
Finite Difference Time domain method on Cuda

A Project Report

submitted by

BHARATH M R

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

and

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2013

THESIS CERTIFICATE

This is to certify that the thesis titled Finite Difference Time domain method on

Cuda, submitted by Bharath M R, to the Indian Institute of Technology, Madras, for

the award of the dual degree of Bachelor of Technology and Master of Technology,

is a bona fide record of the research work done by him under our supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Prof. Harishankar Ramachandran
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 4th June 2013

ACKNOWLEDGEMENTS

I would like to thank my guide Prof. Harishankar Ramachandran for providing me

guidance throughout the project and also giving me a lot of freedom to explore lot of

ideas. I would like to thank Prof. Ananth Krishnan for all the insights into FDTD

provided through the course Computational Electromagnetics. I am very lucky to have

spent my last semester with my friends Bhargava, Sudharshan, Vignesh, Abishek, Sid-

dharth, Numaan, and Prasad. The discussions were a lot of fun. I would also like to

thank my wingmates for coming up with great ideas and making my insti life more en-

joyable. Lastly I would like to thank my parents for their support throughout my life.

They provided me with the best education possible and were ready to take a lot of risk

for providing me with better education.

i

ABSTRACT

KEYWORDS: Maxwell’s equations, Finite Difference Time Domain method,

Graphical Processing units, Cuda, hardware acceleration

Numerical Solutions to Maxwell’s equations are important in the case of photonics for

verifying results before fabrication of devices. The Finite Difference Time Domain

Method which models the Maxwell’s equation as difference equations provides an ac-

curate method for simulation of such problems. FDTD algorithms are very simple, but

are also computationally intensive. The simple nature of the algorithm makes it highly

parallelizable. Due to the parallel nature of the algorithm, an implementation of the

algorithm on an GPU gives a large speedup. Various methods to achieve this speed up

is explored during the project. A perfectly matched layer is also implemented. The

program has the ability to handle dispersive and gain materials. .The speedup obtained

is 15X on a capable GPU.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 1

2 Introduction to the GPU Architecture 3

2.1 Introduction to a GPU . 3

2.2 Cuda Execution Model . 3

2.2.1 Memory Model in Cuda 4

3 Introduction to the Finite Difference Time Domain method 7

3.1 Maxwell’s Equation . 7

3.2 Yee’s Algorithm . 8

3.3 Reduction to lower dimensions . 9

4 TM Mode implementation in Cuda 11

4.0.1 Memory Coalescing visited again 14

4.0.2 Hy update . 15

4.0.3 Ez update . 16

iii

4.0.4 Other Ideas . 17

4.1 Open GL Implementation . 17

4.2 Storing Simulation Results . 19

4.3 Sources . 19

4.3.1 Array of structures vs Structure of arrays 20

4.4 Failed Ideas . 21

4.4.1 Using shared memory . 21

4.4.2 Using Texture memory . 22

4.5 Performance Comparisions . 23

5 Absorbing boundary conditions 24

6 Dispersive, Non - Linear Material Simulation 27

6.1 Debye Media . 27

6.2 Lorentz Media . 29

6.3 Drude Media . 30

7 Further Ideas 32

7.1 Convolutional PML’s . 32

7.2 A Domain specific language for structure design 32

7.3 Python Interface . 32

A Using the program 34

LIST OF TABLES

4.1 Time taken by different block sizes. 12

4.2 Execution times for different implementations in seconds. The CPU
tests were run on a Intel Core 2 Duo running at 3.16Ghz. GT 520 has
48 cuda cores running at 1.62Ghz. The GTX 560 Ti has 384 Cuda cores
running at 1.66GHz . 23

v

LIST OF FIGURES

2.1 Execution model of a Cuda Program 4

2.2 Execution model of a Cuda Program 4

3.1 The arrangement of electric and magnetic field in space and time. The
electric field are represented by circles and magnetic field is represented
by triangles. 9

4.1 Access pattern which results in a single 128- byte transaction, indicated
by the red rectangle. Source: [1] 13

4.2 Access pattern which results in a two 128- byte transaction, indicated
by the red rectangle, because of bad access pattern. Source: [1] . . . 13

4.3 Memory bandwidth as a function of offset from a multiple of 128 bytes.
Source: [1] . 15

4.4 An access to structure[i].x results in strided access Source: [1] . . . 20

4.5 An access to structure[i].x results in coalesced access Source: [1] . . 20

4.6 Shared memory access of the block and its boundaries 22

4.7 Loads to shared memory with fdtd algorithm running for more than one
iteration . 22

vi

ABBREVIATIONS

CUDA Compute Unified Device Architecture

GPU Graphical Processing Unit.

FDTD Finite Difference Time Domain

PML Perfectly matched layer

vii

NOTATION

E Electric Field vector.
H Magnetic Field vector.
Ex, Ey, Ez Electric field components in different cartesian directions.
Hx, Hy, Hz Magnetic field components in different cartesian directions.
ε Electrical permittivity
µ Magnetic Permeability
σ Electric conductivity
σ∗ Magnetic conductivity

viii

CHAPTER 1

Introduction

FDTD(Finite Difference Time Domain) is a set of numerical methods for solving Maxwell’s

equations. FDTD methods are generally very simple and computationally intensive.

FDTD does not involve linear algebra, which makes it a great target for paralleliza-

tion. FDTD methods are powerful as they allows us to look at transient behaviours in

materials, and can model dispersion and non - linear materials very effectively.

1.1 Motivation

The integrated optoelectronics group of IIT Madras uses commercial softwares for sim-

ulation before fabrication. The simulations of some problems can take large amounts

of time to run. The motivation was to provide a open source alternative to the existing

commercial softwares, which is flexible and highly extensible.

There are very few open source alternatives, the best one being MEEP [2] which is

an implementation in C and uses OpenMP for execution in a network of nodes. There

is a open source implementation called BCALM [5], which can simulate most of what

MEEP does, on a GPU but suffers from a lot of divergence issues. The motivation was

to develop an alternative open source project which is as powerful as MEEP but runs

faster due to hardware acceleration.

1.2 Organization

In Chapter 2, the execution model of Cuda is explained. The memory hierarchy in

a GPU and the various advantages they have one over the other is explained in this

chapter.

Chapter 3 deals with the discretization of Maxwell’s equation and reducing the prob-

lem into two dimensions.

Chapter 4 deals with the description and implementation of the 2 dimensional FDTD

algorithm. It explaines various optimizations used, and explains why the optimizations

were used. It also explores various methods which did not provide a speed up.

Chapter 4 deals with the implementation of a perfectly matched absorbing layer for

handling boundary conditions.

Chapter 5 deals with materials which have their properties varying as a function

of the frequency of the travelling wave. It explores various ways to adapt the FDTD

algorithm so that it can simulate these materials.

Chapter 6 deals with further ideas that can be implemented to improve the project.

2

CHAPTER 2

Introduction to the GPU Architecture

2.1 Introduction to a GPU

Graphical processor units were initially special purpose parallel processors which were

used to render graphics, which is inherently a highly parallel task. As the transistor

budget for these GPU’s increased, new functional units like the floating point units were

added to these processors. The advantage of parallelism in these graphical processors

was recognized by scientific researchers and they used the built in API to run large sci-

entific simulations. Nvidia came up with a better execution model for these processors

which made it easier to run general purpose programs on these graphical units.

2.2 Cuda Execution Model

NVidia’s parallel programming model is known as Compute Unified Device Architec-

ture. The architecture exploits parallelism by providing a virtual pool of infinite threads,

which are then dynamically scheduled and run on the processors. The Cuda execution

model allows us to separate the program execution into a series of serial code (runs on

the cpu) and parallel code (runs on the gpu). The parallel code that is run on the gpu is

called a kernel.

A kernel is executed by a grid of thread blocks. A thread block is a group of threads

that share the same resources in one of the streaming processors. The threads in a block

can communicate with other threads using the shared memory. All the threads in a

block start at the same instruction address. If there is an divergence(a if statement) in

the threads in a block, all the threads both take the divergent and the normal path.

A grid is made up of multiple blocks. Each block execution is completely indepen-

dent of the other block. Hence the these blocks can be scheduled and executed inde-

Figure 2.1: Execution model of a Cuda Program

pendent of each other. This allows the Cuda architecture to scale on different graphical

processors. If the graphical processor has more number of streaming processors, then

the more blocks can be executed making the process faster.

Figure 2.2: Execution model of a Cuda Program

2.2.1 Memory Model in Cuda

It is important to understand the memory model of a GPU before running a particular

program. GPU’s have a collection of different memories, each optimized for a special

purpose. The memory model of Cuda consists of 5 types of memories.

1. Registers

4

2. Shared Memory

3. Global Memory

4. Constant Memory

5. Texture Memory

Registers

These are the CPU equivalent of register file. The registers are private to each thread.

If the number of registers used in a program is large, then the extra registers are stored

in the DRAM, slowing the process.

Shared Memory

Shared memory is used to communicate between threads. Shared memory also acts as

an scratch pad where you store temporary results. The shared memory can be accessed

by all the threads in a block. Shared memory is on chip memory and has the lowest

latency. The shared memory behaves like a user managed cache.

Constant Memory

Each device has 64KB of constant memory. The constant memory resides in the global

memory and it is cached. Constant memory reads can be broadcasted to all the threads

in a half warp. Hence it results in a single access for half a warp of threads.

Texture Memory

Texture memory is specially implemented for use in graphical applications. Texture

memory is read only. But the texture memory cache is optimized for 2D spatial local-

ity.(Generally caches are optimized for 1D spatial locality).

5

Global Memory

Global memory is the non-local memory of the device. Every thread can read and write

to the global memory.

6

CHAPTER 3

Introduction to the Finite Difference Time Domain

method

The finite difference time method use finite difference as approximations to both spatial

and temporal derivatives that appear in Maxwell’s equations. This chapter discusses the

discretization of the Maxwell’s equations using the finite difference method.

3.1 Maxwell’s Equation

Faraday’s Law:
dB

dt
= −∇× E− JM,source − σ∗H (3.1)

Ampere’s Law
dE

dt
= ∇×H− JE,source − σE (3.2)

Gauss’ Law:

∇.D = 0 (3.3)

∇.B = 0 (3.4)

In the above equations, the magnetic current density and magnetic conductivity are

not physically relevant, but are useful in implementing numerical techniques to avoid

reflection from boundaries.

When we discretize the above equations, we would want our algorithm to implicitly

handle the gauss’ laws. We split the curl equations along 3 orthogonal axes to realize

the following equations.

dHx

dt
=

1

µ

[
dEy
dz
− dEz

dy
− (JM,sourcex + σ∗Hx)

]
(3.5)

dHy

dt
=

1

µ

[
dEz
dz
− dEx

dy
−
(
JM,sourcey + σ∗Hy

)]
(3.6)

dHz

dt
=

1

µ

[
dEx
dz
− dEy

dy
− (JM,sourcez + σ∗Hz)

]
(3.7)

dEx
dt

=
1

µ

[
dHy

dz
− dHz

dy
− (JM,sourcex + σEx)

]
(3.8)

dEy
dt

=
1

µ

[
dHz

dz
− dHx

dy
−
(
JM,sourcey + σEy

)]
(3.9)

dEz
dt

=
1

µ

[
dHx

dz
− dHy

dy
− (JM,sourcez + σEz)

]
(3.10)

3.2 Yee’s Algorithm

The FDTD method employs finite differences as an approximation to the temporal and

spatial derivatives that appear in the Maxwell’s equation. It uses central differences as

the error in central difference is of the order ∆2, while both right and left differences

results in an error of the order ∆.

The FDTD method as proposed by Kane Yee in 1966 employs the second order cen-

tral differences and staggered field structure to implement the finite difference scheme.

In the spatial grid, the magnetic field is defined at every half step coordinate while the

elctric fields are defined at every full step coordinate. The algorithm is summarized as

follows:

1. Replace all the derivatives in Ampere’s and Faraday’s laws with finite differences.
Discretize space and time so that they are staggered in both space and time.

2. Solve the discretized equations to obtain the update equations.

8

3. Evaluate the magnetic fields using the staggered electric field obtained before.

4. Evaluate the electric fields using the staggered magnetic field obtained in Step 3.

It can be proved that the following arrangement satisfies the integral form of gauss

laws due to its inherent staggered structure. [4].

Figure 3.1: The arrangement of electric and magnetic field in space and time. The elec-
tric field are represented by circles and magnetic field is represented by
triangles.

3.3 Reduction to lower dimensions

The curl’s equation defined from 3.5 to 3.10 can be reduced into two dimensions by

assuming there is no change in field along a particular direction. The update equations

above had fields along each directions, hence resulting in 6 equations. We can reduce it

to two dimensions by considering either the magnetic field of the electric field orthog-

onal to the plane of propagation i.e TM or TE polarization, respectively. This results in

three update equations for each of the modes.

TM Mode:
dHx

dt
=

1

µ

[
−dEz
dy

]
(3.11)

9

dHy

dt
=

1

µ

[
dEz
dx

]
(3.12)

dEz
dt

=
1

ε

[
dHy

dx
− dHx

dy
− (JE,source + σEz)

]
(3.13)

TE Mode:
dEx
dt

=
1

ε

[
dHz

dy
− (JE,sourcex + σEx)

]
(3.14)

dEy
dt

=
1

ε

[
−dHz

dx
−
(
JE,sourcey + σEy

)]
(3.15)

dHz

dt
=

1

µ

[
dEx
dy
− dEy

dx

]
(3.16)

The project primarily concentrates on the TM mode of propogation and implements

most of the algorithms in TM mode.

10

CHAPTER 4

TM Mode implementation in Cuda

In this chapter, we are going to explore the design and the various optimizations in

implementing the FDTD algorithm on a GPU.

The following notations will be used when we are discretizing the equations.

Hx(x, y, t) = Hx(m∆x, n∆y, q∆t) = Hq
x[m,n]

Hy(x, y, t) = Hy(m∆x, n∆y, q∆t) = Hq
y [m,n]

Ez(x, y, t) = Ez(m∆x, n∆y, q∆t) = Eq
z [m,n]

The index m corresponds to a step in the x direction. The index n corresponds to a

step in the y direction. q represens the temporal time step. The step sizes along the x

and the y direction are represented by ∆x and ∆y respectively.

We discretize the TM mode equations to arrive at the following update equations.

H
q+ 1

2
x

[
m,n+

1

2

]
= ChxhH

q− 1
2

x

[
m,n+

1

2

]
−Chxe (Eq

z [m,n+ 1]− Eq
z [m,n]) (4.1)

H
q+ 1

2
y

[
m+

1

2
, n

]
= ChyhH

q− 1
2

y

[
m+

1

2
, n

]
+Chye (Eq

z [m+ 1, n]− Eq
z [m,n]) (4.2)

Eq+1
z [m,n] = CezeE

q
z [m,n] + Cezh

{
H
q+ 1

2
y

[
m+

1

2
, n

]
−Hq+ 1

2
y

[
m− 1

2
, n

]}
{
H
q+ 1

2
x

[
m,n+

1

2

]
−Hq+ 1

2
x

[
m,n− 1

2

]}
(4.3)

where

Chxh

[
m,n+

1

2

]
=

1− σm∆t
2µ

1 + σm∆t
2µ

∣∣∣∣
m∆x,(n+ 1

2
)∆y

(4.4)

Chxe

[
m,n+

1

2

]
=

1

1 + σm∆t
2µ

∆t

µδ

∣∣∣∣
m∆x,(n+ 1

2
)∆y

(4.5)

Chyh

[
m+

1

2
, n

]
=

1− σm∆t
2µ

1 + σm∆t
2µ

∣∣∣∣
(m+ 1

2
)∆x,n∆y

(4.6)

Chye

[
m+

1

2
, n

]
=

1

1 + σm∆t
2µ

∆t

µδ

∣∣∣∣
(m+ 1

2
)∆x,n∆y

(4.7)

Ceze [m,n] =
1− σ∆t

2ε

1 + σ∆t

2ε

∣∣∣∣
m∆x,n∆y

(4.8)

Cezh [m,n] =
1

1 + σ∆t

2ε

∆t

εδ

∣∣∣∣
m∆x,n∆y

(4.9)

We look at how the above update equations are translated to Cuda code. The first

step in starting the simulation is memory allocation. The constants µ, ε, σ, σm are

read as input for the program and hence they allocated memory on the host. A linear

memory is used, instead of an array of pointer to pointers, the reason for which will

be explained. We need to calculate the coefficients from these constants. Calculating

these constants is highly parallelizable. Also, once the coefficients are calculated, the

constants can be deallocated, as they are not required. The first kernel that runs on the

device is the kernel to calculate these coefficients. We need to decide how to split the

whole array into blocks and threads. To see the performance, of the various divisions

of blocks and threads, we run the kernel with different block and thread sizes and look

at the time taken to execute the kernel.

Block Size Time taken for 1024 x 1024 block(in ms)
32 x 32 2.83
256 x 1 2.36

128 x 16 3.24
128x8 3.23

Table 4.1: Time taken by different block sizes.

It is important to look at how the global memory is cached in order to understand

what is a good way to split our array into blocks and threads. The single most impor-

tant thing that affects performance in cuda applications is memory coalescing. Global

12

memory loads and stores can be coalesced into a single load or store instruction, if the

memory is coalesced properly. In Fermi architecture GPU’s all memory accesses are

cached through a L1 cache which are 128-byte lines. Hence a read instruction results

in a read of 128 bytes. If all the bytes read in a single instruction are not used, then it

results in bad performance.

Figure 4.1: Access pattern which results in a single 128- byte transaction, indicated by
the red rectangle. Source: [1]

Figure 4.2: Access pattern which results in a two 128- byte transaction, indicated by the
red rectangle, because of bad access pattern. Source: [1]

We will look at the kernel to update the field Hx.

1 _ _ g l o b a l _ _ void update_Hx (f l o a t ∗Hx , f l o a t ∗Ez ,

2 f l o a t ∗ coef1 , f l o a t ∗ c o e f 2) {

3 i n t x = t h r e a d I d x . x + b l o c k I d x . x ∗ blockDim . x ;

4 i n t y = t h r e a d I d x . y + b l o c k I d x . y ∗ blockDim . y ;

5 i n t o f f s e t = x + y ∗ p i t c h / s i z e o f (f l o a t) ;

6 i n t t o p = o f f s e t + p i t c h / s i z e o f (f l o a t) ;

7 i f (y < y_index_dim − 1)

8 Hx [o f f s e t] = c o e f 1 [o f f s e t] ∗ Hx [o f f s e t]

9 − c o e f 2 [o f f s e t] ∗ (Ez [t o p] − Ez [o f f s e t]) ;

10 _ _ s y n c t h r e a d s () ;

11 }

13

Listing 4.1: update Hx kernel

The function update_Hx runs the kernel for the updating the x component of

magnetic field. It is defined as __global__ because its a device function that can

be called by the program on the host. The structure threadIdx contains information

about the identity of the thread in a two dimensional block. To obtain the actual x

position of the value we are trying to calculate, we use the inbuilt structure values and

obtain the x position using line 3. The y position is calculated similarly. As our field

arrays and coefficient arrays are linear, we need to translate the obtained x and y position

to the offset in the linear array. Line 5 calculates the required offset. We will discuss

why we use the value pitch in 4.0.1. We also need access to the next value along

the y direction. Line 6 calculates this value. The next few lines implement the update

equations. The statement __syncthreads() is important because reads and writes

in Cuda are non - blocking i.e. the execution of a line does not guarantee the completion

of a write operation. Syncthreads waits for all the threads to synchronize and finish their

write operation. This is very essential because the update on the electric fields has to

happen after the update on the magnetic fields are complete.

4.0.1 Memory Coalescing visited again

The performance of a kernel goes down if a warp tries to access memory which does

not start at a multiple of 128 bytes. This is illustrated in the following figure.

If the dimensions of our field array is not a multiple of 32(128 bytes), then we will

have a large number of non - coalesced accesses when we try to access the second row

of our grid array. Hence when the linear array is being allocated, we need to pad the

array with unused memory, so that every row starts at a multiple of 128 bytes. Initially,

this was done manually. But Cuda has an function cudaMallocPitch() which

pads the linear array and returns the size_t variable pitch which represents the size

of a memory padded row in bytes. The pitch used in the update equations is the value

returned by cudaMallocPitch. It is used to calculate the offset in the program.

14

Figure 4.3: Memory bandwidth as a function of offset from a multiple of 128 bytes.
Source: [1]

Another thing to consider with respect to memory coalescing is the thread structure

in a block. While updating Hx, we have an access made to a node and node + offset.

The threads should contain as many rows as possible, as it avoids reading a memory

twice, as the read memory will be cached. But the columns should be sufficient so that

we are making atleast 128 byte access. Hence a block should contain 32 x 16 threads.

4.0.2 Hy update

The Hy is similar to Hx updates except for the fact that it accesses the next value to the

present index to update the Hy value. This introduces a memory coalescing problem

as every kernel reads a single value outside of the 128 byte block. The only way to

avoid this problem, is to hide the extra read, by increasing the column size of the block.

Hence the size of the block used is 256× 1.

1 _ _ g l o b a l _ _ void update_Hy (f l o a t ∗Hy , f l o a t ∗Ez ,

2 f l o a t ∗ coef1 , f l o a t ∗ c o e f 2) {

3

4 i n t x = t h r e a d I d x . x + b l o c k I d x . x ∗ blockDim . x ;

15

5 i n t y = t h r e a d I d x . y + b l o c k I d x . y ∗ blockDim . y ;

6 i n t o f f s e t = x + y ∗ p i t c h / s i z e o f (f l o a t) ;

7 i n t r i g h t = o f f s e t + 1 ;

8 i f (x < x_index_dim −1)

9 Hy [o f f s e t] = c o e f 1 [o f f s e t] ∗ Hy [o f f s e t] +

10 c o e f 2 [o f f s e t] ∗ (Ez [r i g h t] − Ez [o f f s e t]) ;

11 _ _ s y n c t h r e a d s () ;

12 }

Listing 4.2: update Hy kernel

4.0.3 Ez update

The Ez update is similar to the update_Hx and update_Hy, except for the fact both the

ix − 1 and the iy − 1 values are used, where ix is the x index of the Ez array and iy

is the y index of the Ez array. The kernel was run for different block sizes and the best

size for the kernel block was 256× 1.

1 _ _ g l o b a l _ _ void upda te_Ez (f l o a t ∗Hx , f l o a t ∗Hy ,

2 f l o a t ∗Ez , f l o a t ∗ coef1 ,

3 f l o a t ∗ c o e f 2) {

4 i n t x = t h r e a d I d x . x + b l o c k I d x . x ∗ blockDim . x ;

5 i n t y = t h r e a d I d x . y + b l o c k I d x . y ∗ blockDim . y ;

6 i n t o f f s e t = x + y ∗ p i t c h / s i z e o f (f l o a t) ;

7

8 i n t l e f t = o f f s e t − 1 ;

9 i n t bot tom = o f f s e t − p i t c h / s i z e o f (f l o a t) ;

10

11 i f (x > 0 && y > 0 &&

12 x< x_index_dim − 1 && y < y_index_dim − 1){

13 Ez [o f f s e t] = c o e f 1 [o f f s e t] ∗ Ez [o f f s e t] +

14 c o e f 2 [o f f s e t] ∗ ((Hy [o f f s e t] − Hy [l e f t])

15 − (Hx [o f f s e t] − Hx [bot tom])) ;

16

16 }

17

18 _ _ s y n c t h r e a d s () ;

19 }

Listing 4.3: update Ez kernel

4.0.4 Other Ideas

There is an access to the dimensions x_index_dim and y_index_dim in each of

the kernels. Loading these values for each kernel onto shared memory every time the

kernel is run results in a single read to global memory in each kernel. The reads for

these values should be fast and they should be cached. Anothere important property

of these values is that once they are dynamically allocated, they are constant. Hence,

constant memory makes a very good place to store these variables. Constant memory is

cached and a read to constant memory can be broadcasted to all the threads in the warp.

4.1 Open GL Implementation

The above equations take care of calculating the updated values, but we need a way

to visualize these values. This section introduces the use of OpenGL to handle the

animations and the process to convert the floating point values to colors.

In order to visualize the floating point values, we have to convert it into a set of

colors. The floating point values should be normalized between -1 and 1 for the color

conversion to work. We take the maximum of the whole array and divide the whole

array by the maximum. We arrive at a set of floating point value between -1 and 1. We

use a kernel float_to_color to make this conversion. The floating point values are

initially converted to HSL color scheme The luminosity value is set to the floating point

value. The saturation is always 1. The HSL values are then converted to RGB values.

The following program converts the values to a RGB array.

1 _ _ g l o b a l _ _ void f l o a t _ t o _ c o l o r (unsigned char ∗ o p t r ,

17

2 c o n s t f l o a t ∗ o u t S r c) {

3 i n t x = t h r e a d I d x . x + b l o c k I d x . x ∗ blockDim . x ;

4 i n t y = t h r e a d I d x . y + b l o c k I d x . y ∗ blockDim . y ;

5 i n t o f f s e t = x + y ∗ p i t c h / s i z e o f (f l o a t) ;

6

7 f l o a t l = o u t S r c [o f f s e t] ;

8 f l o a t s = 1 ;

9 i n t h = (180 + (i n t) (3 6 0 . 0 f ∗ o u t S r c [o f f s e t])) % 360 ;

10 f l o a t m1 , m2 ;

11

12 i f (l <= 0 . 5 f)

13 m2 = l ∗ (1 + s) ;

14 e l s e

15 m2 = l + s − l ∗ s ;

16 m1 = 2 ∗ l − m2 ;

17

18 o p t r [o f f s e t ∗4 + 0] = v a l u e (m1 , m2 , h+120) ;

19 o p t r [o f f s e t ∗4 + 1] = v a l u e (m1 , m2 , h) ;

20 o p t r [o f f s e t ∗4 + 2] = v a l u e (m1 , m2 , h −120) ;

21 o p t r [o f f s e t ∗4 + 3] = 255 ;

22 }

23

24 _ _ d e v i c e _ _ unsigned char v a l u e (f l o a t n1 , f l o a t n2 ,

25 i n t hue) {

26 i f (hue > 360) hue −= 360 ;

27 e l s e i f (hue < 0) hue += 360 ;

28

29 i f (hue < 60)

30 re turn (unsigned char) (2 5 5 ∗

31 (n1 + (n2−n1)∗ hue / 6 0)) ;

32 i f (hue < 180)

33 re turn (unsigned char) (2 5 5 ∗ n2) ;

18

34 i f (hue < 240)

35 re turn (unsigned char) (2 5 5 ∗ (n1 +

36 (n2−n1)∗(240− hue) / 6 0)) ;

37 re turn (unsigned char) (2 5 5 ∗ n1) ;

38 }

Listing 4.4: Color Conversion kernel

The RGB values is stored as a bitmap and is rendered using openGL.

4.2 Storing Simulation Results

The openGL implementation provides a nice way of visualizing the information but it

does not provides access to the simulation results once the simulation is over. There

should be a way to store these simulation results once the simulation is done. The brute

force way is to store these values as an comma seperated value file. But this requires a

lot of memory as the values are stored as ascii characters and the size of the files for a

1024 X 1024 array is around 31Mb. The alternative was to store it as bytes but have a

way to read these files. Hence the hierarchical data format (HDF5) was chosen to store

the array data. HDF5 is a specially designed file format used to store large amounts of

numerical data. The file format has extensive support in both python and matlab, hence

its very easy to analyze results using python or matlab. Also, hdf5 comes with tools

which converts the whole array into a bitmap, and hence visualization is a direct result

of storing the arrays in this format. The HDF5 file format access to array values is also

faster than accessing the values in a database.

4.3 Sources

Most of the simulations run with different kind of sources like a line source, point source

etc. Also, the sources can be constant, sinusoid or gaussian. In the FDTD program, the

sources are always point sources. A line sources can be implemented in terms of point

19

sources.

Initially each source was implemented as a structure of following entities.

• source type: Can be constant, sinusoid or gaussian.

• x position

• y position

• mean: Mean acts as the frequency in the case of sinusoid signal. Mean is set to
zero in the case of constant signal. In the case of Gaussian signal, it represents
the center frequency.

• variance: This represents the variance of the gaussian signal. In the case of
constant and sinusoid sources, it represents the amplitude of the signal.

The sources were initially represented as a array of structure. The kernel which

initialized the source values became the longest running kernel when the number of

structures became greater than 30. Hence a different way of representing sources was

explored.

4.3.1 Array of structures vs Structure of arrays

An array of structures behaves like row major access. Hence an access to variable in a

structure results in strided access, which has bad memory coalescing.

Figure 4.4: An access to structure[i].x results in strided access Source: [1]

Structure of arrays results in better memory coalescing when you are accessing an

element of the structure.

Figure 4.5: An access to structure[i].x results in coalesced access Source: [1]

20

4.4 Failed Ideas

This section deals with implementations which are supposed to work better than the

basic implementation, but actually perform worse, or equivalent to the above imple-

mentation.

4.4.1 Using shared memory

Since every thread in the kernel accesses the next array value, either in the x direction

or the y direction, it results in N redundant reads. Hence its a good idea to read the

values in a kernel to the shared memory and then apply the algorthm on it. The first

implementation was to ignore the value at the boundary and load the major values in the

blocks to the shared memory. We access the boundary values from the global memory

as they are accessed only once.

The initial implementation resulted in bank conflicts. Shared memory stores its val-

ues in a series of memory banks which can be accessed in parallel. A column major

implementation results in access of values from the same memory bank while a row ma-

jor implementation causes no bank conflicts. The bank conflict problem was resolved

using row major access implementation, but direct accesses to global memory performs

better than a shared memory implementation.

The next implementation involved reading the boundary values to shared memory.

This had to be done in such a way that there is no bank conflict. The implementation

performed equivalent to that of reading directly from global memory. Shared memory

is great when there is a lot of calculations on the memory being read or there is repeated

access to the memory being read.

Hence to increase the ratio of number of calculations to the number of memory

access, shared memory was used to load memory, so that more than one iteration of the

fdtd algorithm can be implemented in a single call to the kernel. The memory load for

such a kernel is illustrated in figure 4.7. The kernels were tested with the number of

iterations varying from 2 to 5. This did not increase the performance.

21

Figure 4.6: Shared memory access of the block and its boundaries

Figure 4.7: Loads to shared memory with fdtd algorithm running for more than one
iteration

4.4.2 Using Texture memory

Texture memory is used in graphical applications to render the bitmap images. The

advantage of texture memory is that the cache is optimized for 2 dimensional access.

But texture memory is read only. The architecture does not really have a distinction

between texture memory and global memory except for the fact that both use different

types of caches. So an implementation which read from the texture memory but wrote

22

into the global memory was implemented. There were two problems with this approach.

Texture memory did not support a parameter pitch which would be used to access a

element in the array. Even though the cache was optimizing for 2D access, there was

no coalesced memory reads. The other problem was texture memory is to be used a

read only memory. Constant change in the values, hindered the caching scheme of the

texture memory..

This chapter summarized most of the ideas used to speed up the cuda implementa-

tion. We now extend these ideas to other modes.

4.5 Performance Comparisions

To compare the speedup obtained by implementing in a gpu, two different implemen-

tations of CPU code was used and the implementations were tested on two different

GPUS. The first cpu implementation was a naive implementation of the difference

method for FDTD. The second implementation involved boxed calculations so that the

there is better usage of cache. The implementations were tested for 100 iterations of

different grid structures.

Block sizes CPU without -O3 CPU with -O3 GPU (Geforce GT 520) GPU(GeForce GTX 560 Ti)
256 0.24 0.20 0.06 0.0076
512 0.97 0.26 0.248 0.025
800 2.4 0.74 0.674 0.063

1024 3.95 1.59 0.98 0.094

Table 4.2: Execution times for different implementations in seconds. The CPU tests
were run on a Intel Core 2 Duo running at 3.16Ghz. GT 520 has 48 cuda
cores running at 1.62Ghz. The GTX 560 Ti has 384 Cuda cores running at
1.66GHz

The speedup obtained on a gpu is about 17X.

23

CHAPTER 5

Absorbing boundary conditions

In most of the simulations, we simulate only a part of the region we are interested in and

do not care about what the fields do once they are out of our region of interest. We need

to mathematically devise methods so that there is no reflection from the boundaries

when these fields hit them. One way to address the problem is to have large enough

simulation region so that the reflected fields do not affect the simulation region we are

interested in, during the time of the simulation. We explore one of the ways to imple-

ment boundary conditions, such that there is very little reflection from the boundaries.

A Berenger split field perfectly matched layer was implemented in order to handle

boundary conditions. Berenger’s PML provides an effective way to implement absorb-

ing boundary conditions by splitting each field into two orthogonal components. The

Maxwell’s curl equations are also split and by choosing the right parameters, we can

achieve a good perfectly matched layer.

When a electromagnetic way travelling in a region of permittivity εregion1 and per-

meability µregion1 is normally incident on another region of permittivity εregion2 and

permeability µregion2 with electric conductivity σ and magnetic conductivity of σ∗, the

reflection coefficient is given by

Γ =
ηregion1 − ηregion2

ηregion1 + ηregion2

(5.1)

where:

ηregion1 =

√
µregion1

εregion1

(5.2)

ηregion2 =

√√√√√µregion2

(
1 + σ∗

jωµregion2

)
εregion2

(
1 + σ

jωεregion2

) (5.3)

There won’t be any reflection if

µregion1 = µregion2 (5.4)

εregion1 = εregion2 (5.5)

σ∗

µregion2

=
σ

εregion2

(5.6)

But the above equations are valid only for normal incidence. Berenger PML pro-

vides a way to split a field into two orthogonal fields and allows us to apply the above

equations in the orthogonal directions.

Berenger PML guarantees perfect transmission in the case of continuous media.

Discretization of the media results in a lot of reflection if there is step discontinuity in

conductivity. To reduce this reflection error we have to grade the conductivity in the

PML layer from zero to a higher value.

µ
∂Hx

∂t
+ σ∗yHx = −∂Ez

∂y
(5.7)

µ
∂Hy

∂t
+ σ∗xHx =

∂Ez
∂z

(5.8)

ε
∂Ezx
∂t

+ σxEzx =
∂Hy

∂x
(5.9)

ε
∂Ezy
∂t

+ σyEzy = −∂Hx

∂y
(5.10)

In our simulation we use the results mentioned in [4] to grade our PML region using

polynomial grading. The equation for polynomial grading is given by

σ(x) =
(x
d

)m
σmax (5.11)

where d is the thickness of the PML.

The reflection for such a graded PML is given by

R(θ) = e2ησmaxdcos(θ)/(m+1) (5.12)

25

For a desired reflection error, we can calculate σmax

σmax = −(m+ 1)ln(R(0))

2ηd
(5.13)

We use a polynomial grading of order 3 in the polynomial graded PML implemented

in the program. The pml layer is calculated using a python program which pads the

provided structure with the pml layer. The padded structure is used by the Cuda program

for the simulation.

26

CHAPTER 6

Dispersive, Non - Linear Material Simulation

Dispersive materials are materials, whose permeability and permittivity vary with the

frequency of the waves travelling through them. In dispersive materials, different fre-

quencies of the wave travel at different velocities. It is difficult to model the material

properties at all frequencies. We model the properties of these materials piecewise in

frequencies. Each region of interest is modeled as a single pole or two pole system. The

assumption we make is, the region are far enough such that a pole in one region does

not affect significantly the frequency response in the other region.

There are three different models in which the dependencies on frequency is modeled

on

• Debye Media

• Lorentz Media

• Drude Media

6.1 Debye Media

Debye media are characterized by the susceptibility function which has a single real

pole. For a single pole Debye media we have

χp =
∆εp

1 + jωτp
(6.1)

The time domain response for Debye media is

χp(t) =
∆εp
τp

e
−t
τp U(t) (6.2)

At any particular E observation point, Ampere’s law can be expressed as

∇×H = ε0ε∞
∂E

∂t
+ σE +

P∑
p=0

Jp (6.3)

where Jp is the polarization current associated with the pth pole, The phasor polariza-

tion current associated with the each pole is given by

Jp = ε0∆εp

[
jω

1 + jωτp

]
E (6.4)

The update equations have an addition update variable J . The update equation for

electric field is modified to include the polarization current.

Jn+1
p = kpJ

n
p + βp

[
En+1 − En

∆t

]
(6.5)

where:

kp =
1− ∆t

2τp

1 + ∆t
2τp

(6.6)

βp =
ε0∆εp

∆t
τp

1 + ∆t
2τp

(6.7)

The electric field update equation is as follows.

En+1 = C1E
n + C2

[
∇×Hn+1

2 − 1

2

P∑
p=0

(1 + kp)J
n
p

]
(6.8)

where

28

C1 =


2ε0ε∞ +

P∑
p=0

βp − σ∆t

2ε0ε∞ +
P∑
p=0

βp − σ∆t

 (6.9)

C2 =

 2∆t

2ε0ε∞ +
P∑
p=0

βp − σ∆t

 (6.10)

The magnetic field updates remain the same.

6.2 Lorentz Media

Lorentz media are generally modelled by two poles in their susceptibility. The permit-

tivity in the frequency domain is given by.

ε(ω) = ε∞ +
P∑
p=1

∆εpω
2
p

ω2
p + 2jωδp − ω2

(6.11)

The polarization current update equations are given by

Jn+1
p = αpJ

n
p + ξpJ

n−1
p + γp

[
En+1 − En

2∆t

]
(6.12)

where

αp =
2− ω2

p(∆t)
2

1 + δp∆t
(6.13)

ξp =
δp∆t− 1

1 + δp∆t
(6.14)

γp =
ε0∆εpω

2
p(∆t)

2

1 + δp∆t
(6.15)

29

The electric field updates are given by

En+1 = C1E
n−1 + C2E

n (6.16)

+ C3

{
∇×Hn+1

2 − 1

2

P∑
p=0

[
(1 + αp)J

n
p + ξpJ

n−1
p

]}
(6.17)

where

C1 =

1
2

P∑
p=0

γp

2ε0ε∞ + 1
2

P∑
p=0

γp + σ∆t

(6.18)

C2 =
2ε0ε∞ − σ∆t

2ε0ε∞ + 1
2

P∑
p=0

γp + σ∆t

(6.19)

C3 =
2∆t

2ε0ε∞ + 1
2

P∑
p=0

γp + σ∆t

(6.20)

The coefficients are calculated and cached before and rest of the updates follow a

similar pattern as that of TM mode. The kernels implemented for magnetic field updates

can be reused.

6.3 Drude Media

The Drude model is used to model electron motion in metal and their influence on the

properties of the material. The relative permittivity in drude model in the frequency

domain is given by

ε(ω) = ε∞ −
P∑
p=0

ω2
p

ω2 − jωγp
(6.21)

The polarization equation updates are given by

Jn+1
p = kpJ

n
p + βp(E

n+1 + En) (6.22)

30

where

kp =
1− γp∆t

2

1 + γp
∆t
2

(6.23)

βp =
ω2
pε0∆t/2

1 + γp
∆t
2

(6.24)

The electric field updates are given by

En+1 = C1E
n + C2

[
∇×Hn+1

2 − 1

2

P∑
p=0

(1 + kp)J
n
p

]
(6.25)

where

C1 =


2ε0ε∞ +

P∑
p=0

βp − σ∆t

2ε0ε∞ +
P∑
p=0

βp − σ∆t

 (6.26)

C2 =

 2∆t

2ε0ε∞ +
P∑
p=0

βp − σ∆t

 (6.27)

The magnetic field updates don’t change and hence the same kernels can be reused.

Separate kernels are used to implement the electric and magnetic field updates.

The number of updates increase with the number of poles present in our model.

Hence the time taken by a model increases with the number of update equations.

31

CHAPTER 7

Further Ideas

This chapter introduces different ideas to extend the project.

7.1 Convolutional PML’s

We have implemented a split field PML for all the simulations. Though split field PML’s

provide us with negligible reflections, split field PML’s cannot be used with dispersive

or gain materials. Also, split field PML’s increase the number of kernels throughout the

grid. Convolutional PML’s [3],are much powerful than split field PML’s. They work

with all kinds of FDTD algorithms including dispersive and gain simulations. They also

require less number of grid cells to provide the same reflectivity coefficient. Hence an

implementation of Convolutional PML’s can increase the speed of the program.

7.2 A Domain specific language for structure design

The present program works with a text file which specifies the epsilon, mu and sigma

values. Though this allows us to simulate the program, it does not allow us to implement

advanced methods for smoothening ladder like structures, optimizing using symmetry

of the structure etc. Also, a domain specific language will help us to design a graphical

interface in the future. A crude implementation was implemented during the project

which is present in the branch interface.

7.3 Python Interface

It would be easier to simulate, if the fdtd engine can be wrapped with a python function.

This allows us to create the structure in python and run the program on a faster fdtd

engine.

33

APPENDIX A

Using the program

The source of the program is git tracked. There are two different versions of the pro-

gram, one with OpenGL and the other with saving data through .h5 files. The h5 ver-

sion is the version that is on master i.e. if you do git checkout master, you

will be using this version. If you want to use the OpenGL version, you need to do

git checkout interfacenew. If you want to look at other implementations

like, shared memory implementation, then you need to do git checkout shared.

A tutorial for how to use the program is at a github wiki.

A.1 Generating Documentation

The program has documentation written in the comments. It uses a tool called doxygen

to convert the documentation in the comments of the source, to formatted html pages.

The command used to generate the documentation is doxygen Doxyfile. The doc-

umentation is generated in the docs folder. The main page of the documentation can be

accessed by opening the file index.html or running a python server using python

-m SimpleHTTPServer in th same folder.

https://github.com/catchmrbharath/fdtd-cuda/wiki/coupler

REFERENCES

[1] Nvidia (2013 –). Cuda toolkit documentation. URL http://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/index.html.

[2] Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and
S. G. Johnson (2010). MEEP: A flexible free-software package for electromagnetic
simulations by the FDTD method. Computer Physics Communications, 181, 687–
702.

[3] Roden, J. A. and S. D. Gedney (2000). Convolution PML (CPML): An efficient
FDTD implementation of the CFS-PML for arbitrary media. Microwave and Opti-
cal Technology Letters, 27(5), 334–339.

[4] Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-
Difference Time-Domain Method. 2005.

[5] Wahl, P., D. S. Ly Gagnon, C. Debaes, J. Van Erps, N. Vermeulen, D. A. Miller,
and H. Thienpont (2013). B-calm: an open-source multi-gpu-based 3d-fdtd with
multi-pole dispersion for plasmonics. Progress In Electromagnetics Research, 138,
467âĂŞ478.

35

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Motivation
	Organization

	Introduction to the GPU Architecture
	Introduction to a GPU
	Cuda Execution Model
	Memory Model in Cuda

	Introduction to the Finite Difference Time Domain method
	Maxwell's Equation
	Yee's Algorithm
	Reduction to lower dimensions

	TM Mode implementation in Cuda
	Memory Coalescing visited again
	Hy update
	Ez update
	Other Ideas

	Open GL Implementation
	Storing Simulation Results
	Sources
	Array of structures vs Structure of arrays

	Failed Ideas
	Using shared memory
	Using Texture memory

	Performance Comparisions

	Absorbing boundary conditions
	Dispersive, Non - Linear Material Simulation
	Debye Media
	Lorentz Media
	Drude Media

	Further Ideas
	Convolutional PML's
	A Domain specific language for structure design
	Python Interface

	Using the program

