
Hardware Implementation of OFDM Baseband

Transmitter

June 26, 2013

A THESIS

to be submitted by

Aluka Abhinav Ram

for the award of the degree

of

BACHELOR OF TECHNOLOGY

under the guidance of

Prof Nitin Chandrachoodan

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

CHENNAI-600036

1

CERTIFICATE

This is to certify that the thesis titled �Hardware Implementation of
OFDM Base-band Transmitter�, submitted by Mr. Aluka Abhinav Ram,
to the Department of Electrical Engineering, Indian Institute of Technology
Madras, Chennai for the award of the degree of Bachelor of Technology, is
a bona�de record of research work done by him under my supervision. The
contents of this thesis, in full or parts, have not been submitted to any other
institute or university for the award of any degree or diploma.

Dr. Nitin Chandrachoodan
Project Guide
Assistant Professor
Dept. of Electrical Engineering
IIT Madras, Chennai-600036
Place: Chennai
Date: 8th May 2013

ACKNOWLEDGMENT

I would like to express my deepest gratitude to Dr. Nitin Chandrachoodan
for giving me this opportunity to work under his able guidance. His insights
into various aspects of the project have been valuable and the constant moti-
vation at all points have encouraged me to take this forward. Working for this
project has improved my technical skills and broadened my understanding of
many aspects of Electrical Engineering.

I would also like to thank Prof. Andrew Thangaraj and Prof. Radha Krishna
Ganti for helping us understand the project from a communications perspective
and hence making the implementation easier. They constantly looked over the
project, clearing our doubts whenever we had any and suggested methods when
we were totally lost trying to implement the various blocks. The tenacity and
patience Ganti Sir had shown us when he actually sat down and written code
to help us check our results will always be inspirational. I will always remember
the fun we had during our meetings.

I would also like to thank my friends who have always been there when i
needed them, the Electrical Engineering department for its infrastructure and
opportunity to interact with some of the best minds across India both in terms
of Professors and students, IIT Madras for giving me the best four years of my
life and last but not the least, my family for making me who I am today.

Aluka Abhinav Ram

i

Abstract

This project is the hardware implementation of Orthogonal Frequency
Division Multiplexing (OFDM), a technique with immense scope of usage
that is already present widely in a variety of applications. It is being
implementd on an FPGA (Field Programmable Gate Array) and hence
can be modi�ed at will based on the application.

ii

Contents

1 Introduction 1
1.1 Orthogonal Frequency Division Multiplexing (OFDM) 1

1.1.1 Advantages: . 1
1.1.2 Disadvantages: . 2

1.2 Orthogonality . 2
1.3 Implementation using the FFT algorithm 3

1.3.1 Guard interval for elimination of inter-symbol interference: 3
1.4 Simpli�ed equalization . 4
1.5 Channel coding and interleaving 5
1.6 OFDM system model . 6

1.6.1 Transmitter: . 7
1.6.2 Receiver: . 8

2 OFDM for current application 9
2.1 Design Parameters . 9
2.2 Symbol and Frame design . 9

2.2.1 Symbol design . 9
2.2.2 Frame design . 10

3 Hardware Implementation 11
3.1 Implementation Parameters . 11
3.2 Transmitter Blocks . 11

3.2.1 QPSK mapper . 13
3.2.2 Pilots-Nulls adder . 13
3.2.3 Preamble adder . 15
3.2.4 IFFT module . 16
3.2.5 Xilinx FFT core 7.1 . 16

3.3 Testing of Implementation outputs 17
3.3.1 Comparision of FFT core with MATLAB 17
3.3.2 Verilog Test Benches . 18

3.4 Integration and timing . 19
3.4.1 Working of the current implementation 19
3.4.2 Timing . 21

iii

List of Tables

1 Design parameters set for current Implementation 9
2 Implementation parameters . 11
3 QPSK mapping values . 13
4 IFFT parameters . 17

iv

List of Figures

1 idealized OFDM transmitter . 7
2 idealized OFDM Receiver . 8
3 Input to IFFT . 9
4 Output of IFFT and cyclic pre�x addition 10
5 One OFDM frame . 10
6 Transmitter showing various blocks 12
7 QPSK mapper . 13
8 Pilot-Null adder . 14
9 Preamble adder . 15
10 IFFT module . 16
11 radix 2 . 17
12 Di�erence of MATLAB and Verilog outputs for the same input

for a 512 point IFFT . 18
13 ISIM simulator results showing transmission of the �rst and sec-

ond frame of data . 19
14 Timing at the beginning of before transmitting the �rst frame . . 22
15 Timing for transmission of any frame 23

v

1 Introduction

1.1 Orthogonal Frequency Division Multiplexing (OFDM)

It is a method of encoding digital data on multiple carrier frequencies. OFDM
has developed into a popular scheme for wide-band digital communication,
whether wireless or over copper wires, used in applications such as digital televi-
sion and audio broadcasting, DSL broadband internet access, wireless networks,
and 4G mobile communications.

OFDM is essentially identical to coded OFDM and discrete multi-tone mod-
ulation, and is a frequency-division multiplexing (FDM) scheme used as a digital
multi-carrier modulation method. The word "coded" comes from the use of for-
ward error correction. A large number of closely spaced orthogonal sub-carrier
signals are used to carry data on several parallel data streams or channels.
Each sub-carrier is modulated with a conventional modulation scheme (such as
quadrature amplitude modulation or phase-shift keying) at a low symbol rate,
maintaining total data rates similar to conventional single-carrier modulation
schemes in the same bandwidth.

The primary advantage of OFDM over single-carrier schemes is its ability to
cope with severe channel conditions (for example, attenuation of high frequencies
in a long copper wire, narrow-band interference and frequency-selective fading
due to multipath) without complex equalization �lters. Channel equalization
is simpli�ed because OFDM may be viewed as using many slowly modulated
narrow-band signals rather than one rapidly modulated wide-band signal. The
low symbol rate makes the use of a guard interval between symbols a�ordable,
making it possible to eliminate inter-symbol interference and utilize echoes and
time-spreading to achieve a diversity gain, i.e. a signal-to-noise ratio improve-
ment. This mechanism also facilitates the design of single frequency networks,
where several adjacent transmitters send the same signal simultaneously at the
same frequency, as the signals from multiple distant transmitters may be com-
bined constructively, rather than interfering as would typically occur in a tra-
ditional single-carrier system.

1.1.1 Advantages:

• High spectral e�ciency as compared to other double sideband modulation
schemes, spread spectrum, etc.

• Can easily adapt to severe channel conditions without complex time-
domain equalization.

• Robust against narrow-band co-channel interference.

• Robust against inter-symbol interference and fading caused by multipath
propagation.

1

• E�cient implementation using Fast Fourier Transform (FFT).

• Low sensitivity to time synchronization errors.

• Tuned sub-channel receiver �lters are not required (unlike conventional
FDM).

• Facilitates single frequency networks; i.e., transmitter macro-diversity.

1.1.2 Disadvantages:

• Sensitive to Doppler shift.

• Sensitive to frequency synchronization problems.

• High peak-to-average-power ratio (PAPR), requiring linear transmitter
circuitry, which su�ers from poor power e�ciency.

• Loss of e�ciency caused by cyclic pre�x/guard interval.

1.2 Orthogonality

Conceptually, OFDM is a specialized FDM, the additional constraint being: all
the carrier signals are orthogonal to each other.

In OFDM, the sub-carrier frequencies are chosen so that the sub-carriers are
orthogonal to each other, meaning that cross-talk between the sub-channels is
eliminated and inter-carrier guard bands are not required. This greatly sim-
pli�es the design of both the transmitter and the receiver; unlike conventional
FDM, a separate �lter for each sub-channel is not required.

The orthogonality requires that the sub-carrier spacing is Hertz, where TU
seconds is the useful symbol duration (the receiver side window size), and k is a
positive integer, typically equal to 1. Therefore, with N sub-carriers, the total
pass-band bandwidth will be B ≈ N ·∆f .

The orthogonality also allows high spectral e�ciency, with a total symbol
rate near the Nyquist rate for the equivalent base-band signal (i.e. near half the
Nyquist rate for the double-side band physical pass-band signal). Almost the
whole available frequency band can be utilized. OFDM generally has a nearly
white spectrum, giving it benign electromagnetic interference properties with
respect to other co-channel users.

A simple example: A useful symbol duration TU = 1 ms would require a
sub-carrier spacing of (or an integer multiple of that) for orthogonality. N =
1,000 sub-carriers would result in a total pass-band bandwidth of N · ∆f= 1
MHz. For this symbol time, the required bandwidth in theory according to
Nyquist is N/2TU = 0.5 MHz (i.e., half of the achieved bandwidth required
by our scheme). If a guard interval is applied, Nyquist bandwidth requirement

2

would be even lower. The FFT would result in N = 1,000 samples per sym-
bol. If no guard interval was applied, this would result in a base band complex
valued signal with a sample rate of 1 MHz, which would require a base-band
bandwidth of 0.5 MHz according to Nyquist. However, the pass-band RF sig-
nal is produced by multiplying the base-band signal with a carrier waveform
(i.e., double-sideband quadrature amplitude-modulation) resulting in a pass-
band bandwidth of 1 MHz. A single-side band or vestigial sideban modulation
scheme would achieve almost half that bandwidth for the same symbol rate
(i.e., twice as high spectral e�ciency for the same symbol alphabet length). It
is however more sensitive to multipath interference.

OFDM requires very accurate frequency synchronization between the re-
ceiver and the transmitter; with frequency deviation the sub-carriers will no
longer be orthogonal, causing inter-carrier interference (i.e., cross-talk between
the sub-carriers). Frequency o�sets are typically caused by mismatched trans-
mitter and receiver oscillators, or by Doppler shift due to movement. While
Doppler shift alone may be compensated for by the receiver, the situation is
worsened when combined with multipath, as re�ections will appear at various
frequency o�sets, which is much harder to correct. This e�ect typically worsens
as speed increases, and is an important factor limiting the use of OFDM in
high-speed vehicles. Several techniques for ICI suppression are suggested, but
they may increase the receiver complexity.

1.3 Implementation using the FFT algorithm

The orthogonality allows for e�cient modulator and demodulator implemen-
tation using the FFT algorithm on the receiver side, and inverse FFT on the
sender side. Although the principles and some of the bene�ts have been known
since the 1960s, OFDM is popular for wide-band communications today by way
of low-cost digital signal processing components that can e�ciently calculate
the FFT.

The time to compute the inverse-FFT or FFT transform has to take less
than the time for each symbol. Which for example for DVB-T (FFT 8k) means
the computation has to be done in 896 µs or less. The computational demand
approximately scales linearly with FFT size so a double size FFT needs double
the amount of time and vice versa. As a comparison an Intel Pentium III CPU
at 1.266 GHz is able to calculate a 8 192 point FFT in 576 µs using FFTW.
Intel Pentium M at 1.6 GHz does it in 387 µs. Intel Core Duo at 3.0 GHz does
it in 96.8 µs.

1.3.1 Guard interval for elimination of inter-symbol interference:

One key principle of OFDM is that since low symbol rate modulation schemes
(i.e., where the symbols are relatively long compared to the channel time char-
acteristics) su�er less from inter-symbol interference caused by multipath prop-

3

agation, it is advantageous to transmit a number of low-rate streams in parallel
instead of a single high-rate stream. Since the duration of each symbol is long,
it is feasible to insert a guard interval between the OFDM symbols, thus elimi-
nating the inter-symbol interference.

The guard interval also eliminates the need for a pulse-shaping �lter, and it
reduces the sensitivity to time synchronization problems.

A simple example: If one sends a million symbols per second using conven-
tional single-carrier modulation over a wireless channel, then the duration of
each symbol would be one microsecond or less. This imposes severe constraints
on synchronization and necessitates the removal of multipath interference. If the
same million symbols per second are spread among one thousand sub-channels,
the duration of each symbol can be longer by a factor of a thousand (i.e., one
millisecond) for orthogonality with approximately the same bandwidth. Assume
that a guard interval of 1/8 of the symbol length is inserted between each sym-
bol. Inter-symbol interference can be avoided if the multipath time-spreading
(the time between the reception of the �rst and the last echo) is shorter than
the guard interval (i.e., 125 microseconds). This corresponds to a maximum
di�erence of 37.5 kilometers between the lengths of the paths.

The cyclic pre�x, which is transmitted during the guard interval, consists
of the end of the OFDM symbol copied into the guard interval, and the guard
interval is transmitted followed by the OFDM symbol. The reason that the
guard interval consists of a copy of the end of the OFDM symbol is so that
the receiver will integrate over an integer number of sinusoid cycles for each of
the multipaths when it performs OFDM demodulation with the FFT. In some
standards such as Ultrawideband, in the interest of transmitted power, cyclic
pre�x is skipped and nothing is sent during the guard interval. The receiver
will then have to mimic the cyclic pre�x functionality by copying the end part
of the OFDM symbol and adding it to the beginning portion.

1.4 Simpli�ed equalization

The e�ects of frequency-selective channel conditions, for example fading caused
by multipath propagation, can be considered as constant (�at) over an OFDM
sub-channel if the sub-channel is su�ciently narrow-banded (i.e., if the number
of sub-channels is su�ciently large). This makes frequency domain equalization
possible at the receiver, which is far simpler than the time-domain equaliza-
tion used in conventional single-carrier modulation. In OFDM, the equalizer
only has to multiply each detected sub-carrier (each Fourier coe�cient) in each
OFDM symbol by a constant complex number, or a rarely changed value.

Our example: The OFDM equalization in the above numerical example
would require one complex valued multiplication per sub-carrier and symbol
(i.e., complex multiplications per OFDM symbol; i.e., one million multiplica-
tions per second, at the receiver). The FFT algorithm requires [this is imprecise:

4

over half of these complex multiplications are trivial, i.e. = to 1 and are not
implemented in software or HW]. complex-valued multiplications per OFDM
symbol (i.e., 10 million multiplications per second), at both the receiver and
transmitter side. This should be compared with the corresponding one mil-
lion symbols/second single-carrier modulation case mentioned in the example,
where the equalization of 125 microseconds time-spreading using a FIR �lter
would require, in a naive implementation, 125 multiplications per symbol (i.e.,
125 million multiplications per second). FFT techniques can be used to reduce
the number of multiplications for an FIR �lter based time-domain equalizer to
a number comparable with OFDM, at the cost of delay between reception and
decoding which also becomes comparable with OFDM.

If di�erential modulation such as DPSK or DQPSK is applied to each sub-
carrier, equalization can be completely omitted, since these non-coherent schemes
are insensitive to slowly changing amplitude and phase distortion.

In a sense, improvements in FIR equalization using FFTs or partial FFTs
leads mathematically closer to OFDM, but the OFDM technique is easier to un-
derstand and implement, and the sub-channels can be independently adapted
in other ways than varying equalization coe�cients, such as switching between
di�erent QAM constellation patterns and error-correction schemes to match in-
dividual sub-channel noise and interference characteristics.

Some of the sub-carriers in some of the OFDM symbols may carry pilot
signals for measurement of the channel conditions (i.e., the equalizer gain and
phase shift for each sub-carrier). Pilot signals and training symbols (preambles)
may also be used for time synchronization (to avoid inter-symbol interference,
ISI) and frequency synchronization (to avoid inter-carrier interference, caused
by Doppler shift).

OFDM was initially used for wired and stationary wireless communications.
However, with an increasing number of applications operating in highly mobile
environments, the e�ect of dispersive fading caused by a combination of multi-
path propagation and Doppler shift is more signi�cant. Over the last decade,
research has been done on how to equalize OFDM transmission over doubly
selective channels.

1.5 Channel coding and interleaving

OFDM is invariably used in conjunction with channel coding (forward error
correction), and almost always uses frequency and/or time interleaving.

Frequency (sub-carrier) interleaving increases resistance to frequency-selective
channel conditions such as fading. For example, when a part of the channel
bandwidth fades, frequency interleaving ensures that the bit errors that would
result from those sub-carriers in the faded part of the bandwidth are spread out

5

in the bit-stream rather than being concentrated. Similarly, time interleaving
ensures that bits that are originally close together in the bit-stream are trans-
mitted far apart in time, thus mitigating against severe fading as would happen
when traveling at high speed.

However, time interleaving is of little bene�t in slowly fading channels, such
as for stationary reception, and frequency interleaving o�ers little to no bene�t
for narrow-band channels that su�er from �at-fading (where the whole channel
bandwidth fades at the same time).

The reason why interleaving is used on OFDM is to attempt to spread the
errors out in the bit-stream that is presented to the error correction decoder,
because when such decoders are presented with a high concentration of errors
the decoder is unable to correct all the bit errors, and a burst of uncorrected
errors occurs. A similar design of audio data encoding makes compact disc (CD)
playback robust.

A classical type of error correction coding used with OFDM-based systems is
convolutional coding, often concatenated with Reed-Solomon coding. Usually,
additional interleaving (on top of the time and frequency interleaving mentioned
above) in between the two layers of coding is implemented. The choice for Reed-
Solomon coding as the outer error correction code is based on the observation
that the Viterbi decoder used for inner convolutional decoding produces short
errors bursts when there is a high concentration of errors, and Reed-Solomon
codes are inherently well-suited to correcting bursts of errors.

Newer systems, however, usually now adopt near-optimal types of error cor-
rection codes that use the turbo decoding principle, where the decoder iterates
towards the desired solution. Examples of such error correction coding types in-
clude turbo codes and LDPC codes, which perform close to the Shannon limit for
the Additive White Gaussian Noise (AWGN) channel. Some systems that have
implemented these codes have concatenated them with either Reed-Solomon
(for example on the MediaFLO system) or BCH codes (on the DVB-S2 system)
to improve upon an error �oor inherent to these codes at high signal-to-noise
ratios.

1.6 OFDM system model

This section describes a simple idealized OFDM system model suitable for a
time-invariant AWGN channel.

6

1.6.1 Transmitter:

Figure 1: idealized OFDM transmitter

An OFDM carrier signal is the sum of a number of orthogonal sub-carriers, with
base-band data on each sub-carrier being independently modulated commonly
using some type of quadrature amplitude modulation (QAM) or phase-shift
keying (PSK). This composite base-band signal is typically used to modulate a
main RF carrier.

By inverse multiplexing a serial stream of binary bits, these are �rst demul-
tiplexed into parallel streams, and each one mapped to a (possibly complex)
symbol stream using some modulation constellation (QAM, PSK, etc.). Note
that the constellations may be di�erent, so some streams may carry a higher
bit-rate than others.

An inverse FFT is computed on each set of symbols, giving a set of complex
time-domain samples. These samples are then quadrature-mixed to pass-band
in the standard way. The real and imaginary components are �rst converted to
the analogue domain using digital-to-analogue converters (DACs); the analogue
signals are then used to modulate cosine and sine waves at the carrier frequency,
, respectively. These signals are then summed to give the transmission signal, .

7

1.6.2 Receiver:

Figure 2: idealized OFDM Receiver

The receiver picks up the signal , which is then quadrature-mixed down to base-
band using cosine and sine waves at the carrier frequency. This also creates
signals centered on , so low-pass �lters are used to reject these. The base-
band signals are then sampled and digitized using analog-to-digital converters
(ADCs), and a forward FFT is used to convert back to the frequency domain.

This returns parallel streams, each of which is converted to a binary stream
using an appropriate symbol detector. These streams are then re-combined into
a serial stream, , which is an estimate of the original binary stream at the trans-
mitter.

8

2 OFDM for current application

2.1 Design Parameters

The design parameters for the current implementation of an OFDM Baseband
Transmitter are given as follows.

Parameter Value (number of samples/bits)

Transmitter input per frame 4608 (bits)
LDPC input per computation 1536 (bits)
LDPC output per computation 2304 (bits)
Constellation Mapping Scheme QPSK
Fast Fourier Transform size 512 (samples)

Cyclic Pre�x size 32 (samples)
one OFDM output symbol length 544 (samples)

Block size (number of OFDM symbols) 9
Preamble size 64 (samples)

Transmitted output 4960 (samples)

Table 1: Design parameters set for current Implementation

2.2 Symbol and Frame design

2.2.1 Symbol design

The input to the Inverse Fast Fourier Transform (IFFT) which is of length 512
real and imaginary samples is designed with Pilots and nulls placed in strategic
locations. The nulls are located at the start and end of the 512 point input.
They are also placed for a large part at the center of the 512 points to ensure
that there is no DC component in the transmitted signal. The pilots are located
at regular intervals in between the data in order to estimate the channel at the
receiver end.

Figure 3: Input to IFFT

At the output a 32 sample Cyclic Pre�x which is a copy of the last 32 points
in the 512 point IFFT output is added. This acts as a guard interval to eliminate

9

inter symbol interference. It is also used for the second stage frequency error
estimation and correction through a cross correlation function. Hence each
OFDM symbol consists a total of 544 samples.

Figure 4: Output of IFFT and cyclic pre�x addition

2.2.2 Frame design

Each OFDM frame consists of 9 OFDM symbols of 544 points each. A Preamble
of size 64 samples are added at the beginning of this block in order to detect the
arrival of the OFDM frame. This frame is detected at the starting point of the
receiver using the Schmidl and Cox algorithm. The preamble is also used for
a �rst stage frequency error estimation and correction operation. Hence each
frame consists of 4960 samples of data, where each sample is represented by a
complex number.

Figure 5: One OFDM frame

10

3 Hardware Implementation

3.1 Implementation Parameters

The current design for transmitter is implemented in Verilog for FPGA. Xilinx
ISE Design Suite (version 14.3) was used for this and ISIM was used to test the
outputs of the hardware implementation. The relevant parameters are given
below:

Parameter Value

Language used Verilog
Target device XC5VTX150T (Virtex � 5 FPGA)

Data input clock frequency 20 MHz (T = 50ns)
Internal and computation clock frequency 25 MHz (T = 40ns)

Data output rate 21.527 MHz
Data input stream of bits

output bit width 16 bits (for each real and imaginary)
Data output complex sample

Table 2: Implementation parameters

3.2 Transmitter Blocks

The blocks in the transmitter have been designed keeping in mind the changing
parameter values and requirement for a run time con�gurable FFT point size.
Each block is de�ned to perform based on certain control inputs received from
outside and it gives out certain control signals for the working of other blocks.

11

Figure 6: Transmitter showing various blocks

These blocks are then integrated in order to make a complete state ma-
chine that reverts back to its original state at the end of each operation. The
blocks interact with each other using these control inputs and outputs and this
'hand-shaking' design ensures that the transmitter works robustly under all cir-
cumstances and changed parameters.

The 'master_reset' and 'clk' - clock signals are common to all blocks. The
clock signal is self explanatory but the master reset is used to initialize the
memories to their respective values along all blocks along with its use to reset
the entire transmitter to its initial state.

The pilot-nulls values and their locations, the preamble values, and the IFFT
parameters and other implementation parameters like data widths, FFT point
size, Cyclic Pre�x size, Preamble size etc., are all stored in separate individual
�les and are included in the main code using the 'include(��lename.v�) function.
This way, any change that is made to these parameter �les will be re�ect di-
rectly in the verilog code. These include �les are created from the �xed point
C code to ensure consistency between the �xed point simulations and actual
implementation.

12

3.2.1 QPSK mapper

The QPSK mapper is straight forward. It takes in input as two bits at a time
and gives out a corresponding complex mapped sample one clock cycle later.

Input Output value

00 5792+i*5792
01 5792-i*5793
11 -5793-i*5793
10 -5793+i*5792

Table 3: QPSK mapping values

Figure 7: QPSK mapper

3.2.2 Pilots-Nulls adder

The pilot-null adder, as its name suggests organizes the data samples, pilots and
nulls in the respective locations to the 512 point input of the IFFT block. It is
a memory block of 512 complex samples of width 16 bits for each of real and
imaginary components. The values for pilots and nulls are hard-coded into this
memory block on giving an data high to the master reset input. This is done
at the very beginning after starting the device.

13

Figure 8: Pilot-Null adder

The IFFT module sends a 'ready for data' high signal as soon as it is ready
to take inputs. When this happens two counters start within the pilot-null adder
and a 'write ready' high signal is sent to the LDPC bu�er saying that it is ready
to accept data. One of them is a 'read counter' that counts serially from 0 to 511.

A 'write counter' starts after a suitable delay writes the data only into the
data locations. The initial delay is to account for the latency involved in get-
ting data from the LDPC bu�er through the QPSK mapper. After starting, this
counter increments serially when the data locations are continuous but jumps
by a suitable increment when it encounters a pilot or null location. By this
we ensure that the incoming data is being written only in the data locations
without touching the pilot and null locations in between.

The ready for data signal from the IFFT module is high for 512 clock cycles
and low for 32 clock cycles. The low signal is to account for the Cyclic Pre�x
that is added at the output of the 512 point IFFT. The write ready signal that
goes to the LDPC bu�er is high for 384 cycles and low for the remaining 160
cycles for a single OFDM symbol.

14

3.2.3 Preamble adder

The preamble adder sits at the output of the IFFT module. It consists of two
memories, each of size equal to the preamble length and of bit widths equal to
the complex output of the IFFT module. One of these memories is a right shift
memory which as its name suggests, does a right shift operation at the positive
edge of every clock cycle. The other is a �xed memory which stores the values
of the preamble.

Figure 9: Preamble adder

At the very beginning, the master reset will load the preamble right shift
memory with the respective values of the preamble.

The preamble adder block waits for the IFFT module to signal the arrival
of a transformed output through a 'done' high signal. The right shift operation
starts only after this and will continue until one frame has been transmitted.
A counter within the block will count the number of symbols that have passed
out for the current frame from the start of the right shift operation. After the
required number of symbols have passed out (represented by the parameter -
block size), the right shift operation stops and the preamble is loaded to the
right shift memory in order to transmit the next frame. The last register in
the right shift memory is connected to the output and the frame is transmitted
through here.

The Preamble adder sends an output high 'transmit_data' signal when it
starts the right shift operation. This indicates that it is transmitting the frame
at the end of the right shift memory. At the end of the frame this signal goes
low and toggles a 'frame done' signal to high which is toggled back to low after
one clock cycle. This indicates the successful transmission of one frame of data.

15

3.2.4 IFFT module

This is at the heart of the transmitter block and it houses the Xilinx FFT core
to perform the Inverse Fast Fourier Transform. This block is constructed in
order to �x the scaling schedule and cyclic pre�x length. These parameters can
be changed in the main include parameters �le that is included at the top of
this module.

Figure 10: IFFT module

This module waits for a input 'start' high signal from the LDPC bu�er. It
sends a 'i�t_rfd - ready for data' high to the pilot null adder and starts taking
in data. This signal is high for 512 cycles and low for 32 cycles to account for
the inclusion of the Cyclic Pre�x at the output. As soon as the computation is
done it sends a 'done' high signal for one clock cycle.

3.2.5 Xilinx FFT core 7.1

The Xilinx FFT IP core version 7.1 was chosen among the lot of IP cores avail-
able online on OpenCores.org. It was chosen as it provides a variety of options
for customization with respect to the architecture of implementation and perfor-
mance versus resource optimization. It also adds the Cyclic Pre�x automatically
and has the capability to con�gure the FFT point size during run time.

The FFT and IFFT operation are implemented using the Radix - 2 or Radix

16

- 4 butter�y structure in stages. The number of these stages is equal tolog2(N),
where N is the FFT point size. At each stage the radix structure involves a
multiplication with a phase factor, truncation operation and an addition. A
certain scaling factor is given at the end of each radix operation and this is set
using the scaling schedule input.

Figure 11: radix 2

Parameter Choice

Architecture option Pipelined I/O Streaming
Data width Fixed point: 16 bits wide

QPSK mapped values and pilot values 5792, -5793
Mode of scaling Scaled

Table 4: IFFT parameters

The architecture option is chosen to be Pipelined as it has a latency of only
one clock cycle after start is high. Other schemes have larger initial latencies.
The data width was �xed at 16 bits after running simulations on the �xed point
C code. The QPSK mapped values have been chosen to occupy 13 bits in order
to carry forward as much precision as possible at the end of the truncation op-
eration of each radix 2 stage. The scaling mode and scaling schedule were �xed
after checking with the �xed point C code as well.

The following parameters were �xed after extensive testing and comparing
values with the MATLAB output. The results of these tests will be discussed
in the next sub section.

3.3 Testing of Implementation outputs

3.3.1 Comparision of FFT core with MATLAB

The inputs and outputs of the Verilog implementation of the FFT block have
been loaded and tested against the �oating point outputs of MATLAB. We
observe that the di�erence between the MATLAB and Verilog outputs for the

17

same input data di�ers by a maximum of two bits in the LSB. The �xed point
C code veri�es that this di�erence is acceptable for the transmission.

Figure 12: Di�erence of MATLAB and Verilog outputs for the same input for
a 512 point IFFT

3.3.2 Verilog Test Benches

Verilog test benches were written for each block individually and for the inte-
grated module to verify functional behavior, contiguity of data and timing. A
result for the �nal transmitted data is shown below. The input for this has been
taken from a pseudo random number generator (PRNG). This is a 22 bit right
shift register that has gives the XOR of the last two bits as an input to the �rst
bit, forming a large number of states and hence an output bit sequence with a
very large period.

18

Figure 13: ISIM simulator results showing transmission of the �rst and second
frame of data

3.4 Integration and timing

After designing each block individually, they were integrated with each other
and other blocks such as the input bu�er, LDPC encoder and LDPC bu�er. The
behavior of the input bu�er, LDPC encoder and LDPC bu�er will be discussed
in detail in another report. This sub section will cover the description of the
PRNG, QPSK mapper, pilot null adder, IFFT module and preamble adder.

3.4.1 Working of the current implementation

This sub section explains the working of each block, the relationship each block
has with another and its behavior in response to inputs it gets from other blocks.
The exact clocks have been used in the simulation shown above as well.

• The PRNG starts transmitting valid bits as soon as the master reset op-
eration has been performed. This �lls an input Bu�er. Both the write
operation in this bu�er and the PRNG work at 20Mhz clock. It sends a
signal to the LDPC encoder as soon as it is �lled with 1536 bits of data.

• The imput bu�er sends the data to the output at 25Mhz when requested
by the LDPC encoder. Every block post this point will operate at 25Mhz.
The LDPC encoder takes about 44 clock cycles to take the data input and
�nish computation.

• It then takes 24 clock cycles to transfer the 2304 bits to the LDPC bu�er.
Three such operations will �ll up the LDPC bu�er completely with 6912

19

bits that are required for one single frame of data.

• The LDPC bu�er toggles an output �ag to 'high' once it is �lled with
one frame of data i.e. 6912 bits. This �ag remains high until the internal
counter has counted from 1 to 6912 and then goes to 'low' indicating that
all data for one frame has been sent to the next block. Having this block
sees to it that we dont transmit anything until we have the entire frame,
removing the requirement to toggle for valid data at the output.

• This output �ag is used to start the FFT core. Responding to this the
FFT core in the IFFT module sends a 'ready for data' high signal to the
pilot-null adder saying that it is accepting data through its inputs to �ll
the internal bu�er of 512 complex samples. This 'ready for data' signal
stays high for 512 cycles and goes low for 32 cycles.

• The pilot null adder senses the 'ready for data' high signal from the IFFT
module and sends a 'write ready' signal to the LDPC bu�er to start its
internal counter and start sending data to the QPSK mapper. This 'write
ready' signal stays high for 384 cycles and low for 160 cycles. The internal
read counter of the LDPC bu�er will increment only when this 'write
ready' signal is high. It will retain its previous value if it is low.

• This internal read counters is used as a means to know when the LDPC
bu�er is free to take the next 2304 bits from the LDPC encoder. As soon
as it passes the 2304 and 4608 mark, it raises a �ag and tells the LDPC
encoder that the �rst and second one thirds of the bu�er are free and can
be �lled with the next set of LDPC encoded bits.

• A latency of 3 clock cycles is observed from the time the 'write ready'
signal is sent till the time we get valid data at the input of the pilot null
adder block. To account for this, we start the writing operation after three
clock cycles. This ensures that we dont lose any bits in between.

• The IFFT module then does the computation and starts sending data to
the output. A done signal goes high for one clock cycle just as it is about
to transmit the data. This signal is sent to the preamble adder block.

• The preamble adder block detects the 'done' high signal and starts the
right shift operation, thereby sending the data out along with the preamble
at its start.

• The output �ag from the LDPC bu�er automatically goes to zero after all
6912 bits have been sent to the pilot null adder. hence this ensures that
the IFFT module doesnt take any stray bits at its input after transmitting
9 OFDM symbols.

• The preamble adder counts for 9 OFDM symbols through the 'done' signal
and then resets the preamble to make it ready for the next frame of data.

20

3.4.2 Timing

• The input bu�er takes about 76800ns i.e. 1536 clock cycles at 20Mhz
clock, T = 50ns to �ll with 1536 bits of data. This operation is repeated
through out without any gap.

• The LDPC encoder takes 1760ns i.e. 44 clock cycles at 25Mhz clock, T =
40ns to take input and compute parity matrix. This operation happens
only after 1536 bits of data �ll up the input bu�er.

• The LDPC bu�er takes 960ns i.e. 24 clock cycles at 25Mhz clock, T =
40ns to �ll one LDPC output i.e. 2304 bits. This operation happens only
after the LDPC encoder �nishes computing.

• The 'write ready' �ag from the pilot null block to the LDPC bu�er is high
for 15360ns and low for 6400ns i.e. 384 cycles and 160 cycles at 25Mhz
clock, T = 40ns.

• The 'ready for data' signal from the IFFT module to the pilot null adder
stays high for 20480ns and low for 1280ns i.e. 512 cycles and 32 cycles at
25Mhz clock, T = 40ns.

• After an 'output �ag' high is detected at the output of the LDPC bu�er
it takes 65280ns for the internal couter to read through the �rst 2304 bits
i.e. 1632 cycles at 25Mhz clock, T = 40ns.

• At the output the transmitter takes 198400ns to transmit 4960 complex
samples i.e. 4960 cycles at 25Mhz clock, T = 40ns.

These individual processes happen serially in some cases and in parallel in some
other. We notice that the �lling of input bu�er takes more time than most
other processes and hence it would be the rate determining step. We observe
that the transmission of one frame of data is done before the LDPC bu�er is
�lled with data for the next frame. The following diagrams clearly show the
timing of various operations in the transmitter.

21

Figure 14: Timing at the beginning of before transmitting the �rst frame

22

Figure 15: Timing for transmission of any frame

23

