying the Hopf condition (5).

For the pupillary reflex model, (2.1)

dA

dt
= −αg(A)

g′(A)
+

γ

g′(A)
ln
I(t− τ)A(t− τ)

ÎÂ
,

the function g(A) is defined as (2.2)

g(A) = tanh−1





2
√

A
π
− 4.9

3



 .

10 20 30 40 50

0
1

2
3

4

Equilibrium point A∗ (mm2)

g
′
(A

∗
)

Figure 6.1: It is illustrated that β = g′(A∗) can be assumed to be a constant in

the neighbourhood of A∗, if the equilibrium point is chosen appro-

priately.

This is plotted in Figure (6.1). Clearly, g′(A) remains approximately con-

stant, except near the lower and upper limits of A. Thus, by choosing the equi-

librium area A∗ within this range, we can assume that the higher order deriva-

tives of g′(A) go to zero. If this assumption is not made, the evaluation of the

quadratic and cubic coefficients in (6.7) would become extremely complex.

The coefficients for pupillary response, taking equilibrium area as A∗ and
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β = g′(A∗) ≈ constant, come out to be

ξx = −α, ξy =
γ

βA∗
, ξxx = 0, ξxy = 0, ξyy = − γ

2β(A∗)2
,

ξxxx = 0, ξxxy = 0, ξxyy = 0, ξyyy =
γ

3β(A∗)3
.

Recall that the characteristic equation for pupillary reflex is (3.2)

λ+ a+ be−λτ = 0,

where λ = jω at the Hopf condition, and

ω0 =
1

τ
cos−1

(

−a
b

)

.

Define

ρ′(0) = ℜ
(

dλ

dKi

) ∣

∣

∣

∣

Ki=Ki,c

,

where Ki = Ki,c is the value of system parameter Ki at the Hopf condition and

ω′(0) = ℑ
(

dλ

dKi

) ∣

∣

∣

∣

Ki=Ki,c

.

Following the work of (5), we perform the necessary calculations to ana-

lytically characterize the bifurcation points of the system (2.1). Consider the

following autonomous delay differential system, of which the pupillary reflex

model is a specific case:

d

dt
u(t) = Lµut + F(ut, µ), (6.7)

where t > 0, µ ∈ R, and for τ > 0,

ut(θ) = u(t+ θ) u : [−τ, 0] → R θ ∈ [−τ, 0].

Lµ is a one-parameter family of continuous linear bounded operators defined

as Lµ : C[−τ, 0] → R. The operator F(ut, µ) : C[−τ, 0] → R contains the non-

linear terms. Further, assume that F(ut, µ) is analytic and that F and Lµ depend

analytically on the bifurcation parameter µ for small |µ|. The objective now is
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to cast (6.7) into the form

d

dt
ut = A(µ)ut +Rut, (6.8)

which has ut rather than both u and ut. First transform the linear problem

d
dt
u(t) = Lµut. By the Reisz Representation Theorem, there exists an n × n

matrix-valued function η(�, µ) : [−τ, 0] → R
n2

, such that each component of η

has bounded variation and for all φ ∈ C[−τ, 0],

Lµφ =

0
ˆ

−τ

dη(θ, µ)φ(θ).

In particular

Lµut =

0
ˆ

−τ

dη(θ, µ)u(t+ θ). (6.9)

Observe that

dη(θ, µ) = (κξxδ(θ) + κξyδ(θ + τ))dθ,

where δ(θ) is the Dirac delta function, would satisfy (6.9).

For φ ∈ C1[−τ, 0], define

A(µ)φ(θ) =











dφ(θ)
dθ

´ 0

−τ
dη(s, µ)φ(s) ≡ Lµφ

θ ∈ [−τ, 0]

θ = 0,

and

Rφ(θ) =











0

F(φ, µ)

θ ∈ [−τ, 0]

θ = 0.

Then, as dut

dθ
≡ dut

dt
, system (6.7) becomes (6.8) as desired.

The bifurcating periodic solutions u(t, µ(ǫ)) of (6.7) (where ǫ ≥ 0 is a small

parameter) have amplitude O(ǫ), period P (ǫ) and non-zero Floquet exponent
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β(ǫ), where µ, P and β have the following (convergent) expansions:

µ = µ2ǫ
2 + µ4ǫ

4 + · · ·

P =
2π

ω0
(1 + T2ǫ

2 + T4ǫ
4 + · · · )

β = β2ǫ
2 + β4ǫ

4 + · · · .

The signs of µ2 and β2 determine the direction of bifurcation and the stability of

u(t, µ(ǫ)) respectively. We need to compute the expressions at µ = 0, hence we

set µ = 0 in the following. Let q(θ) be the eigenfunction for A(0) corresponding

to λ(0), namely

A(0)q(θ) = jω0q(θ),

and define the adjoint operator A∗(0) as

A∗(0)α(s) =











−dα(s)
ds

´ 0

−τ
dηT (t, 0)α(−t)

s ∈ (0, τ ]

s = 0,

where ηT denotes the transpose of η.

Note that the domains of A and A∗ are C1[−τ, 0] and C1[0, τ ]. As

Aq(θ) = λ(0)q(θ),

λ(0) is an eigenvalue for A∗, and

A∗q∗ = −jω0q
∗

for some non-zero vector q∗. For φ ∈ C[−τ, 0] and ψ ∈ C[0, τ ], define an inner

product

〈ψ, φ〉 = ψ̄(0).φ(0)−
0
ˆ

θ=−τ

θ
ˆ

ζ=0

ψ̄T (ζ − θ)dη(θ)φ(ζ)dζ, (6.10)

where a.b means
∑n

i=1 aibi. Then, 〈ψ,Aφ〉 = 〈A∗ψ, φ〉 for φ ∈ Dom(A), ψ ∈
Dom(A∗). Let q(θ) = ejω0θ and q∗(s) = Dejω0s be the eigenvectors for A and A∗
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corresponding to the eigenvalues +jω0 and −jω0. With

D =
1

1 + τκξyejω0τ
,

we get 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0. Using (6.10), we first confirm 〈q∗, q〉 = 1,

〈q∗, q〉 = D̄ − D̄

0
ˆ

θ=−τ

θejω0θ(κξxδ(θ) + κξyδ(θ + τ))dθ

= D̄ + D̄κτξye
−jω0τ

= 1.

Similarly we can show that 〈q∗, q〉 = 0. Again, using (6.10), we get

〈q∗, q̄〉 = D̄ +
D̄κ

2jω0

0
ˆ

θ=−τ

(e−jω0θ − ejω0θ)(ξxδ(θ)

+ ξyδ(θ + τ))dθ

= D̄ +
D̄κ

2jω0
ξy(e

jω0τ − e−jω0τ )

= 0.

For ut, a solution of (6.8) at µ = 0, define

z(t) = 〈q∗, ut〉

w(t, θ) = ut(θ)− 2ℜz(t)q(θ).

Then, on the manifold C0, w(t, θ) = w(z(t), z̄(t), θ) where

w(z, z̄, θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ · · · . (6.11)

In effect, z and z̄ are local coordinates for C0 in C in the directions of q and

q∗, respectively. Note that w is real if ut is real and we deal only with real

solutions. The existence of the centre manifold C0 enables the reduction of (6.8)

to an ordinary differential equation for a single complex variable on C0. At
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µ = 0, this is

z′(t) = 〈q∗, Aut +Rut〉

= jω0z(t) + q̄∗(0).F(w(z, z̄, θ) + 2ℜ{z(t)q(θ)})

= jω0z(t) + q̄∗(0).F0(z, z̄), (6.12)

which is written in abbreviated form as

z′(t) = jω0z(t) + g(z, z̄). (6.13)

The next objective is to expand g in the powers of z and z̄. However, we

also have to determine the coefficients of wij(θ) in (6.11). Once the wij(θ) have

been determined, the differential equation (6.12) for z would be explicit [as ab-

breviated in (6.13)]. Expanding the function g(z, z̄) in powers of z and z̄ we

have

g(z, z̄) = q̄∗(0).F0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

Following (5), we write

w′ = u′t − z′q − z̄′q̄,

and using (6.8) and (6.13) we obtain

w′ =











Aw − 2ℜq̄∗(0).F0q(θ)

Aw − 2ℜq̄∗(0).F0q(0) + F0

θ ∈ [−τ, 0)

θ = 0,

(6.14)

which is rewritten as

w′ = Aw +H(z, z̄, θ) (6.15)

using (6.12), where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (6.16)
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Now, on C0, near the origin

w′ = wzz
′ + wz̄ z̄

′.

Using (6.11) and (6.13) to replace wz, z
′(and their conjugates by their power se-

ries expansion) and equating with (6.15), we get

(2jω0 − A)w20(θ) = H20(θ)

−Aw11(θ) = H11(θ)

−(2jω0 + A)w02(θ) = H02(θ).

We start by observing

ut(θ) = w(z, z̄, θ) + zq(θ) + z̄q̄(θ)

= w20(θ)
z2

2
+ w11(θ)zz̄ + w02

z̄2

2

+ zejω0θ + z̄e−jω0θ + · · ·

from which we obtain ut(0) and ut(−τ). We have actually looked ahead and

as we will only be requiring the coefficients of z2, zz̄, z̄2 and z2z̄, we only keep

these relevant terms in the following expansions:

u2t (0) = (w(z, z̄, 0) + z + z̄)2

= z2 + z̄2 + 2zz̄ + z2z̄(2w11(0) + w20(0)) + · · · .

u3t (0) = (w(z, z̄, 0) + z + z̄)3

= 3z2z̄ + · · · .

u3t (−τ) = ((w(z, z̄,−τ) + ze−jω0τ + z̄ejω0τ )3

= 3z2z̄e−jω0τ + · · · .
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ut(0)ut(−τ) = (w(z, z̄, 0) + z + z̄)

×(w(z, z̄,−τ) + ze−jω0τ + z̄ejω0τ )

= z2e−jω0τ + zz̄(e−jω0τ + ejω0τ ) + z̄2ejω0τ

+ z2z̄(w11(0)e
−jω0τ +

w20(0)

2
ejω0τ

+w11(−τ) +
w20(−τ)

2
) + · · · .

u2t (−τ) = ((w(z, z̄,−τ) + ze−jω0τ + z̄ejω0τ )2

= z2e−2jω0τ + z̄2e2jω0τ + 2zz̄

+z2z̄(2e−jω0τw11(−τ) + ejω0τw20(−τ)) + · · · .

ut(0)u
2
t (−τ) = ((w(z, z̄,−τ) + ze−jω0τ + z̄ejω0τ )2

×(w(z, z̄, 0) + z + z̄)

= z2z̄(e−2jω0τ + 2) + · · · .

Recall that

g(z, z̄) = q̄∗(0).F0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

After collecting the coefficients of z2, zz̄, z̄2 and z2z̄, we are in a position to cal-

culate the coefficients of g20, g11, g02 and g21, which we do as

g20 = D̄(2ξxx + 2ξxye
−jω0τ + 2ξyye

−2jω0τ )

g11 = D̄(2ξxx + 2ξxy cosω0τ + 2ξyy)

g02 = D̄(2ξxx + 2ξxye
jω0τ + 2ξyye

2jω0τ )

g21 = D̄[2ξxx{2w11(0) + w20(0)}

+ ξxy{2w11(0)e
−jω0τ + w20(0)e

jω0τ

+2w11(−τ) + w20(−τ)}

+ ξyy{4w11(−τ)e−jω0τ + 2w20(−τ)ejω0τ}

+6ξxxx + ξxyy{2e−2jω0τ + 4}

+ ξxxy{2ejω0τ + 4e−jω0τ}+ 6ξyyye
−jω0τ ].
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Note that from our earlier analysis (6.18), many of these terms vanish because

of the coefficients.

Observe that in the expression for g21, we have w11(0), w11(−τ), w11(0) and

w11(−τ) which we still need to evaluate. Now for θ ∈ [−τ, 0),

H(z, z̄, θ) = −2ℜq̄∗(0).F0q(θ)

= −2ℜg(z, z̄)q(θ)

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= −
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)

q(θ)

−
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)

q̄(θ)

which, compared with (6.16), yields

H20(θ) = −g20q(θ)− ḡ02q̄(θ) (6.17)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (6.18)

We already noted that

(2jω0 − A)w20(θ) = H20(θ) (6.19)

−Aw11(θ) = H11(θ) (6.20)

−(2jω0 + A)w02(θ) = H02(θ). (6.21)

From (6.14), (6.19) and (6.20), we get the following equations:

w′

20(θ) = 2jω0w20(θ) + g20q(θ) + ḡ02q̄(θ)

w′

11(θ) = g11q(θ) + ḡ11q̄(θ).

Solving the above differential equations gives us

w20(θ) = − g20
jω0

ejω0θ − ḡ02
3jω0

e−jω0θ + Ee2jω0θ (6.22)

w11(θ) =
g11
jω0

ejω0θ − ḡ11
jω0

e−jω0θ + F , (6.23)
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for some E, F , yet to be determined. Now for H(z, z̄, 0) = −2ℜq̄∗.F0q(0) + F0,

H20(0) = −g20q(0)− ḡ02q̄(0)

+ κ(2ξxx + 2ξxye
−jω0τ + 2ξyye

−2jω0τ )

H11(0) = −g11q(0)− ḡ11q̄(0)

+ κ(2ξxx + 2ξxy cosω0τ + 2ξyy).

From (6.14), (6.19) and (6.20), we get

κξxw20(0) + κξyw20(−τ)− 2jω0w20(0) = g20q(0) + ḡ02q̄(0) (6.24)

+κ(2ξxx + 2ξxye
−jω0τ + 2ξyye

−2jω0τ )

κξxw11(0) + κξyw11(−τ) = g11q(0) + ḡ11q̄(0) (6.25)

+κ(2ξxx + 2ξxy cosω0τ + 2ξyy).

We have the solution for w20(θ) and w11(θ) from (6.22) and (6.23) respectively.

Hence, we evaluate w11(0), w11(−τ), w11(0) and w11(−τ), substitute into (6.24)

and (6.25) respectively, and calculate E, F as

E =
φ1

κξx + κξye−2jω0τ − 2jω0

F =
φ2

κξx + κξy
, (6.26)

where

φ1 = (κξx − 2jω0)

(

g20
jω0

+
ḡ02
3jω0

)

+ κξy

(

g20
jω0

e−jω0τ +
ḡ02
3jω0

ejω0τ

)

+RHS of (6.24)

φ2 = −ξx
(

g11
jω0

− ḡ11
jω0

)

− ξy

(

g11
jω0

e−jω0τ − ḡ11
jω0

ejω0τ

)

+RHS of (6.25).
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All the quantities required for the computation associated with the stabil-

ity analysis of the Hopf bifurcation have been completed. The analysis can be

performed using (5):

c1(0) =
j

2ω0

(

g20g11 − 2|g11|2 −
1

3
|g02|2

)

+
g21
2

µ2 =
−ℜc1(0)
ρ′(0)

P =
2π

ω0
(1 + T2ǫ

2 +O(ǫ4))

T2 = −
(ℑc1(0) + µ2ω

′(0)

ω0

)

β2 = 2ℜc1(0)

ǫ =

√

µ

µ2
,

where c1(0) is called the Lyapunov coefficient. The conditions that help us ver-

ify the stability of the Hopf bifurcation are as follows:

1. The sign of µ2 determines the type of bifurcation. If µ2 > 0 then it is a
supercritical Hopf; µ2 < 0 means it is subcritical.

2. The sign of β2, the Floquet exponent, determines the stability of the bi-
furcating periodic solutions. The periodic solutions are asymptotically
orbitally stable if β2 < 0 and unstable if β2 > 0. If ρ′(0) > 0 then super-
criticality of the bifurcating solution also establishes asymptotic orbital
stability.

3. For small |µ|, the period of the bifurcating solutions given by (6.27) re-
duces to (2π/ω0) as |µ| → 0.

4. The bifurcating periodic solutions have the asymptotic form

u(t, µ(ǫ)) = 2ǫℜ[ejω0t] + ǫ2ℜ[Ee2jω0t + F ] +O(ǫ3),

for 0 ≤ t ≤ P (ǫ). Thus we can determine the stability and periodicity of
the bifurcating solutions with the above results as each system parameter
transitions into instability.

Nature of Hopf bifurcation and stability of limit cycles

Using the numerical model (2.2) of pupillary reflex, we generate values of the

parameters α, γ, τ to satisfy the Hopf condition (3.5) for a particular pupil area

A∗:

ατ

√

(

γ

αβA∗

)2

− 1 = cos−1

(

αβA∗

γ

)

.
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The critical values of parameters used are:

αc = 2.3/ sec, τc = 0.1358 sec, γc = −10/ sec

for A∗ = 16mm2 and β = g′(A∗) = 0.048mm−2, which remain constant. Each

of these parameters are now perturbed from their critical values Kc to Kc + µ,

where µ is the bifurcation parameter. Limit cycles are generated as parameters

transition into values that drive the system to instability. Bifurcation diagrams

plot the steady state maxima and minima of these limit cycles as a function of

the respective bifurcation parameters.

Pupillary constant α: Clearly, the bifurcation parameter is negative, since the sys-

tem is driven to instability as α decreases from its critical value. We find that for

any choice of µ ∈ (−0.1αc, 0.1αc), µ2 < 0. The resulting Hopf is, thus, subcriti-

cal. Also, the corresponding Floquet exponent β2 is negative, so the bifurcating

periodic solution is asymptotically orbitally stable.
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Figure 6.2: Bifurcation diagram generated with variation in pupillary constant

α. The Hopf is found to be subcritical, and limit cycles stable. A∗ =

16mm2, γ = −10/ sec, τ = 0.1358 sec.
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Neural delay τ : Increasing the time delay drives the system into instability. We

find that for any choice of µ ∈ (−0.1τc, 0.1τc), µ2 > 0. The resulting Hopf is,

thus, supercritical. The Floquet exponent β2 is negative, so the bifurcating peri-

odic solution is asymptotically orbitally stable.

0.125 0.130 0.135 0.140 0.145 0.150

10
15

20
25

30

Neural delay, τ (sec)

A
re

a
o

f
p

u
p

il
(m

m
2
)

0.125 0.130 0.135 0.140 0.145 0.150

−
0.

15
−

0.
10

−
0.

05
0.

00
Neural delay, τ (sec)

V
al

u
es

o
f
µ
2

an
d
β
2

µ2 > 0

β2 < 0

Figure 6.3: Bifurcation diagram generated with variation in neural delay τ . The

Hopf is found to be supercritical, and limit cycles stable. A∗ =

16mm2, α = 2.3/ sec, γ = −10/ sec.

Neural constant γ: Increasing the magnitude of γ drives the system into instabil-

ity. We find that for any choice of µ ∈ (−0.1γc, 0.1γc), µ2 < 0, so the resulting

Hopf is subcritical. The Floquet exponent β2 is negative, so the bifurcating peri-

odic solution is asymptotically orbitally stable.
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Figure 6.4: Bifurcation diagram generated with variation in neural constant γ.

The Hopf is found to be subcritical, and limit cycles stable. A∗ =

16mm2, α = 2.3/ sec, τ = 0.1358 sec.

The table below summarises the results of our bifurcation analysis.

Parameter Nature of Hopf bifurcation Stability of

bifurcating

solution

Pupillary constant, α Subcritical Asymptotically

Orbitally Stable

Neural delay, τ Supercritical Asymptotically

Orbitally Stable

Neural constant, γ Subcritical Asymptotically

Orbitally Stable
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Figure 6.5: Limit cycles generated when pupillary constant α exceeds its critical

value, driving the system to instability.

Design considerations

A subcritical Hopf bifurcation is undesirable in any dynamical system. We

find that variations in the pupillary constant and neural constant may drive the

system to instability through a subcritical Hopf. Thus, the pupillary response

is difficult to regulate once a loss of local stability occurs.

But the takeaway from nature is that parameter values can be chosen well

within the stable region, while still ensuring a desired level of performance in

terms of rate of convergence and robustness.
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CHAPTER 7

Conclusions

Pupillary light reflex finds extensive study in the literature as a physiological

system. However, analysis from the perspective of design remains largely un-

explored. This would take into account key performance metrics like stability,

rate of convergence and robustness. The basis of our work is the non-linear,

time delayed model of pupillary reflex proposed in (6). Our results offer guide-

lines to choose system parameters so as to maintain local stability and achieve

a desired level of performance.

We linearised the pupillary reflex model and proposed a transfer function

to model outputs to small perturbations in intensity of light. The neural delay

was found to be an intrinsic parameter, and not part of the feedback. Some lo-

cal stability properties of the model were analysed. This included a sufficient

condition that assures stability regardless of the value of delay. We plotted

stability charts that revealed trade-offs between the neural delay and other pa-

rameter values so as to keep the system stable. Our investigation into the rate of

convergence produced a necessary and sufficient condition to keep the pupil-

lary response overdamped. In fact, parameter values can be tuned to achieve

a desired level of damping. The robustness of the model was measured for

uncertainties in parameter values, offering insight to choose parameters appro-

priately. We proved that variations in all parameter values can induce a loss of

local stability via Hopf bifurcations. Large neural constants were found to give

rise to limit cycles through a subcritical Hopf, which is undesirable, in which

case the pupillary response is difficult to control once a loss of stability occurs.

Avenues for further research

Notions of reachability and observability for the pupillary reflex model are

yet to be characterised. All the biological aspects of the model have not been

taken into consideration. For instance, the dynamic response of the retinal and



neural components of the pupillar reflex have been modelled just by a single

delay term. These can be coupled through another set of differential equations,

and a similar analysis can be repeated to give more accurate results.
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