

Smart Grid Energy Trading

Using Multi Agent Systems

A Project Report

Submitted by

ROHIT KABRA

 (EE08B082)

in partial fulfillment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

AND

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

THESIS CERTIFICATE

This is to certify that the project report titled Smart Grid Energy Trading using Multi Agent

Systems submitted by Rohit Kabra, to the Indian Institute of Technology, Madras, for the award

of the degree of Bachelor of Technology in Electrical Engineering and Master of Technology

in Power Systems and Power Electronics, is a bonafide record of the research work done by him

under our supervision. The contents of this thesis, in full or in parts, have not been submitted to

any other Institute or University for the award of any degree or diploma.

Dr. K.S.Swarup

Research Guide

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date:.

i

ACKNOWLEDGEMENTS

I am grateful to my guide, Prof. K.S.Swarup, for his encouragement and

guidance throughout my project. I thank him for giving me the freedom of working in

my own way, which was crucial in getting a lot more interested in this area of than I

was when I began working on the project. His comments and useful inputs were

instrumental in making significant progress. This work has been carried out at the

Department of Electrical Engineering, Indian Institute of Technology Madras

The completion of this project is in no small measure due to my Power Systems

lab mates with whom I have had many a discussion. They have always maintained a

lively atmosphere in the lab that is conducive to research. Their suggestions,

encouragement and humor are contributors to this thesis.

I have been helped by a lot of colleagues throughout my journey at IITM, both

academically and personally. My classmates in Electrical Engineering have helped me

academically and have constantly raised the bar for success, improving me in the

process.

My family has constantly supported me through the ups and downs in life. I am

indebted to them for life and a line or two is hardly a fitting payback. Nevertheless, I

would like to thank them for their love and affection they have showered on me

throughout my life.

ii

ABSTRACT

The electrical energy distribution model that evolved over the period of past

couple of decades, there was little concern over the environmental issues and energy

sources. However, the biggest change is coming from the consumers themselves, who

are now installing their own solar panels and wind turbines since the last decade

Consumers can then become producers themselves and form a new actor on the

field of the energy market, called “Prosumers”. This will give the regular consumers

the possibility to get their energy directly from these Prosumers without any

intervention from a Genco. In this case the Prosumers can supply their own energy

needs, as well as the energy needs of a few other consumers. This will create a new free

energy market with Prosumers and Gencos that offer the same service, which is much

more decentralized and where the consumers can decide where they get their energy

and at which price. Prosumers can use weather forecasts to manage their solar panels

and/or wind turbines production and adjust prices according to the market trends and

raw material prices.

A lot of different systems have already been implemented in the field of energy

market simulations. One of these systems is the Multi Agent Systems (MAS) by N.

Capodieci, which was used a basis for this project report. This is a basic MAS that

simulates the energy market by using Consumer, Prosumer and Genco agents that buy

and sell energy in a contracting auction. It also has a time and weather simulation and

a GUI. The scope of this research is to use the existing MAS by N. Capodieci that

supports this simulation and to expand it by adding scalability and reliability

improvements to make the system more usable. This was needed because these features

have not been taken into account when that MAS was created. The system was limited

to one host only and has no specific measures to prevent failures. This limited the usage

of the system, as only a limited amount of agents could be run and the system could

crash on a fault.

 KEY WORDS: Prosumers, Smart Grids, Multi Agent Systems, Scalability and

Reliability.

iii

Table of Contents

ACKNOWLEDGEMENTS i

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

NOTATIONS viii

1 INTRODUCTION---1

1.1 Overview--1

1.2 Introduction to Problem Statement--2

2 SMART GRID RESEARCH---4

2.1 Introduction---4

2.2 Expected Benefits from Smart Grid---5

2.3 Smart Grid in Indian Context--6

2.3.1 Smart Grid for India--6

2.3.2 Need for Smart Grid in India--6

2.3.3 Recent Developments in Smart Grid---6

2.3.4 Need for Design of Indian Grid in line with US------------------------------7

2.3.5 Financial Health of Indian Grid---8

3 ENERGY TRADING FOR SMART GRIDS---------------------------------------10

3.1 Market Simulations--10

3.2 Market Simulation Applications---12

4 MULTI AGENT SYSTEMS---14

4.1 Introduction---14

4.2 JADE---15

4.3 JADE Framework--17

4.4 Scalability Improvement Methods---19

4.4.1 Agent Level Improvements---19

iv

4.4.2 System Level Improvements--21

4.4.3 Summary---25

4.5 Reliability Improvement Methods---26

4.5.1 Agent Level Improvements---26

4.5.2 System Level Improvements--29

4.5.3 Summary---32

4.6 Selected Methods---33

4.6.1 Scalability--33

4.6.2 Reliability--35

4.7 Agent Behavior---38

4.7.1 Agent Creator--38

4.7.2 Time Agent--39

4.7.3 Weather Agent---39

4.7.4 Balancer Agent--40

4.7.5 Genco Agent---41

4.7.6 Prosumer Agent---41

4.7.7 Consumer Agent---42

4.7.8 EH Agent--43

5 SMART GRID ENERGY TRADING USING MAS------------------------------45

5.1 Implementation---45

5.1.1 Agent Creator--45

5.1.2 Time Agent--45

5.1.3 Weather Agent---46

5.1.4 EH Agent--46

5.1.5 Genco Agent---47

5.1.6 Prosumer Agent---48

5.1.7 Consumer Agent---51

5.1.8 Balancer Agent--54

5.1.9 GUI Class--56

5.2 Evaluation--59

5.2.1 Testing System--59

5.2.2 Scalability Test Cases-- 60

5.2.3 Reliability Test Cases---74

v

6 Conclusion---78

6.1 Summary-- 78

6.2 Conclusions--- 80

6.3 Future Work---82

References--83

Appendix A MODEL OF AN INTELLIGENT MULTI-AGENT SYSTEM

vi

List of Tables

Table 4.1: Summary of Scalability Improvement Methods…………….. 25

Table 4.2: Summary of Reliability Improvement Methods……………... 32

Table 5.1: Scalability Test Case-1………………………………………. 60

Table 5.2: Results of Scalability Test Case-1…………………………… 61

Table 5.3: Scalability Test Case-2………………………………………. 63

Table 5.4: Results of Scalability Test Case-2…………………………… 64

Table 5.5: Scalability Test Case-3………………………………………. 67

Table 5.6: Results of Scalability Test Case-3…………………………… 67

Table 5.7: Scalability Test Case-4………………………………………. 70

Table 5.8: Results of Scalability Test Case-4…………………………… 71

Table 5.9: Scalability Test Case-5………………………………………. 72

Table 5.10: Results of Scalability Test Case-5…………………………… 73

Table 5.11: Reliability Test Case-1 and Results………………………….. 74

Table 5.12: Reliability Test Case-2 and Results………………………….. 76

Table 5.13: Reliability Test Case-3 and Results………………………….. 77

vii

List of Figures

Figure 2.1: Block diagram showing Smart Grid and Utility connected to Load.... 4

Figure 2.2: Flow diagram showing various components of Smart Grid………….. 5

Figure 3.1: Block diagram showing Smart Grid Energy Trading…………………. 10

Figure 3.2 Overview of Energy Trading 11

Figure 4.1: JADE framework Architecture……………………………………..… 17

Figure 4.2: Block diagram showing Smart Grid Energy Trading using MAS…… 18

Figure 4.3: Flow chart showing Smart Grid Energy Trading using MAS……….. 39

Figure 4.4: JADE Agent Interaction with the overall system…………………….. 44

Figure 5.1: Flowchart showing Genco Agent Interaction & Behavior…………… 48

Figure 5.2: Flowchart showing Prosumer Agent Interaction & Behavior………... 50

Figure 5.3: Flowchart showing Consumer Agent Interaction & Behavior……….. 53

Figure 5.4: Flowchart showing Balancer Agent Interaction & Behavior………… 56

Figure 5.5: Single line representation of Number of Agents which lead to a Stable

MAS…………………………………………………………………... 61

Figure 5.6: Plot showing variation in Number of Messages sent with the increase

in the Number of Agents……………………………………………… 65

Figure 5.7: Plot showing Run Time Comparison of Old and New MAS with the

increase in Number of Agents………………………………………... 65

Figure 5.8: Plot showing Memory Usage of New MAS with the increase in

Number of Agents…………………………………………………….. 66

Figure 5.9: Plot showing Memory Usage of Old MAS with the increase in Number

of Agents……………………………………………………................ 66

Figure 5.10: Plot showing CPU Usage with the increase in Number of Hosts…….. 68

Figure 5.11: Plot showing Number of Messages & Run Time (in Milli Seconds)

with number of Messages…………………………………………….. 71

Figure 5.12: Plot showing Runtime/Number of Agents with increase in Number of

Replicas……………………………………………………………….. 73

Figure 5.13: Plot showing Success Rate with and without Exceptional Handling

Agent………………………………………………………………….. 75

Figure 5.14: Plot showing Success Rate with increase in Number of Hosts………. 76

viii

Abbreviations

MAS Multi Agent Systems

DT Distribution Transformer

SCADA Supervisory Control and data Acquisition

DMS Distribution Management System

UC Unit Commitment

MIP Mixed Integer Programming

LMP Locational Marginal Pricing

DF Directory Facilitator

JADE Java Agent Development

FIPA Foundation for Intelligent Physical Agent

ISO Independent System Operator

AMS Agent Management System

EH Exception Handling

Notations

Genco Large scale generator Units

Prosumer Both Producers (Mostly Renewable

Energy) and Consumers of Energy

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Electrical energy production by man-made machines has been around since 1831,

when the first electric generator was invented by Michael Faraday. Since then there has

been a huge transformation, the generators now have a much larger capacity, there are

many more around and they are often placed in energy production facilities, which are

scattered over a country. This resulted in the development of Electricity Grid and which

is still being expanded, in order to provide energy across the country.

In this view, every consumer is restricted to a limited amount of energy

production companies called Gencos. Because of limited Gencos, the competition

between Gencos is very low, resulting in no innovation towards a more copious or

decentralized system and often high prices for the consumers. This has changed in the

last decade, as the market is still heavily regulated by the government, but market

competition is possible and more common. This has resulted in a more open market

where consumers can choose a Genco that suits their needs.

Another change from the last two decades, is the decoupling of the production

sector (electricity production facilities), controlled by the Gencos, from the distribution

sector (the electricity grid), controlled by the new transmission service operators, or

TSOs.

Next-generation transmission and distribution infrastructure will be better able

to handle possible bi-direction energy flows, allowing for distributed generation

such as from photovoltaic panels on building roofs, but also the use of fuel cells,

charging to/from the batteries of electric cars, wind turbines, pumped hydroelectric

power, and other renewable sources.

2

To move to a more open and democratic energy market, certain changes have

to be made to the current market. There is very little knowledge of how to properly

design a retail electricity market and how to effectively incorporate other services. The

energy distribution service requires quality improvements for the new market to

function correctly, because of the higher granularity of the energy contracts. Because

of this increased granularity they would need to handle a huge amount of operations in

the system. Also, searching for the best sellers in the new market with millions of

suppliers should be done autonomous.

The concept of intelligent control for regulating the power network variables is

to be realized. The intelligent multi agent based control can be a solution in today’s

power network to maintain the dynamics such as adequate power balance along with

quality voltage under changing system conditions such as load and power injection. The

technology with multi-agent intelligent control may be main module of Smart Grid

architecture. The idea behind any multi-agent system is to break down a complex

problem handled by a single entity – a centralized system – into smaller simpler

problems handled by several entities – a distributed system.

1.2 INTRODUCTION TO PROBLEM STATEMENT

The evaluation of the new Multi Agent System (MAS) is addressed on the two

main factors. The scalability and reliability of the MAS. Predefined test cases are

designed to test the factors. The test cases are based on the evaluations questions stated

below. These questions correspond to the methods that have been implemented in the

system and are used to test these methods effectiveness. The evaluation questions are

measured by using certain metrics. The metrics are divided into two main categories:

 Systems parameters related.

 Coordination mechanisms related.

System metrics include system related performance measurements, such as

wall-clock times and CPU and memory usage. Coordination metrics are more related

to message performance on the entire MAS, such as time to reach convergence, or the

average response time of agents. The different metrics are usually combined, by

3

summing them up or adding weights, in order to obtain a single value which may be

compared.

To evaluate the scalability of the old MAS and the new MAS and to compare

their performance, some test cases are used in the thesis. Most of the tests are conducted

on the old MAS as well as the new MAS, in order to compare performance on both

main factors. These test cases are based on earlier research on scalability measurements

of Multi-agent systems in general. The scalability of the system is viewed as the ratio

between performance and resources.

Evaluation questions - Objectives:

 How many agents can the MAS handle before it becomes unstable?

 What is the scalability of the new MAS compared to the old MAS, in terms of

performance per load?

 What is the scalability of the new MAS with respect to performance increase

per resource?

 What is the performance overhead of critical agent* replication?

 What is the performance overhead of restarting an agent* in the system through

the EH agent?

*Agents here directly correlates with the number of Loads, Gencos and Renewable

sources of energy (Prosumers).

Coordination metrics:

 Total number of messages transferred between agents

 Number of agents in the system

 Number of replicas of top level intermediaries

 Number of hosts

System metrics:

 Time to reach convergence /Number of ticks(process/communication cycles)

that have passed.(Ticks = milliseconds * 10.000)

 CPU and memory usage

4

CHAPTER 2

SMART GRID RESEARCH

2.1 INTRODUCTION

A Smart Grid is an electrical grid that uses information and communications

technology to gather and act on information, such as information about the behaviors

of suppliers and consumers, in an automated fashion to improve the efficiency,

reliability, economics, and sustainability of the production and distribution of

electricity.

There is no uniform definition of smart grid. According to the European

Technology Platform, a Smart Grid is an electricity network that can intelligently

integrate the actions of all users connected to it – generators, consumers and those that

do both Prosumers – in order to efficiently deliver sustainable, economic and secure

electricity supplies [1].

Figure 2.1 Block Diagram showing Smart Grid and Utility

According to the US Department of Energy, the smart grid is self-healing grid,

enables active participation of consumers, operates resiliently against attack and natural

disasters, accommodates all generation and storage options, enables introduction of

new products, services and markets, optimizes asset utilization and operates efficiently,

and provides reliable and high quality power for the digital economy [2]. According to

the Australian Government smart grid combines advanced telecommunications and

5

information technology applications with ‘smart’ appliances to enhance energy

efficiency on the electricity power grid [3].

Figure 2.2 Flow diagram showing various components of Smart Grid [3]

2.2 EXPECTED BENEFITS FROM SMART GRID:

Smart grid has benefits to both utilities and customers. Some of these benefits are

briefly described below:

 By applying advanced information technology (IT) and combining IT with

‘smart appliances’, smart grids can enhance energy efficiency on the electricity

power grid, in homes and in businesses

 By using advanced meters, sensors, and digital controllers, smart grids will be

able to automate, monitor and control the two-way flow of electricity across

networks.

 By using smart grid, transmission and distribution companies will be able to

improve control over the network and can gather complex, real-time

information about grid performance.

 Smart grid can enhance the reliability of electricity supply by automatically

preventing outages and improving the detection of power lines overloads and

faults.

 Smart grid can manage voltage within the grid and help reduce the losses that

occur as electricity travels along transmission and distribution lines.

6

2.3 SMART GRID IN INDIAN CONTEXT

India has formed smart grid forum and task force to study [2] and finalize the

smart grid road map, keeping in view of the following points:

2.3.1 Smart Grid for India

The focus of Smart Grid to provide choices to each and every customer for

deciding the timing and amount of power consumption based upon the price of the

power at a particular moment of time India has recently experienced an impressive rate

of growth as its government implements reforms to encourage foreign investment and

improve conditions for its citizens. However, with its electrical grid, India loses money

for every unit of electricity sold because India is home to one of the weakest electric

grids in the world; the opportunities for building the Smart Grid are great.

2.3.2 Need for Smart Grid in India

With such enormous deficiencies in basic infrastructure, why would India want

to consider investing in smart grid technologies? Ultimately for India to continue along

its path of aggressive economic growth, it needs to build a modern, intelligent grid. It

is only with a reliable, financially secure Smart Grid that India can provide a stable

environment for investments in electric infrastructure, a prerequisite to fixing the

fundamental problems with the grid. Without this, India will not be able to keep pace

with the growing electricity needs of its cornerstone industries, and will fail to create

an environment for growth of its high tech and telecommunications sectors.

2.3.3 Recent developments in Indian Grid

The Indian National Government, in cooperation with the State Energy Board, put

forward a road to improvement when it announced the new Electricity Act of 2003,

aimed at reforming electricity laws and bringing back foreign investment.

7

The act had several important measures:

 Unbundling the State Electricity Board’s assets into separate entities for generation,

transmission, and distribution, with the intention of eventual privatization

 Implementation of RAPDRP (Restructured Accelerated Power Development &

Reform Program) program for power distribution utilities across the country for

preparation of baseline data for each project covering Consumer Indexing, GIS

Mapping, Metering of all DT (Distribution Transformer) and substation Feeders,

and also automated data logging for all DTs, Feeders and SCADA(Supervisory

Control and data Acquisition) /DMS (Distribution Management System) for energy

auditing /accounting and IT based consumer service center.

 Adding capacity in support of a projected energy use growth rate of 12%, coinciding

with a GDP growth rate of roughly 9%

 Improving metering efficiency

 Auditing to create transparency and accountability at the state level

 Improved billing and collection

 Mandating minimum amounts of electricity from renewable

 Requiring preferential tariff rates for renewable

 End use efficiency to reduce the cost of electricity

There has been a recent push in India to begin labeling appliances with energy use

to help consumers determine operating costs. There has also been significant effort to

improve energy efficiency, for example to increase the average energy efficiency of

power plants up from 30% to 40%, and pushing major industries to reduce energy

consumption after execution of Energy Conservation Act’2001.

2.3.4 Need for Design of India Grid in line with US.

As is the case in most of the world, the Indian national grid was not designed

for high-capacity, long-distance power transfer. As is the case in the United States,

8

India needs to interconnect regional grids. Although coal and hydro-electric potential

has peaked in many parts of India, there are still several regions with excess capacity.

Large wind potential and increasing wind capacity in the south and west also

create a need for transmission infrastructure. Unfortunately, like the United States,

regions are generally sectionalized, with some asynchronous or HVDC links allowing

for minimal power transfer. The biggest difference is that India’s transmission grid only

reaches 80% of its population, while the transmission grid in the United States reaches

over 99% of its population.

2.3.5 Financial Health of the Indian Grid

India’s transmission and distribution losses are among the highest in the world,

averaging 30% of total electricity production, with some states as high as 50%. When

non-technical losses such as energy theft are included in the total, average losses are as

high as 40%. The financial loss has been estimated at 1.5% of the national GDP, and is

growing steadily. India’s power sector is still largely dominated by state utilities.

Despite several attempted partnerships with foreign investors, few projects have

actually been implemented. This lack of foreign investment limits utilities’ ability to

raise needed capital for basic infrastructure. This financial frailty, coupled with public

ownership of utilities and the related bureaucratic slowness, has made it very difficult

for investors to take interest in India’s grid. The Smart Metering Conference is now

happening in India. In fact smart grid conference is going to happen in India in the 1st

Quarter of 2011.

Practically speaking, the organization has to assess how its end-to-end delivery

and operational value chains will be affected and determine how smart grid

enhancements can add value to the customer and other stakeholders. Given sufficient

time and effort, all of these challenges are manageable. The test for corporate leaders is

to create a shared vision and engage internal and external stakeholders in a common

focus to collaborate and ensure that smart grid benefits are delivered cost effectively.

India has problems not unlike other developing countries India’s grid is in need of major

improvements.

9

This neglect has accumulated in a variety of system failures like:

 Poorly planned distribution networks

 Overloading of system components

 Lack of reactive power support and regulation services

 Low metering efficiency and bill collection

 Power theft

While the Indian government’s ambitious “Power for All” plan calls for the

addition of over 1 TW of additional capacity by 2012, it faces the challenge of

overcoming a history of poor power quality, capacity shortfalls and frequent blackouts.

One of the first things governments have to do when privatizing the state distribution

utility electricity is to make the enterprise attractive to investors. This is not always easy

because often a key reason for privatizing is that the government-owned electricity

company has run up substantial losses and accumulated large debts under government

ownership. Private firms are not interested in loss-making, debt ridden concerns. One

way round this is for the government to assume the debts of the distributors so that the

private firms take on investments that are debt free. Alternatively, the sector can be

organized to ensure that the monopolistic structure is maintained so that investors will

be more likely to make a profit. Another option is to increase prices or to guarantee a

return to investors.

10

CHAPTER 3

ENERGY TRADING FOR SMART GRID

The change from the centralized and obsolete model of the energy network to

the new open energy network, requires legislation changes to legally and economically

work. Wholesale transactions (bids and offers) in electricity are typically cleared and

settled by the market operator or a special-purpose independent entity charged

exclusively with that function. Market operators do not clear trades but often require

knowledge of the trade in order to maintain generation and load balance. The

commodities within an electric market generally consist of two types: power and

energy. Power is the metered net electrical transfer rate at any given moment and is

measured in megawatts (MW) [3]. Energy is electricity that flows through a metered

point for a given period and is measured in megawatt hours (MWh).

Figure 3.1 Block diagram showing Energy Trading in Smart Grid

3.1 ENERGY MARKET SIMULATIONS

Markets for energy related commodities are net generation output for a number

of intervals usually in increments of 5, 15 and 60 minutes. Markets for power related

commodities required by, managed by (and paid for by) market operators to ensure

reliability, are considered ancillary services and include such names as spinning

11

reserve, non-spinning reserve, operating reserves, responsive reserve, regulation up,

regulation down, and installed capacity.

Apart from the major operators, there are markets for transmission congestion

and electricity derivatives, such as electricity futures and options, which are actively

traded. These markets developed as a result of the restructuring of electric power

systems around the world. This process has often gone on in parallel with the

restructuring of natural gas markets.

Figure 3.2: Overview of Energy Trading

Systems that focused on distribution, learning strategies and demand and supply

balancing have already been studied extensively. This was often focused on using the

laws of a certain country as a basis and simulating how these had to be changed in order

to achieve a more deregulated market.

Market simulations provide a valuable mechanism to forecast market prices for

both zonal and nodal energy markets. Long term and short-term simulations can be

performed to forecast congestion locations and corresponding Locational Marginal

Prices (LMPs).

12

Market simulation studies are normally performed using a Security Constrained

Unit Commitment application that emulates the ISO/RTO Day Ahead (DA) market

clearing process and calculates zonal or nodal prices.

For short-term studies, a more detailed DA clearing model is used with short-

term forecasts of load, unit availability and unit bids. Also more detailed models of unit

startup and shut down behavior are used. In addition, for nodal markets a full AC power

flow is used to iterate with the Unit Commitment (UC) Mixed Integer Programming

(MIP) dispatch to enforce the linearized transmission constraints.

For long-term LMP simulations, a Monte-Carlo process is used to model

uncertain factors such as random unit outages and in some cases load levels, fuel prices,

hydro conditions, Scheduling Points (SP) prices, etc. Monte-Carlo runs provide

statistical values of LMPs and unit generation outputs.

Simpler models of the unit commitment constraints are generally used to make

the intensive simulations computationally viable.

3.2 MARKET SIMULATION APPLICATIONS

 Market price forecasting

 Congestion forecasting

 CRR (Congestion Revenue Rights) strategic evaluation and analysis

 Transmission flow forecasting

 Loss factor forecasting

 Generation plant revenue and profit forecasting, investment evaluation

 Generator bid strategy evaluation

 Integrated Plant Expansion plan, where multiple plant expansion options are

considered, automatically selecting the best set of options via dynamic

programming.

 Market design studies where different market designs are simulated to

determine benefits of alternative designs

13

Market Simulators may also be used to perform sensitivity studies of different

plant expansion options, fuel price scenarios, load forecasts and transmission expansion

options. These sensitivity studies may be used in investment risk analysis and

evaluation.

The technologies that other researchers have used to create a market simulation

are very different from each other. This also includes non-agent-based systems such as

the system proposed by [4], where a web based JSP/Servlet solution is used. This

system features a Java powered framework that uses the JSP/Servlet pages as resources.

A lot more of the systems that are proposed today are agent systems. Since the year

2000, the first agent-based systems for energy market simulations have been created,

with nowadays outdated technologies, such as CORBA and ZEUS. A Java toolkit that

originated from agent-based modeling in social sciences, called RepastJ, was used in

[5] to create an electricity market framework (AMES).

This project uses Java Agent Development Framework (JADE), which is the

most commonly-adopted agent-oriented middle-ware that conforms to Foundation for

Intelligent Physical Agents (FIPA), as the agent platform for development. There are

also other researchers that have used JADE for an agent-based system for electricity

market simulation. JADE was used to develop the wholesale electricity market that is

modeled as a Multi-agent system.

There are also agent system that do not use a peer based model like JADE, which

are SEPIA and MASCEM. MASCEM (a Multi-agent system that simulates competitive

electricity markets) was created in [6] by using Open Agent Architecture (OAA), a

framework for integrating heterogeneous software agents in a distributed environment.

14

CHAPTER 4

MULTI AGENT SYSTEMS

4.1 INTRODUCTION TO MAS

A Multi-agent system is a system that consists of several agents that interact

with each other. These interactions are often handled by messages that are sent between

the agents. These agents simulate intelligence by using methodical, functional,

procedural or algorithmic search, find and processing approaches. Each of the agents

can have different goals and behaviors, which together combines to a dynamic system.

The agents have some critical features according to [7]: they are at least partially

autonomous, no agent has a global view of the system or it cannot use this knowledge

practically, there is no controlling agent. Multi-agent systems are very useful in solving

problems that are difficult or impossible for an individual agent or a monolithic system

to solve. This could be problems like modeling social structures or simulating a trading

market. A lot of work has already been done in the field of Multi-agent systems, as it is

used for a wide variety of applications.

The ease of use has improved, as a standard for communication between the

agents that was defined for industrial and commercial Multi-agent systems was released

for public use. This formal IEEE standard called FIPA (Foundation for Intelligent

Physical Agent), is commonly used today and focuses on facilitating the

interoperability of agents and Multi-agent systems across different software platforms.

Another improvement in the field of Multi-agent systems, is the development

of Multi-agent platforms and programming languages. This makes the implementation

of Multi-agent systems much easier and makes it possible to create Multi-agent systems

that are used in actual operations.

The agent platforms that are available today for Multi-agent system

development include: DESIRE, Jadex, TuCSoN and JADE among others [8].

According to [9], the most used platform is JADE.

15

These platforms are often combined with agent-oriented programming

languages, which are used for the implementation of the agents' behavior within the

Multi-agent system. These languages include: FULX, JACK Agent Language, 3APL,

Jason.

4.2 JADE

To create a Multi-agent system, the easiest way is to use a specialized agent

programming platform. By using a platform, the implementation of the system becomes

much smaller, because the communication and several other aspects have already been

taken care of. This makes it possible to focus solely on the agent implementation itself.

There is a wide range of Multi-agent platforms available on the Internet. Each of these

platforms differs in their features and their flaws and a lot of them are no longer being

updated or supported. From this wide range of platforms, only one can be selected and

used. This platform must match some criteria in order to be able to use the agents'

possibilities to their full extent and prove to be the 'right' platform for this job. It must

provide an easily updatable environment and a standardized multi-platform

programming language, supporting libraries or extensions for fault tolerance, security

and distribution.

A few other researchers [9] and [10] have already compared some of the more

known, updated and used platforms on a list of criteria. These results can be used as a

selection basis for this thesis.

From these sources it can be concluded that JADE, or Java Agent Development

Environment, is the best choice for general purpose uses. The JADE platform supports

Multi-agent system development with Java.

The choice of this platform for the implementation of the Multi-agent system was

based on some advantages and criteria [9][10][11]:

 The MAS in this thesis is based on the MAS by N. Capodieci, which also uses

JADE for implementation. The advantage of using the same implementation

16

platform is that no recoding is needed, as the same implementation work can be

used and adapted for the new system.

 JADE is updated regularly and has a large development crew and community.

 JADE uses Java and each agent is run in a separate thread, which is faster than

conventional Java threads.

 JADE works on any platform that supports a Java Virtual Machine, or JVM.

 The methods and architecture proposed in this paper do not conflict with the

possibilities of the JADE platform and Java.

 The JADE platform itself already implements and uses some of the methods

proposed in this paper.

 The JADE platform is free and open source, which makes this a cheaper choice

than a paid alternative and allows for customization of the source code.

 There is standard Java API documentation for JADE, as well as numerous other

Internet sources containing tutorials, manuals and Q and A. Most of these are

largely up to date.

 It has an excellent GUI with a lot of useful features and tools.

 It has already been used in a lot of development and research projects and has a

high acceptance rate in the community.

 It supports the FIPA specification standard for Multi-agent system messaging.

 There are very good security features, such as SSL support for inter platform

communications, permission grants and added security possibilities.

 The platform is easy to distribute on multiple hosts.

 There is a wide range of different extensions and libraries for additional

features, such as added security, web service integration and embedded JADE

for small devices.

 It supports multiple communication and transport protocols, such as socket,

RMI and IIOP communication.

It is also possible to use a special agent language together with JADE for the

implementation of the agents, but this is not used in this implementation as the Java

programming language provides enough possibilities in this case for implementing the

agent behavior.

17

4.3 JADE Framework:

JADE (Java Agent DEvelopment) was developed by Telecom Italia (CSELT)

in 1998. JADE became open source software in 2000 and is developed by Telecom

Italia (Library Gnu Public License).

Jade creates multiple containers for agents, each of which can be on the same

computing system or different systems. Together, a set of containers forms a platform.

Each platform must have a Main Container which holds two specialized agents called

the AMS agent and the DF agent.

 The AMS (Agent Management System) agent is the authority in the platform. It is

the only agent that can create and kill other agents, kill containers, and shut down

the platform.

 The DF (Directory Facilitator) agent implements a yellow pages service which

advertises the services of agents in the platform so other agents requiring those

services can find them.

For example, in the figure below, the framework consists of 3 Hosts. They exist on

a common network protocol stock. One of the host behaves as the front end while the

two other hosts act as JADE containers. Each Container has its own set of Application

Agents.

Figure 4.1: JADE Framework Structure

18

The proposed market has been designed and implemented; the following

sections provide an insight to the architecture and configurations.

Given that there is a marketplace for trading energy, different order

configurations should be made available to the participants. Using order configurations,

one can express specific energy requirements, or usage patterns. The order

configurations are composed of two behaviors. The first dimension, specifies whether

units of an order can be partially matched, or if must be fully matched. “Fully match”

indicated if a participant wants everything or nothing. The second dimension specifies

if an order has to be matched immediately. If immediate match is required, possible

matching is executed while the unmatched part of the order is automatically cancelled.

Matching limitations of this dimension are the trading price and availability of the

trading commodity. With these four order configurations, participants should be able to

express their internal processes, or trading strategies. For instance, a fully matching

order could be used for a process which requires the full amount of energy to be

available for the entire duration.

\

Figure 4.4: Block Diagram showing Smart Grid Energy Trading using MAS

19

4.4 SCALABILITY IMPROVEMENT METHODS

In this section the methods that can be used to improve the scalability of the

MAS are explained in detail. The advantages and disadvantages of each method are

discussed.

4.4.1 Agent-level improvements:

These methods focus on the agent implementation and organization, in order to

improve scalability. There are two methods described here, changing the agent

organizational form and locating the agents based on caching lists.

Change agent organizational form:

Jennings and Turner have defined several organizational forms of MAS in [12],

suitable for a trading scenario, comparable to our MAS. The forms are distinguished by

the constraints within which the agents interact with each other. They have defined

three different forms.

In the first organizational form, each customer can communicate with each

supplier and the other way around. But customers are unaware of other customers and

suppliers are unaware of other suppliers. Which means that agents of the same type

cannot share information, form groups or undertake co-operative behavior

The second organizational form is the same as the first form, with the exception

that it is also possible for costumers to communicate with other customers and for

suppliers to communicate with other suppliers. In this case agents are social and

represent a standard fully connected peer MAS.

The third organizational form expands on the second form, by adding an

intermediary agent that undertakes collective tasks. This agent performs intermediary

functions, such as matchmaking, recruitment, facilitation, etc., thus relieving the other

agents of this work. Changing the organizational form, can increase the scalability of

the system, because agents can share tasks and intermediaries can reduce the workload

on other agents.

20

Advantages:

Choosing the right form for the current MAS can reduce the communication

overhead and increase efficiency, by introducing more agent teamwork.

Disadvantages:

A disadvantage of this method is that some research has to be done, in order to

pick the right organizational form for the current MAS. Also the chosen form might

later turn out to be non-efficient for the current MAS. It is also possible that none of the

forms matches what is required in this case.

Locate agents based on agents caching list:

Each agent in a MAS needs to know where other agents are, in terms of

addresses, in order to communicate with them. This process can be time consuming, if

the agent does not know what the addresses are. To increase the performance and

scalability, agents can use caching lists to store the location of other agents [13]. In this

approach, each agent has a list of other agents it knows. This list stores all the relevant

information about other agents, such as addresses, names and expertise. This list may

not be up to date or correct, and changes dynamically. It can be assumed that with a

high message reliability and a slow frequency of change, the agents’ lists are largely up

to date and accurate.

When an agents needs an address of another agent, it checks its caching list. If

the address is not there, the agent will contact some, or all agents in its caching list, for

the address information. These other agents, will perform the same procedure

recursively. To prevent duplicate request handling, a unique request identity is used. To

guarantee cooperative behavior, payment schemes can be used. The communication

overhead of this method is very low, with an average complexity of O (1), if the contact

list is limited to a certain size.

Advantages

An advantage of this method is that it removes the need for middle agents to

serve as brokers. The communication overhead is therefore reduced. It is also very

suitable for heterogeneous MAS, because there is no dependence on middle agents. The

method also has a very low overhead.

21

Disadvantages

This method may not be very suitable for unstructured MAS, because of the

required inter-agent communication, which may result in slow response times.

4.4.2 System-level improvements:

These methods focus on the system structure and components, in order to

improve scalability. There are five methods described here: hiding communication

latencies, component distribution, component replication, agent scheduling and

transparent access.

Hiding communication latencies:

This method, proposed in [14], focuses on geographical scalability. If a MAS

spans a large area network, there may be severe communication latencies. Agents may

be waiting very long for responses from other agents. These latencies cannot simply be

solved, but it is possible to change the agents. The agents can be adapted to do other

useful work, while they wait for responses. In this way the communication latencies

can be hidden. It requires that agents can be interrupted when a response is delivered.

Advantages

When possible, a major advantage is that agents can perform other tasks when

waiting for a response. The communication latencies can be largely hidden by doing

other useful work.

Disadvantages

The agents have to be interrupt-able, to be able to handle the asynchronous

requests. The agents must be able to do other useful work, instead of waiting for a

response.

Component distribution:

Component distribution can be used to partition the MAS over multiple separate

servers [15]. Agents are distributed over different physical machines, in order to spread

the load. The distribution of components can be manually done by a human

programmer. The different components can be hosted in different processes. This

22

requires inter-process communication, which can be realized with Java RMI, simple

socket communication or JADE. If component distribution is used in large-scale

networks, this method should be combined with hiding communication latencies,

whenever possible, in order to ensure performance increase.

Advantages

An advantage of this method is the easy implementation and the instant increase

in scalability of the system. A large amount of machines can be added to support a large

scale system.

Disadvantages

This method does have some drawbacks, such as the manual distribution. The

designer must decide which components are distributed and how they are distributed.

The best distribution strategy is therefore difficult to achieve, because of the varying

load situations, which complicates adjustments to the distribution. Another

disadvantage is that the distributed components are bound to one machine and cannot

scale beyond the limits of this machine, unless the implementation supports dynamic

moving of components to other machines.

Component replication:

Component replication can be used to replicate certain components of the MAS

across a network. This can improve scalability by reducing communication latencies,

by placing components close to where they are needed. Expected performance

bottlenecks can be resolved by replicating.

In this way it can also spread the load on certain components, by decentralized

load balancing. The replicated components can be hosted in different processes and on

different machines. This requires inter-process communication, which can be realized

with Java RMI, simple socket communication or JADE.

Advantages

One advantage is the reduction in communication latency, by bringing the

components close to the agents that use them. Another advantage is the possibility to

prevent bottlenecks in the system, by replicating heavily used components.

23

Disadvantages

A disadvantage of replication is inconsistency problems. These can be

overcome, but introduce some amount of overhead. The replicas must be consistent

with each other, which can be achieved by global synchronization or by adopting a

weaker consistency model. This consistency model depends heavily on the application.

Another disadvantage is that replication increases resource consumption and

complexity. By adding more agents, resources are wasted since all the agent specific

services are also replicated. In addition, the system becomes more complex, since more

components have to be managed. Load balancing is required for this to work.

Agent scheduling:

To increase performance of individual hosts and therefore scalability,

agent/thread scheduling can be used [15]. This method enables the execution of large

numbers of (reactive) agents. With agent scheduling, the agents that are not performing

any tasks, are deactivated and only require memory resources. The agents that are active

and performing tasks, can use all the resources. This scheduling of agents preserves the

resources for the active agents, preventing resource wastes. To make the scheduling

most efficient, there should be a large group deactivated agents and a small group of

active agents. To determine which agents should be deactivated and which agents

shouldn't, a scheduling policy must be used. This policy must also be able to control

each agents' access to system resources. There are multiple scheduling policies, which

use ranking of importance, statistics and heuristics.

A common form of scheduling involves messages received by agents. The

agents that received messages are moved from the deactivated group to the active

group. After the message has been processed, the agent is moved back. A variant of this

approach uses events, such as a user logging on or off. The agents that are associated

with this event, are moved to the active group. After the event has been processed, the

agents are moved back. In both approaches, most of the agents should be reactive to

make the methods efficient enough.

24

Advantages

The major advantage of this method is the large increase in performance that

can be achieved, by efficient scheduling of the active and inactive agents.

Disadvantages

Unfortunately this method is not useful for large numbers of pro-active agents,

because there is only a small number of inactive agents in this case and the performance

can actually decrease in this case, because the scheduling itself is also computationally

intensive.

Transparent access:

Transparent access provides a possibility to enable a MAS to scale beyond the

limitations of underlying physical machines [15]. Scalability can be improved by

providing transparent access to the distributed resources available. Transparent access

prevents additional complexity of the MAS, by hiding resource locations. This results

in simple access and flexible adding or removing of resources. Transparent access can

be realized by using a transparent resource management layer to use/create threads and

objects within other processes. The transparent access layer allows a host to farm out

the execution of agents. Only by distributing the load it becomes possible to ensure that

a large number of agents reside in a single agent host.

Agents themselves cannot access the system resources or services directly, but

only through an environment object. This environment object is a proxy that keeps the

implementation of its public methods hidden. This helps achieve two goals, fine-

grained control and location independence.

Fine-grained control of the agents, provides a way to distribute resources among

the agents according to the importance or vitality of their services and to disconnect

troublesome agents. Physical location independence of the agents is achieved by

interaction via a proxy and by hiding the location details. Agents can thus be moved

freely by the system between processes.

25

Advantages

The major advantage of this method is that it increases the location

independence of the MAS. This makes it possible to use different kinds of physical

machines and/or software and add or remove resources. This method also increases the

effectiveness of other system-level methods, such as replication and distribution.

Disadvantages

This method can increase the overhead on the system, because an extra layer is

added to the system.

4.4.3 SUMMARY

Table 4.1: Summary of Scalability Improvement Methods

Method Advantages Disadvantages

Change agent

organizational Form

Can reduce communication

overhead and increase

efficiency

Organizational form must fit the

problem that the agents are

modeling

Locate agents

based on agents

caching list

No need for middle agents.

Is suitable for heterogeneous

MAS.

May not be suitable for

unstructured MAS.

Hiding communication

Latencies

Agents can perform other

tasks when waiting for a

response.

Agents must be interrupt-able

and immediate Communication

must not be required.

Component

distribution

The components are

distributed, thus spreading

out the workload.

Must be combined with hiding

of communication latencies, to

ensure performance increase.

The components must be

manually distributed.

Component

Replication

Data is close to the agents.

Bottlenecks can be

prevented, by replicating

heavily used components.

Possible data inconsistencies.

Load balancing required.

Agent scheduling Can increase performance,

by efficient scheduling of

active and inactive agents.

Useless for large numbers of

pro-active agents.

Computationally expensive.

Transparent access Increases location

independence. Increases

effectiveness of other

agent-level methods

Can increase overhead.

26

4.5 RELIABILITY IMPROVEMENT METHODS

In this section the methods that can be used to improve the reliability of the

MAS are explained in detail. The advantages and disadvantages of each method are

discussed after which a summary is given.

4.5.1 Agent-level improvements

These methods focus on the agent implementation and organization, in order to

improve reliability. There are four methods described here: using sentinels to check the

system, using agent teamwork to handle agent failures, refuse requests ability and

increase agent mobility.

Using sentinels to check the system:

Sentinels can be used to increase the reliability of the system [16][17]. These

sentinels are agents, which can guard specific functions or guard against specific states

in a MAS. It is up to the designer to decide which functions are most vital for the

systems integrity, because not all of the functionality can be guarded. Sentinels can take

several actions to guard the system. They can choose alternative problem solving

methods for agents, exclude faulty agents, alter parameters for agents, and report to

human operators. They do not take part in the problem solving of other agents, but they

can intervene in this process. By using semantic addressing, the sentinels can interact

with other agents and monitor their communication and interaction, in order to build

models of these agents. Some parts of these models are exact copies of the agent models

and are called checkpoints. These points assist in detecting faulty agents and

inconsistencies, by providing information of the internal state of an agent and its

behavior Timers can be used to detect crashed agents or faulty communication links.

Advantages

The advantage of sentinels is, that they are separable from the system. The

sentinels can be added after the whole system has been developed and tested. They can

also be modified, without affecting the system. The communication mechanisms used

by the sentinels and the relevant checkpoints can also be created and altered when

needed.

27

Disadvantages

A disadvantage is that the freedom of the agents is limited by the sentinels. Also

the functions that need to be guarded have to be decided by the designer and the system

must have support for fault handling and reporting, in order for the sentinels to work.

This method is also not very suitable for high volume MAS with highly frequent

messages, because a lot of sentinels have to be added in this case, and they have to

process a lot of messages.

Using agent teamwork to handle critical agent failures

Using agent teamwork to handle critical agent failures can be used as a method

to increase the reliability of the system [18]. This method involves the usage of

teamwork between the agents in the system as a technique to automatically recover a

Multi-agent system from a sudden agent failure. These failures could be caused by a

machine crash, network breakdown, or death of the agent process.

Each agent in the system finds other agents in the system and stores their name

or address to be able to communicate with them. When a critical agent disconnects from

the system, each agent that fails to contact this agent, attempts to inform the other agents

in the system of this failure. Only the agents that regularly communicate with the now

disconnected critical agent are informed. After successfully contacting an agent in this

manner, this agent updates his information and gives up his attempts to contact the

disconnected critical agent.

The Multi-agent system has recovered from failure of the disconnected critical

agent when all the agents that interact with that agent have been contacted in this

manner. The requests that were in progress at the time of the failure, and hence could

not be completed, may be sent again by the requesting agent. This can be considered

fault tolerant behavior and hence improves the reliability of the system.

Advantages

Results in minimal overhead, as the teamwork is only used in case of an agent

failure. Critical agent failures can be solved and cascading effect can be prevented. Also

this method is easy to implement, as it only requires a few special messages and some

code to read them and to act on them.

28

Disadvantages

The use of teamwork may interfere with the required autonomy of agents in the

MAS.

Refuse requests ability

The ability to refuse requests can increase the reliability of the agents [18].

Agents can refuse requests to stop flooding of messages. This is making the agents more

autonomous and less susceptible to the influences of other agents. It can be

implemented by using a message queue and refusing messages if the queue exceeds the

maximum queue length.

Advantages

This method can prevent agent thrashing and make the system more reliable.

Agent thrashing can occur when there are more messages being received by an agent

than it can handle. These messages may stack up and consequently slow the entire

system down. If messages are refused, this can no longer occur.

Disadvantages

A disadvantage of this method is the discarding of the messages itself. Some

MAS models may require that no messages are discarded, or rely on certain messages

being received.

Increase Agent Mobility

Agent mobility is measured in the ability of agents to be moved from one host

to another. Agent mobility can be improved by increasing protocol independence and

host independence of agents.

Increasing agent mobility can provide a more fault-tolerant system. For

example, if a host is experiencing computational problems due to too many agents, the

computational intensive agents can be moved to another host.

29

Advantages

The agents are no longer tied to certain protocols and/or hosts. In case of failures

on a certain host, the agents could be moved to another host. This method can also

increase the scalability by providing a way to support load balancing in a distributed

environment, by moving agents.

Disadvantages

The moving of the agents itself could be computationally intensive, depending

on the number of agents being moved and the size of the agents' data.

4.5.2 System-level improvements

These methods focus on the system structure and components, in order to

improve reliability. There are four methods described here: distinct domain

independent exception handling service, active replication, passive replication and

critical agent/adaptive replication.

Distinct domain independent exception handling service

An exception handling service can be used to provide a way of reducing the

exception handling within the agents [19]. This domain-independent service handles all

the exceptions that occur within agents and thus reducing the load of the agents. The

exception handling can be separated from the agents doing the logic and provide a way

of control. The agents become simpler and do not need to know about the exception

handling. This is also called the "citizen" approach. It requires at most that agents

support three very simple directives (‘‘are you alive?’’, ‘‘resend RFB’’, and

‘‘canceltask’’). The service can prevent cascading effects of an exception, by informing

other agents of the failure. The method enhances the reliability by offloading exception

handling from problem solving agents to distinct, domain-independent services.

Advantages

The load on the agents in the MAS is reduced, by moving the exception handling

from each agent to a central location. The agent implementation becomes simpler, as

the agents do not have to handle the failures themselves. Fault cascading effects can be

prevented.

30

Disadvantages

This method results in a more centralized system, which may conflict with the

required autonomy of the MAS. Another disadvantage is the dependency of the service

on communication with the agents. If this fails, the service is no longer able to detect

faults.

Active replication

Replication can be used for data and/or computation, to make a distributed

system more fault tolerant [20]. Active replication is a replication protocol where each

component is replicated and all replicas concurrently process all input messages. This

increases reliability, because a replica can immediately replace another, in case of a

system failure.

Advantages

The advantage of active replication is, that it provides a fast recovery delay and

is ideal for real-time constrained systems.

Disadvantages

Active replication leads to a high overhead, the overhead equals the amount of

replicas. Which makes this method more resource intensive than passive replication.

This method is not very suitable for large-scale, adaptive replication.

Passive replication

Replication can be used for data and/or computation, to make a distributed

system more fault tolerant [20]. Passive replication is a replication protocol where each

component is also replicated, but only one of the replicas processes all input messages

and periodically transmits its current state to the other replicas in order to maintain

consistency. If the active replica is faulty, a new active replica is chosen from the

passive replicas and the execution is restarted. This increases reliability, because a

mostly up to date backup can be restored, in case of a system failure.

31

Advantages

This method requires less CPU resources than the active approach, by activating

redundant replicas only in case of failures and still provides a reliable backup

mechanism. It also has a low overhead under failure free execution, because of the

periodic updates.

Disadvantages

This method needs a checkpoint management which is still expensive in

processing time and space and does not provide short recovery delays. As well as active

replication, this method is not very suitable for large-scale, adaptive replication.

Critical Agent/Adaptive Replication

A different replication protocol is based on the criticality of certain agents. Only

those agents that are defined as critical are replicated and the others are not.

Furthermore, one must determine the most critical agents and the needed number of

replicas of these agents. There are two cases here:

The agent’s criticality is static, in which case, the organization structure of the

agents doesn't change, the behavior is static and the number of agents is small. In this

case the critical agents can be identified before run time and replicated where needed.

The agent’s criticality is dynamic, in which case, the organization structure of the agents

is dynamic, the behavior is dynamic and the number of agents is large. In this case the

critical agents cannot be identified before run time and must be based on the dynamic

organizational structure.

This can be achieved by observing the domain agents and dynamically

evaluating their criticality, based on semantic-level information and system-level

information. This approach increases reliability, because the critical agents are

replicated and can replace crashed critical agents. Non critical agents are not replaced

in this case.

Advantages

Not a very big impact on performance, because not all agents are replicated,

only the critical ones. The system is much more reliable, because it can keep

functioning despite failures.

32

Disadvantages

A system where all of the agents are critical is not suitable for this method,

because of the performance impact. Replicas may require synchronization for the

system to function correctly.

4.5.3 SUMMARY

Table 4.2: Summary of Reliability Improvement Methods

Methods Advantages Disadvantages

Using sentinels to

check the system

Sentinels can be added later on and

can be modified on the fly.

Not very suitable for high

volume MAS with highly

frequent messages.

Agent communication and

world model needs to be

public.

Using agent

teamwork to handle

critical agent failures

Can recover from critical agent

failures. Prevents cascading effects.

Simple implementation.

May interfere with the

required autonomy of the

MAS.

Refuse requests

Ability

Prevents agent thrashing. Might not suit all the MAS

applications, because

important messages might be

discarded.

Increase agent

Mobility

Agents are not tied to certain

protocols and/or hosts.

Moving the agents around can

be computationally intensive.

Distinct domain

independent

exception

handling service

Reduced load on the agents in the

MAS.

Simpler implementation.

Fault cascading effects can be

prevented.

Centralized approach.

Relies on communication

with the agents.

Critical

agent/adaptive

replication

Not a big impact on performance.

System still functions despite agent

failures.

Not suitable for systems with

large numbers of critical

agents.

Replicas may require

synchronization.

Passive replication Minimizes processor utilization by

using checkpoints to restore faulty

agents.

Requires checkpoint

management which is

expensive in processing time

and space.

Active replication Provides fast recovery Lead to a high overhead.

33

4.6 SELECTED METHODS

From all the methods described in the previous sections, some have been

selected as usable for this MAS. The next two sections discuss the selected methods for

scalability and reliability and explains why these have been selected.

4.6.1 Scalability

Not all of the methods described in the previous section are used. Some of the

methods are not suitable for this MAS, or do not provide an increase of scalability in

this case. The methods that are used are:

 Locate agents based on caching lists

 Distribution

 Replication

 Agent scheduling

 Transparent access

Locate agents based on caching lists is also used, because it reduces the load on the

middle agents/brokers to handle all communication as agents can store agent locations

themselves. Especially when the current MAS is distributed, the load on the middle

agents/brokers could become very large. This method also increases support for

possible future changes, as it is suitable for heterogeneous MAS. The current MAS is

not unstructured, so the disadvantage is not a problem. Distribution is used, because it

is an essential method for increasing scalability. Without distribution the whole system

is bound to one machine. With this method the agents are still bound to their respective

machines, but not to only one. The agents do have to be distributed manually, but by

examining the structure of the MAS this should not pose a big problem.

Replication is used, because it can further increase the performance gain of

distribution. This is done by replicating the heavily used agents/components. This

should make the system more scalable than by having only one of these components.

Communication distances/latencies are also decreased by this method. The possible

problems with this method can be solved by implementing a data consistency update.

Load balancing is partially solved by the use of distribution and by limiting the amount

of replicated agents.

34

Agent scheduling is used, because the current MAS does not have a large

number of pro-active agents and thus does not limit this method. At certain times there

are a lot of inactive agents in the system, waiting for responses, or when the auctions

have ceased. Agent scheduling can make the system more efficient.

Transparent access is used, because it increases the effectiveness of distribution

and replication and also makes these methods easier to implement. It also increases the

location independence of the agents, thus making it easier to distribute these. The

increase in overhead is limited and does not compare to the performance increase

gained by using this method in combination with distribution and replication.

The methods that are not used are:

 Change agent organizational form

 Hiding communication latencies

Change agent organizational form is not used, because the alternative

organizational forms do not apply to the current MAS. The current MAS uses a scheme

where the suppliers communicate with the Consumers and where top-level

intermediaries interact with the suppliers and Consumers. One alternative

organizational form requires removal of the top-level intermediaries. Removing the top

level intermediaries is not a viable solution, because their functionality has to be

separated from the Consumers and suppliers and cannot be incorporated within these

agents. The other form requires intercommunication between the Consumers and

between the suppliers. This is not useful, because the Consumers have no messages or

information which they need to discuss with themselves. This also goes for the

suppliers. Therefore changing the form would result in loss of functionality or useless

overhead, which is why it is not used.

Hiding communication latencies is not used, because the current MAS is not

meant to be run on an Internet-scale network, meaning that communication latencies

will be limited. Also the agents of the system do not have many other tasks to perform

when waiting for a reply, making this method not efficient enough to implement.

35

4.6.2 Reliability

Not all of the methods described in the previous section are used. Some of the

methods are not suitable for this MAS, or do not provide an increase of reliability in

this case. When choosing the methods that are used, the degree of fault tolerance is of

great importance. According to [21] there are four main sources of faults:

 Inadequate specification of software

 Software design error

 Processor failure

 Communication error

Where the first two are unanticipated in consequences and the last two can be

considered in the design of the system. Even if all possible measures are taken to

prevent faults, the first two sources above imply the difficulty in building fault-free

systems. This emphasizes the need for fault tolerance. If the system cannot handle a

fault and shows unexpected behavior, there is a system failure. If, on the other hand,

the system can handle the fault situation, it is called fault tolerant. For the MAS to be

more reliable, it needs to be fault tolerant as well. The following degrees of fault

tolerance are proposed by [21]:

 Full fault tolerance, where the system continues to operate without significant

loss of functionality or performance even in the presence of faults.

 Graceful degradation, where the system maintains operation with some loss of

functionality or performance.

 Fail-safe, where vital functions are preserved while others may fail.

For this MAS, the aim is to achieve Graceful degradation, because Full fault

tolerance is very difficult to achieve in a Multi-agent System and usually results in a

performance decrease caused by the required methods, which will conflict with the

requirement of a more scalable system. The methods that would be required for a Full

fault tolerant system are Active or Passive replication and Using sentinels to check the

system. These are not necessary for Graceful degradation, as Critical agent/adaptive

replication and the distinct domain-independent exception handling service provide

enough means to maintain system operation and most functionality.

36

This degree of fault tolerance results in the following methods that are used:

 Using agent teamwork to handle critical agent failures

 Refuse requests ability

 Distinct domain independent exception handling service

 Critical agent/adaptive replication

Using agent teamwork to handle critical agent failures is used, because it

provides a way to handle failures or crashes in the critical agents that are used. These

agents are critical to the system and the other agents in the system should be informed

if these agents fail. By informing other agents, this method also prevents cascading

effects of a failure. The overhead of this method is limited, because only in case of a

failure additional messages are sent and additional functions are called. Finally the

implementation is also simple. The autonomy of the MAS is no problem in this case,

as the agents do need to be movable and do not require complete autonomy.

Refuse requests ability is used, because the buyers and sellers can be flooded by

the offers sent to each other as the system is scaled up. This method prevents thrashing

of the agents by message floods. It is also easy to implement, by using a message queue

with limited length in combination with a garbage message collector. The disadvantage

is not a problem in this MAS, because the offers can be re-sent and are not critical for

the system.

Distinct domain independent exception handling service is used, because it

makes exception handling easier than in the normal case. The implementation of the

agents in the MAS becomes simpler, because of the central handling. The agents can

perform more useful tasks instead of exception handling. Another big advantage is the

preventing of fault cascading effects, which are common in Multi-agent systems. The

disadvantages of this method are not problematic, as the required autonomy of the MAS

is not violated. The agents can still act independently and negotiate on the prices. The

failure of communication is a problem, which also applies to the entire MAS and

therefore cannot be considered a major disadvantage of this method.

37

Critical agent/adaptive replication is used, because it increases the reliability of

the system significantly. Failures of agents in the system no longer result in failure of

the entire system. The impact on performance is very limited, as only the critical agents

in the system are replicated. There is only a small number of critical agents in this MAS.

The main portion of agents are the suppliers and Consumers. The suppliers and

Consumers are not critical agents, as the system will continue to function despite failure

of these agents. This makes one of the disadvantages obsolete. The synchronization of

replicas is also limited, because there are not many critical agents and because almost

no functionality needs synchronization.

The methods that are not used are:

 Using sentinels to check the system

 Increase agent mobility

 Passive replication

 Active replication

Using sentinels to check the system is not used, because it is not useful for high

volume MAS with highly frequent messages, which resembles our MAS. The method

also results in some communication overhead and limits the freedom of the agents in

the system. Another point is that the checkpoints have to be decided manually and that

the sentinels can be difficult to implement. The advantage of sentinels is not big enough

to compensate these problems. Increase agent mobility is not used, because it is

computationally expensive to move agents around.

Also the advantage of being able to move agents around does not weigh against

the cost of moving in the current MAS. The agents are distributed manually and it is

expected that the computational intensity of the agents does not vary much during the

experiment, thus removing the need for load balancing by moving agents between

workstations. Also the chances of a workstation crashing completely and requiring

moving of agents, are not very high and acceptable for the current MAS, because of the

limited running time.

38

Passive replication is not used, because it replicates all the agents and results in

a less efficient system. All the information must be updated to the replicas of each agent

and requires an inefficient checkpoint management system. The recovery delay is also

high and becomes higher as the size of the system increases. This conflicts with the

scalability demands of the system, also the system should be real-time. Also a

replication of all the agents is not required for the current MAS to continue functioning.

Active replication is not used, because it also replicates all the agents and it

results in a high overhead because all the replicas are updated in real-time. The

overhead becomes larger as the system increases, which also conflicts with the

scalability demands. The recovery delay is not an issue, as it is designed to be real-time.

The replication of all the agents is not required for the current MAS to continue

functioning.

4.7 AGENT BEHAVIOR

The behavior of each agent is explained in short in this section.

4.7.1 Agent Creator

The agent creator is separated from the MAS, because it is only used to start the MAS

and its agents. The agent creator is always started first and creates and starts all the

other agents in the MAS.

The agents are started in the following order:

 Time agent

 EH agent

 Weather agent

 Gencos

 Prosumers

 Consumers

 Balancer agent:

39

After this agent creator is done and terminates itself, it does not participate in MAS.

Figure 4.3: Flow diagram showing overview of Smart Grid Energy Trading using

MAS

4.7.2 Time Agent

The time agent only interacts with the other top-level intermediaries, consisting

of the Balancer agent and the weather agent. It waits for incoming requests from other

agents and replies the current time of day. It does not contact other agents by itself. This

time of day is based on the current system time of the host. The day is divided into 6

time slices, ranging 0 to 5.

4.7.3 Weather Agent

The weather agent interacts with most of the other agents, except for the

Consumers and the Gencos. The first task of the weather agent is to ask for the current

time of day from the time agents. The second task is to wait for incoming requests from

other agents, asking for a weather forecast, and reply with the current forecast. The

weather forecast calculation is based on the current time of day. The forecast consists

of three factors, temperature, solar power and wind power. The weather agent also

40

listens for incoming messages from the EH agent containing the failed agents name and

can send messages to the EH agent with the name of a failed agent.

4.7.4 Balancer Agent

The Balancer agent interacts with all the other agents in the system. The GUI is

initialized first before any other communication actions are taken. The GUI is only

started with the first Balancer agent, the other Balancer agents do not display a GUI, in

order to increase performance. After this the first step is to search for all the Suppliers,

Genco or Prosumer, and inform them that they can send their name and position and

energy production to the Balancer. The next step is to search for all the Consumers and

inform them that they can send their name, area and energy demand to the Balancer.

The third step is to ask each weather agent for the forecast in their area and store

it. Each weather forecast is bound to a different area and is displayed in the GUI. Also

in this step, the total energy demand is calculated and used to balance the demand and

supply, by sending a production threshold to each Genco. This step is concluded by

informing all the agents that the negotiating can start.

 The fourth step is to wait for messages from Consumers that have stipulated a

contract with a supplier and update the GUI by showing a direct link between the

Consumer and the supplier. Once every Consumer has established a contract, the next

step is initiated. The fifth step is to update the GUI with a graph containing selling

prices and expectations for each Consumer. Restart messages are sent to all the agents

if the current time of day is below 6. If this is not the case, the next step is started.

 The last step is used to send a kill signal to all the other agents, so only the

Balancer is still active. The Balancer agent also listens for incoming messages from the

EH agent containing a failed agents' name. It can also send a message with an agent

name to the EH agent in case of an agent failure.

The failed agents are stored and displayed in the GUI. Depending on the agent

type, certain additional actions are taken. If the failed agent was a Prosumer, the

Balancer sends a special restart message to the newly started Prosumer containing the

remaining production capacity. If the agent was a Genco, the Balancer first re-sends the

41

request for information from the Genco and then resends the remaining production

threshold to the Genco. If the agent was a Consumer, the Balancer re-sends the request

for information message and then resend the start message.

4.7.5 Genco Agent

The Gencos interact with most of the other agents in the MAS, except for the

time agent, the weather agent and the Prosumers. The first step is to wait for a message

from each Balancer, requesting the name, area and energy production and send a reply

with this information. The next step is to wait for a message from a Balancer containing

the production threshold. The last step is to wait for incoming contracting requests from

Consumers, a restart message from a Balancer or a kill message from a Balancer. The

contracting requests from Consumers are replied with a proposal price based on the

distance between the Genco and the Consumer or a message indicating that the Genco

has sold all available energy if the Genco has reached its production threshold. The

Genco can only send messages to the EH agent with the name of a failed agent. It is not

able to receive messages from the EH agent, because it does not contact agents by itself

and does not need to update the agents.

4.7.6 Prosumer

The Prosumers interact with most of the other agents in the system, except for

the time agent and the Gencos. The first step is to ask for a weather forecast from every

weather agent, but only the weather forecast of the weather agent that is within the same

area as the Prosumer is used. In the second step the Prosumer checks if it has received

a special restart message from a Balancer agent, containing the remaining production

capacity. If this is the case, this production capacity is used instead of the normal

capacity, which is calculated with the weather forecast. After this the Prosumer waits

for a message from each Balancer, requesting the name, area and energy production

and sends a reply with this information.

The next step is to wait for incoming messages from Consumers containing their

area and energy demand. If the Prosumer has energy left, it replies with a proposed

price, which is based on a starting price and the distance to the Consumer. When a

Consumer cancels the negotiations, the Consumers' offer is removed. When an offer

from a Consumer is received, the Prosumer proceeds to the next step.

42

The fourth step is to elaborate all the offers that it has received and find the best

offer. The other offers are refused and the best offer is only accepted if it is higher than

the expected earnings for the Prosumer. If the Prosumer still has energy left, it returns

to step three, otherwise it moves on to the final step. The final step is to refuse all offers

that are still present and all incoming offers. After this it waits for a restart message

from a Balancer or a kill message from a Balancer. The Prosumer also listens for

incoming messages from the EH agent containing the failed agents name and can send

messages to the EH agent with the name of a failed agent.

4.7.7 Consumer Agent

The Consumers interact with the Gencos, the Prosumers and the Balancer

agents. The first step is to wait for a message from each Balancer, requesting the name,

area and energy demand and send a reply with this information. The second step is to

wait for a start message from one Balancer, after this the negotiations can start. The

third step is to search for all the suppliers and contact the Prosumers first. A message is

sent to each Prosumer containing the area and the energy demand of the Consumer. It

then waits for each Prosumer to reply with a proposal containing a proposed price.

When all the Prosumers have replied, the Consumer moves to the next step.

The fourth step is to send a message to all the Gencos, containing the area and

energy demand of the Consumer. It then waits for each Genco to reply with its area.

The nearest Genco is then selected and saved. The next step is to remove the Prosumers

that do not produce enough energy for the Consumers' demand. If no Prosumers remain,

the Consumer goes to step eight.

The sixth step is to send new offers to the Prosumer until it accepts the offer or

the amount of offers exceeds a set limit. The offers are raised with a certain amount

each time. If the Prosumer accepts the offer, the Consumer moves to step seven. If the

Prosumer cancels the negotiations, the Consumer removes the Prosumer and returns to

step five to find a new cheapest Prosumer. If the Consumer receives a message from

the Balancer agent, indicating that the auction round time is up, it sends a contracting

message to the nearest Genco containing the area and the energy demand and then

moves to step seven.

43

The seventh step is to wait for an incoming offer from the nearest Genco

containing its price and reply that the offer is accepted with the Consumers area and

demand. But only if no contract has been established yet. The contract details are then

sent to every Balancer agent containing the Consumers name, the suppliers name and

the total price divided by the demand. The Consumer then waits for a restart or a kill

message from a Balancer agent. The eighth step is to send a message to every Genco

containing the Consumers area and demand and wait for replies from the Gencos

containing their price. The cheapest Genco is then selected and an accept message is

sent to that Genco.

The contract details are sent to every Balancer agent containing the Consumers

name, the suppliers name, the expected costs and the total price divided by the demand

and the Consumers goes back to step seven. If the Gencos do not answer or if the auction

round time is up, the Consumer contacts the nearest Genco with area and demand and

goes back to step seven. The Consumer also listens for incoming messages from the

EH agent containing the failed agents name and can send messages to the EH agent

with the name of a failed agent.

4.7.8 EH Agent

The EH agent is not very complex, but does communicate with almost all the other

agents in the system, except for the time agent. This is because the time agent does not

contact any agents by itself, it only waits for requests from other agents. Therefore it

cannot detect failed agents and does not need updates on the failed agents. The EH

agent has a cyclic behavior, which is repeated until the agent terminates. It first searches

for all the Balancer agents, Consumers, Prosumers and weather agents. Then it waits

for an incoming message and checks if it is a kill message, in which case it terminates,

or if it is a message containing a failed agent. The agent attempts to kill the failed agent

if not already dead and restarts the agent with a different name, by adding “-r”.

Depending on the failed agents' type, other agents are informed of the failed agent.

44

The following agents are informed in case of these failures:

 Time agent fails: Balancer agents, Consumers, Prosumers and weather agents

are informed

 Weather agent fails: Balancer agents and Prosumers are informed

 Balancer agent fails: Consumers and Prosumers are informed

 Prosumer fails: Balancer agents and Consumers are informed

 Genco fails: Balancer agents and Consumers are informed

 Consumer fails: Balancer agents are informed

After this, the process is repeated.

Figure 4.4: High Level Agent Interaction

45

CHAPTER 5

SMART GRID ENERGY TRADING USING MAS

5.1 IMPLEMENTATION

5.1.1 Agent Creator

This agent uses a single one shot behavior, because it only runs once. In this

behavior the agent first starts a Time agent, by calling:

createNewAgent("ta"+containerNr, "simulation.TimeAgent", null). After this a

Weather agent and in case the Agent Creator is located in container one, an EH agent.

After this an iteration is started, executing 30 times and creating 30 Consumers, 7

Prosumers and 3 Gencos. The name of the Consumers starts with a 'c', the Prosumers

with a 'p' and the Gencos with a 'g' each followed by the current iteration number. After

this the Balancer agent is started and in case the Agent Creator is located in container

one, a “GUI” argument is also sent to the Balancer to enable the GUI on this Balancer.

Finally the Agent Creator calls doDelete() to kill itself.

5.1.2 Time Agent

This agent uses the GC behavior and a Cyclic Behaviour, because it is

constantly checking for incoming messages by calling myAgent.receive(). If

there is an INFORMATIVE type message, the agent retrieves the system date and time

and uses the current seconds and divides this by 10. This results in a number between

0 and 5 indicating the time of day. This number is replied to the sender of the message.

If the message was a “DIE” message, the agent calls doDelete() to kill

itself.

46

5.1.3 Weather agent

This agent uses the GC behavior, the EH behavior and a standard behavior. In

this class there is a switch over 6 cases, based on the current time of day from the Time

agent. If the time is 0, the Weather agent first searches the DF for all the Time agents

by calling DFService.search(myAgent, template), where template has the

type Time Agent. After this the Weather agent sends a message to every Time agent

requesting the current time of day. The agent then waits for a reply containing the time

of day, by calling myAgent.blockingReceive(). For each time of day

different random weather is generated, for instance, the temperature and solar power is

less in the morning than in the afternoon. The Weather agent checks for incoming

INFORMATIVE type messages via myAgent.blockingReceive(), containing

the "WF" string, requesting the weather and sends back the temperature, solar power

and wind power. In case of a “DIE” message, the agent calls doDelete() to

kill itself.

5.1.4 EH Agent

This agent uses the GC behavior and has a cyclic behavior. The agent first

searches the DF for all the Consumers, Prosumers, Gencos, Balancer agents and

Weather agents. It then checks for incoming FAILURE type messages containing the

name of the failed agent, with myAgent.receive(). The failed agent is killed

via ac.kill(), if not already dead and restarted with an added "-r" to its

name. The new agent's name is only sent to the agents that need this information,

depending on the type of the agent. In case of a "DIE" message, the agent calls

doDelete() to kill itself.

47

5.1.5 Genco Agent

This agent uses the GC behavior, the EH behavior and a standard behavior. In

this class there is a switch over 4 cases.

Step 0: The Genco first searches the DF for the EH agent, by calling

DFService.search(myAgent, template), where template has the type EH Agent.

After this the agent moves to step 1.

Step 1: The Genco waits for an "IN" signal sent by a Balancer agent. If this has been

received, the Genco searches the DF for all the Balancer agents and sends each one a

message with content: msg1.setContent("G" + position + " " + threshold),

where position is the area the Genco resides in and threshold is the maximum

production threshold of the Genco. After this the agent moves to step 2. If a "DIE"

signal was received, the agent calls doDelete() to kill itself.

Step 2: The Genco waits for a message containing the suggested production limit. If

this has been received the Genco adds a random number between 0 and 5 to the

production limit and moves to step 3. If a "DIE" signal was received, the agent calls

doDelete() to kill itself.

Step 3: The Genco waits for different incoming messages. First INFORM type

messages from Consumers, containing their position and demand can be received. This

position is then used in combination with the demand to generate a proposed price. A

reply is then sent to the Consumer containing: reply.setContent(name + " " +

proposed_price + " " + n_threshold), where name is the name of the Genco,

proposed_price is the proposed price and n_threshold is the threshold for the Genco.

Also ACCEPT_PROPOSAL type messages from Consumers, containing the demand

can be received. The demand is subtracted from the production threshold of the Genco.

Another message type that can be received, is the SUBSCRIBE from Consumers. The

Genco replies to this message with its name and position. If a "DIE" signal was

received, the agent calls doDelete() to kill itself.

48

Figure 5.1: Flowchart showing Genco Interaction & Behavior

5.1.6 Prosumer agent

This agent uses the GC behavior, the EH behavior and a standard behavior. In

this class there is a switch over 6 cases, based on the current step.

Step 0: The Prosumer first searches the DF for the Weather agents and the EH agent,

by calling DFService.search(myAgent, template), where template has the

type EH Agent or Weather Agent. Of the found Weather agents, the agent that has the

same number as the container number where the Prosumer resides in, is stored. This

represents the area of the agents. After this the agent moves to step 1.

Step 1: The Prosumer sends a message, containing "WF", to the Weather agent

requesting a weather forecast. The Prosumer then waits for a few different message

types. The first is a reply from the Weather agent containing a temperature, wind power

and solar power. After this the Prosumer moves to step 2. The second message type is

a message from a Consumer requesting negotiations. The Prosumer replies with a

CANCEL message containing "NO". The third type is an "IN" or "RESTART" message

from a Balancer, indicating that the negotiations have started. A "RESTART" message

Genco

Agent

49

also contains a remaining supply. The supply is stored, as well as a Boolean indicating

the received message. The last type is a "DIE" message, where the Prosumer will call

doDelete() to kill itself.

Step 2: The Prosumer will calculate the new supply from the weather forecast with:

supply = (int) (supply * constant) + 1, where supply is the solar or wind power

and constant is a random number between 0 and 1. The agent now waits for an "IN" or

"RESTART" message if not already received in step 1. If this message is received, the

Prosumer searches the DF for all the Balancer agents. If it was an "IN" message, it

sends a message to each Balancer, containing: msg1.setContent("P" + position +

" " + supply), where position is the area that the Prosumer resides in and supply

is the total production limit of the Prosumer. If it was a "RESTART" message, the

Prosumer takes the remaining supply from the message and stores it as supply. After

this the Prosumer moves to step 3. If a "DIE" message was received, the Prosumer calls

doDelete() to kill itself. If any other message was received, the Prosumer sends a

"MOV" message to every Balancer, to indicate that it is waiting.

Step 3: The Prosumer searches the DF for every Consumer, but only if this is the first

run of step 3. Next the Prosumer checks for a few different message types. If an

INFORM message is received from a Consumer, containing its area, the Prosumer

calculates a proposed price with: float proposed_price = (float) (((Math.abs(b_pos

- position) + 1) * c_TSO) + starting_price), where b_pos is the area of the

Consumer, position is the area of the Prosumer, c_TSO is a random float constant and

starting_price is the starting price of the Prosumer. If the Prosumer still has some supply

left, it sends a PROPOSE reply with the proposed price and its remaining supply, in the

other case a CANCEL message is sent. If the amount of sent replies is larger than or

equal to the amount of Consumers in the system, the Prosumer moves to step 4. If an

ACCEPT_PROPOSAL message is received from a Consumer, containing its name and

energy demand, the Prosumer subtracts this demand from its supply. If a PROPOSE

message is received, containing an offer from a Consumer, the Prosumer stores the offer

and moves to step 4. If a "DIE" message is received, the Prosumer calls doDelete() to

kill itself.

Step 4: The Prosumer first selects the best offer from the list of offers. Then the

Prosumer sends every agent from the offers list an REFUSE message, containing "NO",

50

except for the best offer. If this offer is less than expected and the number of refusals is

smaller than the maximum, the best offer is refused as well. Otherwise, this agents gets

an ACCEPT_PROPOSAL message containing "YS". If after this the Prosumer has no

supply left, it sends a CANCEL message, to every Consumer from the offers list and

moves to step 5. If it does have supplies left, it moves back to step 3.

Step 5: The Prosumer sends a CANCEL message once to every Consumer in the

system. It then waits for incoming messages. If a "DIE" message is received, the

Prosumer calls doDelete() to kill itself. If an offer from a Consumer is received, the

Prosumer replies with an CANCEL message containing "NO".

Figure 5.2: Flowchart showing Prosumer Interaction & Behavior

51

5.1.7 Consumer Agent

This agent uses the GC behavior, the EH behavior and a standard Behavior. In

this class there is a switch over 8 cases, based on the current step.

Step 0: The Consumer first searches the DF for the EH Agent once. It then waits for

incoming messages. If an “IN” message is received from a Balancer agent, the

Consumer searches the DF for every Balancer agent and sends a message to each

Balancer agent, containing msg1.setContent("B" + position + " " + p_demand),

where position is the area that the Consumer resides in and p_demand is the energy

demand of the Consumer. It then moves to step 1. If a "DIE" message is received, the

Consumer kills itself. If another message is received, the Consumer sends a "MOV"

message to every Balancer agent.

Step 1: The Consumer waits for a "GO" message from a Balancer, after which it moves

to step 2.

Step 2: The Consumer searches the DF for every "Seller" type agent once, this includes

both the Prosumers and Gencos. These agents are stored in seller agents and a message

containing the area and energy demand is sent to every Prosumer once. The Consumer

then waits for incoming messages. If a PROPOSE message is received, containing an

offer from a Prosumer, the offer is stored. If an offer is received from every Prosumer,

the agent moves to step 3. If a CANCEL message is received from a Prosumer, this

agent is removed from the list of Prosumers. If step 2 had been run more than twice

amount of Prosumers and there is atleast one offer, the Consumer also moves to step 3.

Step 3: The Consumer first sends a message to every Genco once, containing its area

and energy demand. It then listens for incoming messages. If a message is received

from a Genco containing its name and area, the Consumer calculates the distance

between the Genco and itself. Only the Genco that has the smallest distance is selected

as nearest Genco. If a message has been received from every Genco, the Consumer

moves to step 4. If a message is received from a Prosumer, containing "NO". The

Prosumer is removed from the list of Prosumers. If no message is received for 5 times

and there is already a nearest Genco selected, the Consumer also moves to step 4,

otherwise it re-sends a message to every Genco, containing its area and energy demand.

52

Step 4: If the Consumer is not forced to contact a Genco, the Consumer checks the

supply of each Prosumer and removes those that do not have enough supply for the

demand of the Consumer. Of the other Prosumers, the one with the lowest price will be

selected as best Seller. After this it calculates the expected price to pay for the power

demand: ((float) bestPrice + (bestPrice * ((g.nextInt(20) + 1) / 100))) / demand.

After this, or if the Consumer is forced to contact a Genco, the Consumer moves to step

5, or if no best Seller is found, the Consumer moves to step 7.

Step 5: The Consumer sends a PROPOSE message to the best Seller once, containing

a bid of height stake and its energy demand. If after 10 runs no reply has been received

from the best Seller, the Consumer deletes the Prosumer from the list and returns to

step 4. After this the Consumer checks for incoming messages. If an

ACCEPT_PROPOSAL message is received from a Prosumer, the Consumer replies

with an ACCEPT_PROPOSAL message containing its demand and moves to step 6. If

an REFUSE message is received from a Prosumer, the Consumer replies with a new

PROPOSE message and a higher bid, increased with a random constant stake. If too

many refusals have been received, the Consumer removes the best Seller from the list

and replies with a CANCEL message, containing "NO", and moves back to step 4.

If a CANCEL message is received from a Prosumer, the Consumer removes the

best Seller from the list and returns to step 4. If a SUBSCRIBE message is received

from a Balancer agent, the Consumer sends an INFORM message to the nearest Genco,

containing its area and demand. After this it moves to step 6. If an "IN" message is

received from a Balancer agent, the Consumer replies its area and demand and moves

back to step 3.

Step 6: If a contract was established with a Prosumer or Genco, the Consumer sends a

message to all the Balancer agents containing the contract details: name + " " +

bestSeller + " " + expected + "X" + ((bestPrice + new_stake) / demand) + "Y" +

demand). If no contract was established with a Genco and the Consumer is forced, it

sends an INFORM message to the nearest Genco, with its area and energy demand.

After this the agent waits for incoming messages. If a "DIE" message is received, the

agent kills itself. If a PROPOSE message is received from the nearest Genco and the

demand is still above 0, the Consumer stores the nearest Genco in bestSellerG.

53

An ACCEPT_PROPOSAL message is sent to this Genco with the Consumers

area and demand and an INFORM_REF message is sent to every Balancer with the

contract details. Demand is set to 0 and forced is now false. If an REQUEST_WHEN

message is received from a Balancer agent, the Consumer waits for 1.5 seconds and

then re-sends a reply with the contract details. If an ACCEPT_PROPOSAL message is

received from a Seller, the Consumer sends back a CANCEL message.

Step 7: The Consumer clears the message queue once and if no contract is forced and

established, sends an INFORM message to every Genco once, containing area and

demand. If after 5 runs, no Genco has replied, the Consumer sends a message to the

nearest Genco, containing area and demand and sets forced to true and moves to step 6.

After this the Consumer waits for incoming messages. If a PROPOSE message is

received from a Genco, the Consumer checks if this Genco is the cheapest, in which

case it is stored. The Balancer agents are informed of the contract details via an

INFORM_REF message and demand is set to 0. After this the agent moves back to step

6. If a SUBSCRIBE message is received from a Balancer agent, the Consumer sends

an INFORM message to the nearest Genco containing area and demand, and moves

back to step 6.If an ACCEPT_PROPOSAL message is received from a Prosumer, the

Consumer replies with a CANCEL message. If any other message is received, the

Consumer re-sends the contract details to all the Balancer agents.

Figure 5.3: Flowchart showing Consumer Interaction & Behavior

54

5.1.8 Balancer agent

This agent uses the GC behavior, the EH behavior and a standard Behaviour. In

the setup() method of the Balancer agent, the agent waits for a while before starting,

this is done make sure that all the Balancer agents start at the same time. The agent

waits for the next exact half minute before starting: (Math.ceil((double)oldtime /

30000)*30000), where old time is the current time. After this the Balancer moves to the

behavior, where there is a switch over 7 cases.

Step 0: The Balancer searches the DF for all the Weather agents, Time agents, the EH

agent and other Balancer agents. It then moves to step 1.

Step 1: The Balancer searches the DF for every Seller once, which includes Prosumers

and Gencos. Each Seller is sent an INFORM message once, containing “IN”. The

Balancer then waits for incoming messages. If an INFORM message from a Genco or

a Prosumer is received containing their area and name, the Balancer stores this agent in

Gencos or Prosumers. Also the supply and name of each Prosumer is stored in

agentSupplies. After this the agent is drawn in the GUI, by calling:

 myGUI.drawAgent(t_position, sa_name, agent_count), with area, agent

name and agent count. If a reply has been received from each Genco and Prosumer, the

Balancer moves to step 2. If any other message is received, the Balancer sends a reply

containing “OK”. If no messages are received for 9 runs, the Balancer re-sends the

messages to the Sellers.

Step 2: The Balancer searches the DF for every Consumer once. Each Consumer is sent

an INFORM message once, containing “IN”. The Balancer then waits for incoming

messages. If an INFORM from a Consumer containing its area and demand, the

Balancer stores this agent in buyers. After this the agent is drawn in the GUI, by calling:

 myGUI.drawAgent(t_position, sa_name, agent_count), with area, agent

name and agent count. If a reply has been received from each Consumer, the Balancer

moves to step 3. If any other message is received, the Balancer sends a reply containing

“IN”.

55

Step 3: The Balancer calculates the total energy demand of all the Consumers by adding

their individual demands. The average needed energy production per Genco and per

Prosumer is calculated, by: Sg = (int) ((demand[0] * kg) / (gencos.size())) + 1 and

Sp = (int) ((demand[0] * kp) / (prosumers.size())) + 1. For each Prosumer the

stored energy production and needed production are compared and these differences

are summed up over all the Prosumers. This so called deficit is divided by the number

of Gencos and added up to the needed energy production of the Gencos: deficit = deficit

/ gencos.size(); Sg += deficit. Each Genco is then sent an INFORM message,

containing this needed energy production, or Sg. It is also added to the agentSupplies

list together with the agent name.

 After this the Balancer sends a message containing "WF", to every Weather

agent. Next every Consumer is sent a message containing "GO". The Balancer now

enters a loop, in which it waits for all the incoming weather forecasts. If a message

containing a weather forecast is received, the Balancer uses the weather forecast and

the area of the Weather agent and displays it in the GUI: myGUI.add(myGUI.new

DrawTemp(temperature, solar, wind, area)). If an INFORM_REF message is already

received from a Consumer containing contract details, the Balancer replies with an

REQUEST_WHEN message containing "WT". If other or no messages are received for

5 runs, the Balancer re-sends the messages to the Weather agents. After the loop the

Balancer moves to step 4.

Step 4: The Balancer waits for incoming messages. If an INFORM_REF message is

received from a Consumer, containing contract details, the Balancer stores the contract

details from the message and replies with an INFORM_REF message "OK". The

Balancer then checks whether the received contract was already received earlier on, in

which case the contract details are discarded. The next check is to make sure that a

Consumer only has one contract, if this is not the case, the contract details are also

discarded. If the contract is not discarded, the details are stored in an object:

StatContractB. These objects are added to the GUI and the GUI is refreshed:

myGUI.statsB.addElement(scb); myGUI.refreshGUI(t1, t2). The list agent Supplies is

updated by subtracting the Consumers' demand from the total energy production of the

Genco or Prosumer. If all of the Consumers have sent their contract details, the Balancer

moves to step 5.

56

Step 5: The Balancer adds a MouseListener and the drawSkeletonGraph to the GUI.

After this the Balancer waits 2 seconds and then moves to step 6.

Step 6: The Balancer sends a "DIE" message to every agent in the system. It then waits

indefinitely, until it is manually killed.

Figure 5.4: Flowchart showing Balancer Interaction & Behavior

5.1.9 GUI class

The GUI class contains all the GUI related code. It is created by the Balancer agent,

but only on the first host of the MAS. The GUI class contains a number of methods,

some of which are called by the Balancer agent. Some of the important methods are

listed here together with their purpose:

 public GUI(): Called by the Balancer agent. In this constructor the Jframe of

1150 by 800 is created and displayed, a MyCanvas is created and all the Vectors

are initialized.

 public void clear(): Called by the Balancer agent. This method is used to fully

clear and repaint the GUI, by calling (gui.getContentPane()).removeAll()

and gui.repaint().

57

 public void add(JComponent comp): Called by the Balancer agent and the GUI

itself. This method can add a new JComponent to the GUI, by calling

gui.getContentPane().add(comp) and gui.repaint().

 public void refreshGUI(String t1, String t2): Called by the Balancer agent. This

method is used to add a contract line between agent 't1' and agent 't2'. The

locations of both agents are searched using: ((GUI.Contract)

contractNet.get(i)).getPosx(t1). The locations are used to create a new

QuadPoints line: new QuadPoints(px, py, pxx, pyy), which is added to a

lineContract Vector.

 public void drawAgent(int pos, String name, int ac): Called by the Balancer

agent. This method is used to add agent 'name' in area 'pos' on the GUI. 'ac' is

the current agent count and is used to find the correct data in the Vectors. A

Consumer is magenta, a Supplier is blue and a Genco is red. A switch is used

depending on the area of the agent, to generate a random position within the

area: generator.nextInt(Wstep) + CX + 5. A new Contract object is made using

this data: new Contract(x.get(agent_count), y.get(agent_count),

gui_string.get(agent_count)), and is added to the Vector contractNet. After this

the GUI is repainted.

There are also some other classes located within the GUI class. Most of these classes

are JComponent classes and are added to the GUI, using the add(JComponent comp)

method.

These JComponent classes each have a paint(Graphics g) method, which is called upon

repaint and handles the drawing. These classes are listed below:

 public class DrawTemp: This class is created by the Balancer agent and is used

to draw the information of each Weather agent in the GUI. The Balancer agent

calls the constructor, public DrawTemp(int t, int s, int w, int c), where 't' is the

temperature, 's' is the solar power, 'w' is the wind power and 'c' is the count of

the current area.

 public class DrawDeadAgents: This class is created by the Balancer agent and

is used to draw the names of the dead agents in the GUI. The Balancer agent

calls the constructor, private DrawDeadAgents() and also the method private

58

void updateDeadAgents(Vector<String> failedAgents). This method is used to

update the Vector deadAgents.

 public class drawSkeletonGraph: This class is created by the GUI and is used

to draw the empty graph and its axis onto the GUI.

 public class drawLineStat: This class is created by the GUI and is used to draw

the graph of a selected agent, with expected price in red and real price in

black.This final set of classes is used to store information on the agents position

and the contract lines and to handle the mouse clicks:

 public class Contract: This class is created by the GUI and is used to store the

agents in the system. It has a 'posx', 'posy' and 'agentName' as data fields, to

store agent position and name.

 public class QuadPoints: This class is created by the GUI and is used to store

the contract lines in the system. It has a 'posx1', 'posy1', 'posx2', 'posy2' as data

fields, to store beginning and end positions.

 class MyMouseListener extends MouseAdapter: This class is created by the

Balancer agent after the simulation has finished and is used to listen for mouse

clicks. If public void mouseClicked(MouseEvent evt) is called, the 'x' and 'y'

position are used in ((Contract) contractNet.get(i)).retrieveName(x, y) to

retrieve the agent that was selected. After this, public void drawGraph(String

n) is called with the agent name 'n'. (StatContractB) statsB.get(i) is used to get

the contract details and gui.getContentPane().add(new drawLineStat()) is called

to add the graph.

59

5.2 EVALUATION

5.2.1 Testing System

The test cases were evaluated on a used 10 MBPS Ethernet network of the following

machine:

 Dell Vostro 1014

 Intel Core 2 Duo CPU @ 2.33GHz

 2Gbyte RAM

 160Gbyte disk

 MSI 8600GT PCI-EX 256MB DRR low profile

Installed software:

 Debian GNU/Linux 10.04, kernel 2.6.32-5-686

 Eclipse version 3.5.2 Java EE IDE for Web Developers

 JADE version 4.1

 JRE version 1.6.0.24 with just-in-time compiler enabled

60

5.2.2 Scalability Test Cases

The first scalability test case focuses on how many agents the MAS can handle

before it becomes unstable. The MAS by N. Capodieci (old MAS) and the new MAS

are compared in performance.

Test Case 1:

Table 5.1: Scalability Test Case-1

How many agents can the MAS handle before it becomes unstable?

How to Increase the amount of agents on the old and the new MAS

until it becomes unstable.

 MAS1 MAS2

Type Normal MAS MAS – N.Capodieci

Test 6 Hosts 1 Host

Metrics:

 Number of agents in the system

 Number of hosts

 Total number of messages transferred between agents

 Number of ticks that have passed to reach convergence

 CPU and memory usage

The old MAS is run on one host machine and the new MAS on six hosts.

Measurements have been performed on the number of messages transferred, the time

to reach convergence and the average CPU and memory usage of the system and JADE.

61

Results:

Table 5.2: Results of Scalability Test-1

How many agents can the MAS handle before it becomes unstable?

Metrics Test1, new MAS Test 1, old MAS

Type Normal MAS MAS –

N.Capodieci

Number of Hosts 6 1

Number of Agents 818(600c, 140p,

60g, 6b,6t, 6w)*

243(180c, 42p, 18g,

1b,1t, 1w)*

Average number of messages

transferred between agents

2865639 65439

Average time to reach

convergence/Number of ticks that

have passed

519800 ms 1879993 ms

Average CPU and memory usage 46%, 566MB 39%, 667MB

Average CPU and memory usage by

JADE

13%, 230MB 40%, 100MB

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

In the Test case 1, the limit of the new MAS is around 818 agents, consisting of

600 Consumers, 140 Prosumers, 60 Gencos, 6 Balancer agents, 6 Weather agents and

6 Time agents. The simulation only takes about 8 minutes, but it creates a high number

of 2865539 messages. This is simply caused by the amount of agents that participate in

the system. Because of this amount of messages, the system sometimes loses an

important message, which can cause the system to halt. This problem increases as more

agent are added, but around 818 agents the system still mostly works correctly.

Figure 5.5: Single line representation of Number of Agents which led to a stable MAS

62

As the agents are spread across 6 hosts, The CPU usage of the MAS is not very

high. The JADE CPU usage is remarkably low, which is probably caused by the fact

that the MAS has to do much more work than JADE. The memory usage of the MAS

and JADE is pretty high, because of the amount of agents.

The limit of the old MAS is around 243 agents, consisting of 180 Consumers,

42 Prosumers, 18 Gencos, 1 Balancer, 1 Weather agent and 1 Time agent. With this

amount of agents the system crashes after a while, due to the amount of RAM used,

which is 667MB for the system alone. The amount of memory exceeds the Java heap

space and the system crashes. Also the run-time is very long, around 31 minutes, which

is much longer than the new MAS. The amount of messages is lower than for the new

MAS, but this is caused by the0 much smaller amount of agents. The CPU usage of

JADE is much higher than the new MAS, because the MAS is doing less work. The

memory usage of JADE is much lower, which is also caused by the lower amount of

agents.

It is clear that the new MAS is capable of handling about four times as many

agents as the old MAS. In this case the amount of hosts was six, but in principle the

system can use much more hosts and therefore be able to handle more agents. At the

same time, the time to reach convergence is about four times lower on the new MAS

than on the old MAS. The limit to the scalability of the system is therefore better on the

new MAS than on the old MAS.

63

Test Case 2:

Table 5.3: Scalability Test Case- 2

What is the scalability of the new MAS compared to the MAS by N. Capodieci,

in terms of performance per load?

How to Increase amount of Consumer and supplier agents on the old and the new

MAS

 MAS1 MAS2

Type Normal MAS MAS – N.Capodieci

Test1 6 hosts, 58 agents (30c, 7p, 3g,

6b, 6t,6w)

1 host, 43 agents (30c, 7p, 3g, 1b, 1t,

1w)

Test2 6 hosts, 98 agents (60c, 14p,

6g, 6b, 6t, 6w)

1 host, 83 agents (60c, 14p, 6g, 1b, 1t,

1w)

Test3 6 hosts, 178 agents (120c, 28p,

12g, 6b, 6t, 6w)

1 host, 163 agents (120c, 28p, 12g, 1b,

1t,1w)

Metrics

 Number of agents in the system

 Number of hosts

 Total number of messages transferred between agents

 Number of ticks that have passed to reach convergence

 CPU and memory usage

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

64

Results:

Table 5.4: Results of Scalability Test- 2

Metrics Test 1,

new

MAS

Test 1,

old

MAS

Test 2,

new

MAS

Test 2,

old

MAS

Test 3,

new

MAS

Test 3,

old

MAS

Number of hosts 6 1 6 1 6 1

Number of agents 58(30c,

7p, 3g,

6b,6t,

6w)

43(30c,

7p, 3g,

1b, 1t,

1w)

98(60c,

14p, 6g,

6b, 6t,

6w)

83(60c,

14p, 6g,

1b, 1t,

1w)

178(120c,

28p, 12g,

6b, 6t,

6w)

163(120c,

28p, 12g,

1b, 1t,

1w)

Average number of

messages transferred

between agents

4578 7124 7408 54578 28189 531730

Average time to reach

convergence/Number

of ticks that have

passed

10871

ms

10486

ms

12148

ms

38076

ms

22583

ms

696450

ms

Average CPU and

memory usage

42%,

190 MB

51%,

234 MB

46%,

143 MB

55%,

306 MB

42%,

244 MB

72%,

606 MB

Average CPU and

memory usage by

JADE

36%,

100 MB

25%,

71 MB

32%,

113 MB

27%,

77 MB

25%,

132 MB

18%,

95 MB

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

The CPU usage of both MAS is largely constant and no trend is visible in the

data. The CPU usage of the new MAS is consequently 9% lower than the old MAS,

indicating that the scalability of the new MAS is considerably better on this point than

the old MAS.

65

Figure 5.6: Number of Messages sent with the increase in the Number of Agents

Figure 5.7: Run Time Comparison of MAS with the increase in Number of Agents

From these results, it can be concluded that the scalability of the new MAS is

significantly better than the old MAS. The run-time of the old MAS is much longer

than the new MAS, when the amount of agents starts to increase. Also, the amount of

messages being sent in the old MAS rises much quicker than the new MAS.

0

100000

200000

300000

400000

500000

600000

30c, 7p, 3g 60c, 14p, 6g 120c, 28p, 12g

N
U

M
B

E
R

 O
F
 M

E
S
S
A

G
E
S

AGENTS

Number of Messages Sent

Old MAS New MAS

0

100000

200000

300000

400000

500000

600000

700000

800000

30c, 7p, 3g 60c, 14p, 6g 120c, 28p, 12gR
U

N
 T

IM
E
 (

M
IL

LS
E
C

O
N

D
S
)

AGENTS (NUMBER,TYPE)

Run Time Comparison

Old MAS New MAS

66

Figure 5.8: Memory Usage of New MAS with the increase in Number of Agents

Figure 5.9: Memory Usage of Old MAS with the Increase in Number of Agents

The average time to reach convergence is shown in milliseconds, of both the

new MAS and the old MAS. Three results for each MAS were obtained, for the different

agent amounts. Both MAS performed similar in the first test, with the lowest amount

of agents. But the second and especially the third test results are very far apart in run-

time. The old MAS matches a Quadratic growth function: y = 62.8327 x^2 + -6850.18x

+ 183961. The new MAS also matches a Quadratic growth function: y = 0.820937 x^2

+ -66.5875x + 12221, but a much lower one, as the coefficients are more than 50 times

lower. The new MAS only requires 24 seconds to finish the simulation in the third test,

the old MAS requires 11 minutes to do the same.

0

100

200

300

400

500

600

700

800

30C, 7P, 3G 60C, 14P, 6G 120C, 28P, 12G

M
e

m
o

ry
 U

sa
g

e
 (

M
B

)

Agents (Number, Type)

Memory Usage - Old MAS

Memory Usage JADE Memory Usage

0

50

100

150

200

250

300

350

400

30C, 7P, 3G 60C, 14P, 6G 120C, 28P, 12G

M
e

m
o

ry
 U

sa
g

e
 (

M
B

)

Agent (Number,Type)

Memory Usage - New MAS

Memory Usage JADE Memory Usage

67

The average number of messages being sent during a simulation is shown, of

both the new MAS and the old MAS. Three results for each MAS were obtained, for

the different agent amounts. Both MAS performed similar in the first test, with the

lowest amount of agents. But the second and especially the third test results are very

far apart. The old MAS matches a Quadratic growth function: y = 39.8171 x^2 + -

3591.7x + 87084.7. The new MAS also matches a Quadratic growth function: y =

1.5751 x^2 + -118.263x + 6788.33, but a much lower one, as the coefficients are more

than 30 times lower.

From these results, it can be concluded that the scalability of the new MAS is

significantly better than the old MAS. The run-time of the old MAS is much longer

than the new MAS, when the amount of agents starts to increase. Also, the amount of

messages being sent in the old MAS rises much quicker than the new MAS.

Test Case: 3

Table 5.5: Scalability Test Case- 3

What is the scalability of the new MAS with respect to performance increase

per resource?

How to Increase the amount of hosts, while keeping the amount of agents the same

Type Normal MAS

Test1 1 host, 99 agents (60c, 14p, 6g, 6b, 6t, 6w, 1e)*

Test2 3 hosts, same agent amount

Test3 6 hosts, same agent amount

Metrics

 Number of agents in the system

 Number of hosts

 Total number of messages transferred between agents

 Number of ticks that have passed to reach convergence

 CPU and memory usage

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

68

Results:

Table 5.6: Results of Scalability Test Case- 3

What is the scalability of the new MAS with respect to performance increase per

resource?

Metrics Test1 Test 2 Test 3

Number of Hosts 1 3 6

Number of Agents 99(60c, 14p, 6g, 6b, 6t, 6w, 1e)*

Average number of messages

transferred between agents

7851 5058 5470

Average time to reach

convergence/Number of ticks that have

passed

17562 ms 10569 ms 17113 ms

Average CPU and memory usage 55%, 323MB 50%, 263MB 40%, 148MB

Average CPU and memory usage by

JADE

22%, 111MB 32%, 118MB 39%, 115MB

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e – exception handling

Figure 5.10: CPU Usage with the increase in Number of Hosts

From the results it is clear that, there is no clear trend in the data on the amount

of messages transferred or the time to reach convergence, so no graphs have been made

0

10

20

30

40

50

60

70

80

90

1 3 6

%
 o

f
C

P
U

 U
sa

g
e

Number of Hosts

CPU Usage with Number of Hosts

JADE CPU Usage

CPU Usage

69

of this data. A reason for this could be that the agents themselves do not change and

thus do not require more communication or more time to reach convergence. Two

graphs have been made that show the CPU and memory usage of the system and JADE.

The CPU usage of JADE and the new MAS are shown in percentage and are

stacked. Three tests were performed, using one, three and six hosts. The CPU usage of

the new MAS decreases as the amount of hosts increases, which is shown by the light

blue area in the graph. The percentage went from 55% to 50% and then to 40% and

matches a Linear function: y = - 3.02632 x+ 58.4211. This decrease can be explained

by the distribution of the agents over the different hosts. The CPU usage of JADE

increases slightly as the amount of hosts increases, visualized by the dark blue area.

This percentage went from 22% to 32% and to 39% and matches a Linear function: y =

3.31579x + 19.9474. This increase is caused by the additional hosts in the system, as

JADE handles more communication between the hosts. JADE only runs on one host

machine and therefore the average CPU usage on the other hosts is defined by the light

blue area and the corresponding linear function. The CPU usage on the JADE host will

still only slightly rise until about 400 hosts are present, as defined by the two linear

functions.

The memory usage of JADE and the new MAS are shown in MB of RAM and

are stacked in the graph. Three tests can be seen here as well, using one, three and six

hosts. The memory usage of the new MAS decreases as the amount of hosts increases,

shown by the light blue area in the graph. The usage went from 323 MB to 263 MB and

then to 148 MB and matches a Linear function: y = -35.2632 x + 362.211. This decrease

can be explained by the distribution of the agents over the different hosts. The memory

usage of JADE does not change much as the amount of hosts increases, visualized by

the dark blue area. This usage went from 111 MB to 118 MB and to 115 MB, which

makes clear that there is no clear increase or decrease in memory usage.

These results indicate that for most of the hosts the resource usage will decrease

significantly as more hosts are added, except for the host that is running JADE. The

CPU usage on this host will increase slightly, but as the maximum amount of hosts is

around 400, this does not pose a great threat on scalability. This means that the

70

scalability with respect to performance increase per resource is significant enough to

make adding hosts useful.

Test Case: 4

The fourth scalability test case focused on the performance overhead of

restarting agents through the EH agent. In total seven tests have been performed, each

on one host and using 84 agents, 60 Consumers, 14 Prosumers, 6 Gencos, 1 Balancer,

1 Time agent, 1 Weather agent and 1 EH agent. Measurements have been performed on

the number of messages transferred, the time to reach convergence and the average

CPU and memory usage of the system and JADE.

Table 5.7: Scalability Test Case- 4

What is the performance overhead of restarting an agent in the system through

the EH agent?

How to Kill each agent type once, to initiate a restart of that agent

Type Normal MAS

Test1 1 host, 84 agents (60c, 14p, 6g, 1b, 1t, 1w, 1e)*

Test2 1 host, same agent amount, kill a Balancer agent

Test3 1 host, same agent amount, kill a Weather agent

Test4 1 host, same agent amount, kill a Time agent

Test5 1 host, same agent amount, kill a Consumer

Test6 1 host, same agent amount, kill a Prosumer

Test7 1 host, same agent amount, kill a Genco

Metrics

 Number of agents in the system

 Number of hosts

 Total number of messages transferred between agents

 Number of ticks that have passed to reach convergence

 CPU and memory usage

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

71

Results:

Table 5.8: Results of Scalability Test Case: 4

What is the performance overhead of restarting an agent in the system through the EH

agent?

Metrics Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Number of Hosts 1

Number of Agents 99(60c, 14p, 6g, 6b, 6t, 6w, 1e)*

Average number of

messages transferred

between agents

21047 12432 17730 17650 11189 5837 6606

Average time to reach

convergence/Number

of ticks that have

passed

9756

ms

10923

ms

9989

ms

10269

ms

15157

ms

9005

ms

10129

ms

Average CPU and

memory usage

58%,

275MB

54%,

230MB

55%,

226MB

55%,

246MB

53%,

197MB

54%,

202MB

52%,

178MB

Average CPU and

memory usage by

JADE

21%,

90MB

24%,

93MB

23%,

92MB

21%,

86MB

23%,

96MB

20%,

93MB

23%,

88MB

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

The data on the average CPU and memory usage of the new MAS and JADE is

constant. A reason for this could be that the restart of an agent is not big enough to

influence the system on the hardware level and only on the software level.

Figure 5.11: No. of Messages and Run Time (in Millisec) with different Agents

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7A
m

o
u

n
t

(N
u

m
b

e
r,

M
ill

se
c

)

Test No.

Messages and Run Time

Avg. number of Mesgs Time for Convegence (Avg)

72

The first test is a normal run of the system without an agent being killed. The

number of messages being sent in this test is higher than in all the other tests. This is

caused by the fact that a killed agent cannot receive messages and it takes some time

for the agent to be restarted. When a Weather or Time agent is killed, the number of

messages is a little lower than in the normal case, as these agents are not contacted very

often. A killed Prosumer or Genco results in a very large decrease of messages being

sent, as these agents are contacted a lot during the simulation and also send a lot of

messages. The run-time of the new MAS in milliseconds is largely the same for most

tests, but is more than half as long in the case of a killed Consumer. This is caused by

the fact that the simulation is only finished if every Consumer has a contract. As the

killed Consumer has to be restarted and restarts its negotiations from the beginning, this

takes some time and causes this delay.

Test Case: 5

Table 5.9: Scalability Test 5

What is the performance overhead of critical agent replication?

How to Compare the performance of the MAS with different amounts of replicas

on six hosts.

Type Normal MAS

Test1 6 hosts, 84 agents (60c, 14p, 6g, 1b, 1t, 1w, 1e)*, 0 replicas

Test2 6 hosts, 90 agents (60c, 14p, 6g, 3b, 3t, 3w, 1e)*, 2 replicas

Test3 6 hosts, 99 agents (60c, 14p, 6g, 6b, 6t, 6w, 1e)*, 5 replicas

Metrics

 Number of agents in the system

 Number of hosts

 Total number of messages transferred between agents

 Number of ticks that have passed to reach convergence

 CPU and memory usage

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

73

Results:

Table 5.10: Results of Scalability Test 5

What is the performance overhead of critical agent replication?

Metrics Test1 Test 2 Test 3

Number of Hosts 6

Number of Agents 84(60c, 14p,

6g, 1b, 1t,

1w,1e)*

90(60c, 14p,

6g, 3b, 3t,

3w, 1e)*

99(60c, 14p,

6g, 6b, 6t,

6w, 1e)*

Average number of messages

transferred between agents

3028 3581 5470

Average time to reach

convergence/Number of ticks that

have passed

6720 ms 7971 ms 17113 ms

Average CPU and memory usage 43%, 171MB 43%, 169MB 40%, 148MB

Average CPU and memory usage by

JADE

36%, 112MB 31%, 125MB 39%, 115MB

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

Figure 5.12: Run Time/No. of Messages with the increase in number of Replicas

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3

A
m

o
u

n
t(

N
u

m
b

e
r,

m
s)

Number of Replicas

Run-Time /No. of Mesgs.

Number of Messages Run time in Millseconds

74

5.2.3 RELIABILITY TEST CASES:

The first reliability test case focuses on the effectiveness of the EH agent to

prevent complete system failure if a certain agent fails. To test this, the new MAS is

run with the EH agent and without the EH agent for each test and the results are

compared. Two tests have been performed, one on only one host machine, with 83

agents, 60 Consumers, 14 Prosumers, 6 Gencos, 1 Balancer, 1 Time agent and 1

Weather agent. And a test on six hosts, with 98 agents, 60 Consumers, 14 Prosumers,

6 Gencos, 6 Balancer agents, 6 Time agents and 6 Weather agents. In each test, every

agent type was killed twice, resulting in twelve simulations per test. Measurements have

been performed on the number of successful simulations, which is combined with the

number of simulations in order to calculate a Success rate.

Table 5.11: Reliability Test Case: 1

How effective is the EH agent in preventing complete system failure, when a

certain agent fails?

Metrics Test1,

Without

EH agent

Test 1,

With EH

agent

Test 2,

Without

EH agent

Test 2,

With EH

agent

Number of Hosts 1 6

Number of Agents 83(60c,

14p, 6g,

1b, 1t,

1w)*

84(60c,

14p, 6g,

1b, 1t, 1w,

1e)*

98(60c,

14p, 6g,

6b, 6t,

6w)*

99(60c,

14p, 6g,

6b, 6t, 6w,

1e)*

Success Rate = Number Of

Successful Simulations/

Number Of Simulations

7 / 12 =

0.583

9 / 12 =

0.75

10 / 12 =

0.833

11 / 12 =

0.917

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

75

Figure 5.13: Success Rate With/Without Exception Handling Agent

Case 2:

The Success rates of the new MAS on one and six hosts are displayed in a graph.

The Success rate of the new MAS with the EH agent is shown in dark blue and without

the EH agent is shown in light blue. From this graph it is clearly visible that the EH

agent results in higher Success rates on both tests. This means that, if an agent fails, the

system continues to function more often with the EH agent, than without the EH agent.

This indicates that an Exception Handling agent is effective in increasing the reliability

of the system. Together with the scalability test results, this makes a very useful and

effective method. The Success rate is higher in the test with six hosts, with and without

the EH agent.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

S
u

c
c

e
ss

 R
a

te

No of Agents

Success Rate

Without EH Agent With EH agent

76

Table 5.12: Reliability Test Case-2

How effective is critical agent replication in preventing complete system failure,

when a top-level intermediary fails?

Metrics Test 1,

Without EH

agent

Test 2,

Without EH

agent

Test 3,

Without EH

agent

Number of Hosts 1 3 6

Number of Agents 83(60c, 14p,

6g, 1b, 1t, 1w)*

89(60c, 14p,

6g, 3b, 3t, 3w)*

98(60c, 14p,

6g, 6b,6t, 6w)*

Replication Rate = Number of

Extra replicas/Number of Agents

0 / 83 = 0 6 / 83 = 0.07 15 / 83 = 0.18

Success Rate = Number Of

Successful Simulations/

Number Of Simulations

3 / 6 = 0.5 5 / 6 = 0.833 6 / 6 = 1

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

Figure 5.14: Success Rate with the Increase in Number of Hosts

The Success rates of the new MAS on one and six hosts are displayed in a graph.

The Success rate of the new MAS with the EH agent is shown in dark blue and without

the EH agent is shown in light blue. From this graph it is clearly visible that the EH

agent results in higher Success rates on both tests. This means that, if an agent fails, the

system continues to function more often with the EH agent, than without the EH agent.

This indicates that an Exception Handling agent is effective in increasing the reliability

of the system. Together with the scalability test results, this makes a very useful and

effective method. The Success rate is higher in the test with six hosts, with and without

the EH agent.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 6

S
u

c
c

e
ss

 R
a

te

Number of Hosts

Success Rate

77

Case: 3

Table 5.13: Reliability Test Case- 3

What is the impact of a queue limit and garbage collector on agent thrashing?

Metrics Test 1, New

MAS

Test 2,

Old MAS

Test 3,

New MAS

Test 4,

Old MAS

Number of Hosts 1

Number of Agents 83(60c, 14p, 6g, 1b, 1t, 1w)*

Average time to reach

convergence/Number

of ticks that have passed

9756 ms 38076 ms 11588 ms 78597 ms

Average CPU and Memory

Usage

58%,

275MB

55%,

306MB

51%,

377MB

57%,

402MB

Average CPU and Jade

Memory Usage

21%, 90MB 27%,

77MB

17%,

76MB

25%,

84MB

*Notation: c – consumer; p – prosumer; g – genco; b – balancer; t – time; w – weather;

e- exception handling

From these results, there is one significant difference noticeable in the second

test between both MAS. This is the average time to reach convergence. The new MAS

finishes in 12 seconds, while the old MAS takes 79 seconds. Even more interesting was

the fact that the new MAS had a Spam agent that sent a message to each agent in the

system every 50 milliseconds, where the old MAS could not finish the simulation in

the same case and could only work if messages were sent every 500 milliseconds.

Compared to the first test, the new MAS performs slightly less with the Spam

agent active in the second test, which was to be expected. The time to reach

convergence is about 19% higher. The time to reach convergence is increased by 106%.

Here the memory usage is also about 100 MB higher.

As seen from these results, the impact of a queue limit and garbage collector is

huge. It can prevent agent thrashing due to a faulty agent which is spamming messages.

This is clearly what happened to the old MAS in this test and what was prevented in

the new MAS. The reliability of the new system is therefore much better, as the system

can cope with faulty agent.

78

CHAPTER 6

CONCLUSIONS

6.1 SUMMARY

In this thesis, the main focus was to create a reliable Multi-agent system for a

large scale distributed energy trading network. The need for such a system was

described in the introduction and is linked to the need for changes in the current energy

market. The current model is too monopolistic and favors the big energy production

companies, or Gencos. The consumers are therefore bound to high prices and limited

innovation, because of low market competition. This model is now slowly undergoing

some changes, such as new Gencos being added, which tend to make it a more open

market where there is more focus on innovation as well as environmental issues.

However, there is still a lot that has to be improved, as today the so called Prosumers

can only sell their energy back to their Genco and no other consumers. The ideal future

vision is that of an open energy market where Prosumers and Gencos compete for the

consumers. The necessary changes to the current market and energy grid therefore have

to be identified and an energy market simulation can provide a platform where these

changes can be tested before they are actually used. It can also be used after the actual

changes have been made, as a testing and monitoring environment. It has been shown

that the ideal candidate for such a simulation is a Multi-agent system, because of the

autonomy and ability to model behavior.

In the state of the art different related projects have been discussed as well as

Multi-agent systems in general. A lot of different platforms and agent languages exist

that can be used to implement a Multi-agent system. Also a lot of different systems

have already been implemented in the field of energy market simulations. One of these

systems is the MAS by N. Capodieci, which was used a basis for this thesis. This is a

basic MAS that simulates the energy market by using Consumer, Prosumer and Genco

agents that buy and sell energy in a contracting auction. It also has a time and weather

simulation and a GUI.

79

The scope of this research was to use the existing MAS by N. Capodieci that

supports this simulation and to expand it by adding scalability and reliability

improvements to make the system more usable. This was needed because these features

have not been taken into account when that MAS was created. The system was limited

to one host only and has no specific measures to prevent failures. This limited the usage

of the system, as only a limited amount of agents could be run and the system could

crash on a fault.

JADE was used as the platform for the Multi-agent system implementation, as

explained in the background information. The JADE platform provided the best

advantages and features for the system that needed to be created. Also, the MAS by N.

Capodieci uses JADE, which was another major advantage. A lot of different methods

of improving scalability and reliability for Multi-agent systems exist, but not all of these

were suitable in this case. The advantages and disadvantages of each method have been

compared and a selection has been made on this basis. Some of the more prominent

methods were: the use of distribution and replication, which proved invaluable for the

scalability and reliability of the system.

The architecture of JADE and the MAS has been clearly explained. JADE uses

a container that wraps the agents. This allows the JADE system to distribute on several

hosts, each running one or more containers, which results in a system that supports

transparent access. JADE also implements an agent behavior scheduler and uses agent

address caching, which are in total three of the methods chosen that can increase the

scalability of a MAS. The architecture of the MAS itself was focused on the structure

of the agent communication and interaction and the structure of the system, which

corresponded largely to the JADE structure. Different methods have been realized and

are visible in the architecture, such as distribution, replication and the EH agent.

The implementation was focused on the class diagram and class implementation

of the agents. Three features that improve the reliability of the MAS have been

implemented on this level, the queue limit, the garbage collector and the handling of

messages from the EH agent.

80

A wide range of test cases have been created that focused on testing the selected

methods in the field of scalability and reliability and are based on the research questions

stated in the introduction.

In total eight test cases have been created, five for scalability tests and three for

reliability tests. The tests cases focused on different aspects of the scalability and

reliability of the system, such as the performance increase per added resource and the

agent limit, as well as the impact of the EH agent and replication on the success rates.

The tests have been performed on a reasonably fast system and measures have

been taken to ensure realistic and correct test results, such as running no other programs

on the system and using similar systems for testing with multiple hosts. Also each of

the tests within each test case has been performed five times, in order to average the

values and remove spikes in the data.

6.2 CONCLUSIONS

 Number of Agents can the MAS handle before it becomes unstable?

- The MAS can handle 818 agents on a 6 host system, which is four times as

many as the old MAS. The MAS requires only 8 minutes to finish this

simulation, where the old MAS takes four times as long

 Scalability of the new MAS compared to the old MAS, in terms of performance

per load?

- The new MAS was tested on 6 hosts, the old MAS on 1. The CPU usage of

the new MAS did not increase as the amount of agents increased, this did

happen on the old MAS. The memory usage of the new MAS is significantly

6lower than the old MAS and increases slower, but both match a linear

function. The time to reach convergence and the amount of messages is

limited in the new MAS and also rises much slower than on the old MAS,

but both match a Quadratic function.

81

 Scalability of the new MAS with respect to performance increase per resource?

- As new hosts are added to the MAS, the time to reach convergence and the

amount of messages transferred does not change noticeably. The memory

and CPU usage decreases significantly for each added host by a linear

function, except for the host that is running JADE, which has a slight

increase in CPU usage.

 Performance overhead of critical agent replication?

- The memory and CPU usage of the MAS shows no specific changes if more

replicas are added. The time to reach convergence and the amount of

messages does increase significantly by a Quadratic function.

 What is the performance overhead of restarting an agent in the system through

the EH agent?

- The CPU and memory usage for restarting an agent does not differ from the

normal case. The time to reach convergence and the amount of messages

sent decreases in most of the cases, compared to the normal case. Only the

restart of a Consumer has a negative effect on the time to reach convergence,

which increases by 50%.

Reliability Evaluation questions:

 How effective is the EH agent in preventing complete system failure, when a

certain agent fails?

- The MAS with the EH agent results in higher success rates than the MAS

without the EH agent. The success rates increase by 10-28%, depending on

the amount of hosts.

 How effective is critical agent replication in preventing complete system failure,

when a top level intermediary fails?

- The MAS without critical agent replication has a success rate of 50%, where

the MAS with a replication rate of 0.18 has a success rate of 100%.

82

 What is the impact of a queue limit and garbage collector on agent thrashing?

- The new MAS was tested with a Spam agent sending a message every 50

milliseconds, the old MAS was tested with a Spam agent sending a message

every 500 milliseconds. The new MAS finishes in 12 seconds, as the old

MAS without queue limit and garbage collection takes 79 seconds. There is

no clear distinction in memory usage or CPU usage of both MAS.

6.3 FUTURE WORK

The possibilities for this expanded functionality are endless, as the system can be

expanded by all kind of agent types, learning strategies, more hosts, improved GUI,

realistic weather, real world topology, etc. Some possible expansions that I would

personally find useful or would have done if I had more time:

 Extended bug fixing and performance increases, by removing unnecessary

messages and code.

 Adding realistic weather.

 Adding some small real world topology.

83

REFERENCES

[1] Sinha A, Neogi S., Lahiri R.N., Chowdhury S., Chowdhury, S.P., Chakraborty

N, Smart grid initiative for power distribution utility in India, Power and Energy

Society General Meeting, 2011 IEEE, 24-29 July 2011, Page(s): 1 – 8

[2] Rihan, M. ,Electr. Eng. Dept., Aligarh Muslim Univ., Aligarh, India Ahmad,

Mukhtar; Salim Beg, M. Developing smart grid in India: Background and

progress; Innovative Smart Grid Technologies - Middle East (ISGT Middle

East), 2011 IEEE PES Conference on 17-20 Dec. 2011; Page(s): 1 - 6

[3] http://en.wikipedia.org/wiki/Electricity_market

[4] Marta Marmiroli and Hiroshi Suzuki. Web-based Framework for Electricity

Market. Power System and Transmission Eng. Center, Mitsubishi Electric

Corporation.

[5] S. Widergren, J. Sun, and L. Tesfatsion. Market Design Test Environments.

Proc. of 2006 IEEE PES General Meeting. June 2006.

[6] I. Praca, C. Ramos, and Z. Vale. MASCEM: A Multi agent System that

Simulates Competitive Electricity Markets. IEEE Trans. Intelligent Systems.

Vol. 18, Pages. 54-60. Dec. 2003.

[7] Michael Wooldridge. An Introduction to Multi Agent Systems. John Wiley &

Sons Ltd, 2002, paperback, 366 pages.

[8] Zahia Guessoum, Jean-Pierre Briot, Olivier Marin, Athmane Hamel, and Pierre

Sens. Dynamic and Adaptive Replication for Large-Scale Reliable Multi-Agent

Systems. In Software Engineering for Large-Scale Multi-Agent Systems.

Lecture Notes in Computer Science, Vol. 2603/2003, Pages 70 211-235, 2003.

[9] Nanpeng Yu and Chen-Ching Liu. Multi-Agent Systems and Electricity

Markets: State-of-the- Art and the Future. In Power and Energy Society General

http://en.wikipedia.org/wiki/Electricity_market

84

Meeting - Conversion and Delivery of Electrical Energy in the 21st Century

(IEEE), Pages 1-2, July 2008.

[10] G. Nguyen, T. Dang, L. Hluchy, Z. Balogh, M. Laclavik, and I. Budinska. Agent

platform evaluation and comparison. Technical report for Pellucid 5FP IST-

2001-34519, June 2002.

[11] N. Capodieci. P2P energy exchange agent platform featuring a game theory

related learning negotiation algorithm. Master's thesis, University of Modena

and Reggio Emilia, 2011.

[12] L.C. Lee, H.S. Nwana, D.T. Ndumu and P. De Wilde. The stability, scalability

and performance of multi-agent systems. In BT Technol J, Vol. 16, No. 3, July

1998.

[13] Onn Shehory. A Scalable Agent Location Mechanism. In Intelligent Agents VI.

Agent Theories Architectures, and Languages. Lecture Notes in Computer

Science, Vol. 1757/2000, Pages 162-172. 2000.

[14] N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T. Brazier.

Supporting Internet-Scale Multi-Agent Systems. In Data & Knowledge

Engineering, Vol. 41, Issues 2-3, Pages 229-245, June 2002.

[15] Ralph Deters. Scalability & Multi-Agent Systems. 2001.

[16] Staffan Hägg. A Sentinel Approach to Fault Handling in Multi-Agent Systems.

In Proceedings of the Second Australian Workshop on Distributed AI, in

conjunction with Fourth Pacific Rim International Conference on Artificial

Intelligence (PRICAI'96), 1996.

[17] Eric Platon, Shinichi Honiden and Nicolas Sabouret. Challenges in Exception

Handling in Multi-Agent Systems. In Proceedings of the 2006 international

85

workshop on Software engineering for large-scale multi-agent systems

(SELMAS '06), May 22-23, 2006.

[18] Sanjeev Kumar and Philip R. Cohen. Towards a Fault-Tolerant Multi-Agent

System Architecture. In Proceedings of the fourth international conference on

Autonomous agents, Pages 459-466, 2000.

[19] Mark Klein, Juan-Antonio Rodriguez-Aguilar, Chrysanthos Dellarocas. Using

Domain- Independent Exception Handling Services to Enable Robust Open

Multi-Agent Systems: The Case of Agent Death. Autonomous Agents and

Multi-Agent Systems, Volume 7, Pages 179-189, 2003.

[20] Olivier Marin, Pierre Sens, Jean-Pierre Briot, Zahia Guessoum. Towards

Adaptive Fault Tolerance For Distributed Multi-Agent Systems. In Proceedings

of ERSADS’2001, May 2001.

[21] N. P. Yu. Modeling of Suppliers’ Learning Behaviors in an Electricity Market

Environment. M.S. thesis, Dept. EE. Eng, Iowa. State University, Ames. 2007.

86

APPENDIX A

A MODEL OF AN INTELLIGENT MULTI-AGENT SYSTEM

Agents reside and are executed in Places. There are five kinds of Agents: User

Agent, Intermediary Agent, Knowledge Agent, Notice Agent, and Update Agent.

Agents in the systems are Intelligent Agents. Knowledge Base based on COKB

(Computational Object Knowledge Base) stores the knowledge relating to a field. The

knowledge consists of concepts, hierarchy, relations between concepts, operators,

functions and rules. Storage stores facts about states of local environment in the Place

and facts about states of global environment in the system.

Figure showing Agent Structure and Relationship

87

In the model, we organize four Places: Place 1, Place 2, Place 3, and Place 4.

Place 1 is used to interact with users. It consists of UAgent and Storage. UAgent is a

User Agent. Storage stores states of local environment of Place 1. Place 2 is used to

deal with the knowledge in field A. It consists of IAAgent, AAgent, NABAgent,

NACAgent, UpAAgent, Knowledge Base A, and Storage. IAAgent is an Intermediary

Agent in field A. AAgent is a Knowledge Agent in field A. NABAgent is a Notice

Agent of Place 3. NACAgent is a Notice Agent of Place 4. UpAAgent is an Update

Agent of the field A. Knowledge Base A stores the knowledge in field A. Storage stores

states of local environment in Place 2 and states of global environment in the system.

Place 3 is used to deal with the knowledge in field B and Place 4 is used to deal with

the knowledge in field C. They are similar to Place 2. Agents can interact with agents

in a Place or agents in different Places.

88

JADE GUI:

