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ABSTRACT

Analytical expressions for average delay, throughput and packet drop rate are derived

for Proportionally Fair Scheduling (PFS) algorithm for the cases of both IID and Non

IID Rayleigh channels for the case of data transfer rate linear with SNR of the wireless

channel and only under IID Rayleigh channels for the case of data transfer rate log-

arithmic with SNR of the wireless channel. We studied the influence of packet drop

rate on average delay and throughput of PF scheduling. Similarly for Modified Largest

Weighted Delay First (MLWDF) scheduling algorithm analytical expressions for aver-

age delay, throughput and packet drop rate are derived for the case of IID Rayleigh chan-

nel and also analyzed the influence of packet drop rate on average delay and through-

put in MLWDF scheduling.We also analyzed the tradeoff between delay parameters,

throughput and packet drop for the above scheduling algorithms. The above relations

have been derived using a Markov chain state model in which the states represent delay

of the users.
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CHAPTER 1

Introduction and related work

The increasing demand for the data services both real time and non real time has drawn

attention to the importance of scheduling algorithms which utilizes the constrained

wireless resources to the maximum extent possible as well as meeting Quality of Ser-

vice (QoS) requirements. Various scheduling algorithms have been proposed in [1]–

[3]to meet the diversified interests of various organizations. In the discussion below

we assume time is slotted and the base station schedules the user at each time slot for

down link data transfer. Each user ends his data transfer at the end of this given slot.

Apart from this channels vary in both in slow and fast time scale. With the case of fast

fading the channel varies asynchronously from good to bad in a matter of milli seconds,

similarly slow fading channels causes the users with bad channel conditions demand

more air resources than the users with good channel conditions. A good scheduling

policy must take advantage of this and adapt to scheduling the users when they are in

good state. The important QoS requirements include multiple real time users be sup-

ported simultaneously with good quality of service for all users, namely packet delays

not exceeding thresholds with high probability simultaneously the mixture of real time

and non real time users , with real time users receiving the desired QoS and non real

time users having the maximum possible throughput without compromising the QoS

of real time users. Different algorithms provide different significance to above criteria

while scheduling. It is in our best interest to be able to understand the trade off to select

the most appropriate scheduling algorithm to meet our desires.To analyze the tradeoff

between delay and throughput first we require the analytical expressions for delay and

throughput. In this paper we attempt to derive analytical expressions for the average

delay and throughput for the popular Proportionally Fair (PF) and Modified Largest

Weighted Delay First (MLWDF) scheduling algorithms. Ideal requirements include

no packet drop, but in real time situations packets are dropped when the TTL (Time To

Live) of the packet expires. High packet drop rate worsens the effective utilization of the

channel, hence the packet drop rate should also be monitored. This brings packet drop

rate parameter into the picture. The objective is now modified to select the scheduling



algorithm with the desired trade off between delay, throughput as well as packet drop

rate.

So far the majority of the works [4], [5] in PF concentrated over throughput gain.Analysis

of delay in PF scheduling is done in [6]–[8]. MLWDF scheduling algorithm was anal-

ysed in [9], [10].The focus of the work is to analyze the behavior of PF scheduling

algorithm’s various aspects analytically such as average delay, no of slots required to

schedule X% of packets, packet drop rate and throughput gain for various scenarios.

We derived the analytical expressions for the above which are verified by comparing

them with the simulated results. We also derived analytical expressions for MLWDF

scheduling algorithm for the case of iid Rayleigh channels with no packet drop and rate

is linear with SNR. We observed the trade off of better throughput gain of PFS with the

better delay performance in MLWDFS along with some interesting relations. Our work

is organized below.

In section II , we explain the commonly used scheduling algorithms in wireless com-

munication and a brief explanation of its functionality. In section III, we derived the

expressions for throughput gain, packet drop rate and delay metrics for PF scheduling

under various conditions. In section IV, similar to section III we derived the expressions

for the case of iid Rayleigh channels with no packet drop and rate is linear with SNR.

The differences between PFS and MLWDF is analyzed in section V.
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CHAPTER 2

Scheduling Algorithms

Consider a single cellular system where there are N active users, each with an infinite

buffer of data and no data rate constraints. Let ri(t) denote the transmission rate of

user i at slot t if scheduled and is assumed that {ri(t), t ≥ 0} is a stationary and ergodic

process. Similar to [11], it is assumed that rate prediction is perfect. τi(t) is a stationary

process which denotes the received channel power of user i at time slot t on a sub

carrier in the OFDM symbol, then the SNR of the same sub carrier seen by the user i

at time t can be defined as gaiτi(t) where g = Es
σ2

T
,Es is the transmitted symbol energy

and σ2
T is the thermal noise variance and ai denotes the path loss and shadowing effects

which captures the slow scale fading characteristics. Let Wi(t) denote the delay of user

i at time t and it is assumed to be stationary. If the user i is scheduled at time t, then

Wi(t +1) = 0.Some of the commonly used scheduling algorithms have been described

from [12].

2.1 Round Robin Scheduling

Round Robin (RR) Schedules the users in a cyclic fashion i.e. all the users experience

the same amount of time to get scheduled. One can describe the RR scheduling policy

as selecting the user i(t) at slot t according to

i(t) =arg j=1...NWi(t) = N−1

All the users experience the same delay and it is unable to exploit the channel variations.

So though it is very simple it is commonly not used in applications requiring high

performance.



2.2 Max Rate Scheduling

Max Rate scheduling provides the system with the maximum possible throughput it can

achieve. The Max Rate scheduling policy selects the user i(t) at slot t according to

i(t) = arg max
j=1,...,n

r j(t)

It schedules the user which supports the maximum rate at the time of scheduling deci-

sion. Though the system can achieve maximum possible throughput it almost does not

provide any service to the users with bad channel conditions. It is not a good algorithm

considering the QoS requirements imposed on the scheduling algorithms.

2.3 Proportionally Fair Scheduling

Proportional Fair scheduling tries to maximize the wireless channel bandwidth effective

utilization as well as balancing the throughput’s of the users according to their channel

conditions. It was designed for delay insensitive users. PFS selects the user i(t) at slot

t according to

i(t) = arg max
j=1,...,n

r j(t)
Tj(t)

where r j(t) is the data rate that can be supported by user i at time t. The throughput

Tj(t) is typically evaluated through an exponentially smoothed average :

Tj(t) =


(

1− 1
tc

)
Tj(t−1)+ 1

tc
r j(t), j = i(t)(

1− 1
tc

)
Tj(t−1), j 6= i(t)

where tc is the time-window length over which one wants to regulate the fairness. Pf

provides the better QoS service since the user with bad channel conditions have lower

denominator which enhances the decision metric until it is scheduled. In spite of the

above it still does not cater to the meet the delay constraints which is very important for

real time users.

4



2.4 Modified Largest Weighted Delay First Scheduling

MLWDFS tries to provide the better delay QoS as well as maximizing the throughput

possible. MLWDFS selects the user i(t) at slot t according to

i(t) = arg max
j=1,...,n

r j(t)Wj(t)
Tj(t)

where ri(t) is the data rate that can be supported by user i at time t and Wi(t) is the

HOL delay of user i at time t.The throughput Tj(t) is typically evaluated through an

exponentially smoothed average as described in section 2.3.

2.5 Exponential Rule Scheduling

Exponential Rule scheduling selects the user i(t) at slot t according to

i(t) = arg max
j=1,...,n

r j(t)
Tj(t)

exp
(

Wi(t)−W (t)
1+W (t)

)

where ri(t) is the data rate that can be supported by user i at time t, Wi(t) is the HOL

delay of user i at time t and W (t) = 1
N ∑i=1..N Wi(t) is the average delay of the system at

time t.The throughput Tj(t) is typically evaluated through an exponentially smoothed

average as described in section 2.3.

5



CHAPTER 3

System Model

The wireless channel of the sub carrier hi(t) in time domain at slot t of the ith user

comprises of L taps and has unit energy. The analysis below is done for Rayleigh

fading .For Rayleigh fading, the received channel power τi(t) seen on a sub carrier for

the ith user has a pdf given by

fτi(t)(x) =λe−λx (3.1)

We define Y (t) = [W1(t)...WN(t)] is a 1−N system state vector whose entries denote the

delays of users 1...N at time t and is stationary. Let Zi be the r.v that denotes the delay

at which the user is scheduled(renewed is also used interchangeably). Since Wi(t) and

Yi(t) are assumed to be stationary, we denote them by Wi and Y . We need to distinguish

the difference between PW (Wi = n) and PZ(Zi = n), the former represents the probability

of user i having delay n at time t while the latter represents the probability of renewal

at delay n .To simplify our analysis we assume independence between delay states as

explained in (3.2) and the system model as in Figure 1 .

Fig. 3.1 Model depicting the state flow of each user



P(Y = [m1,m2, ...,mN ]) =
N

∏
i=1

PW (Wi = mi) (3.2)

The pmf of the renewal delay of the model as given in [13]

PZ(Zi = n) = Pi
0,1Pi

1,2...P
i
n−1,nPi

n,0 (3.3)

where Pi
n,n+1 denotes the transition probability of user i in delay state n not being sched-

uled while Pi
n,o denotes the probability of user i in delay state n being scheduled.The

above equation intuitively implies that probability of renewal at a particular delay is the

probability of being present in that delay state and then being scheduled.The pmf of the

delay state of user i as given in [13]

PW (Wi = n) = PW (Wi = 0)∗Pi
0,1Pi

1,2...P
i
n−1,n (3.4)

for i = 1,2... From (3.3) and(3.4) , the transition probability is

Pi
n,o =

P(Wi = 0)∗PZ(Zi = n)
PW (Wi = n)

We derive the expression for transition probabilities by expectation over the conditional

transitional probabilities i.e. we are averaging over all the possible scenarios of being

scheduled.

Pi
n,0 =Eτi[EY ′i

[P
i

n,0/Y,τi
]] (3.5)

P
i

n,0/Y,τi
denotes the probability of scheduling of user i given the current system state and

received channel power of user i. The conditional expectation of transition probability

on received channel power is evaluated by summing over all the possible system delay

states Y
′
i = [m1...mN ] where m j is varied from 0 to ∞, ∀ j = 1, ..,N and j 6= i and mi = n

EY [P
i

n,0/Y,τi
] =∑

Y ′i

P
i

n,0/Y,τi
∗P(Y = y) (3.6)

7



To simplify the above expression, as stated above we assume the independence of the

delay states between the users and(3.6) simplifies to

EY [P
i

n,0/Y,τi
] =PW (Wi = n)∑

Y ′i

P
i

n,0/Y,τi
∗

N

∏
j=1, j 6=i

P(Wj = m j) (3.7)

Similarly we try to derive the throughput expression by expectation over the rate con-

ditioned on being scheduled over all the possible scenarios of being scheduled.

Ti = Eτi[r(τi)∗EY [P
i

n,0/Y,τi
]] (3.8)

where r(τi) denotes the data rate as a function of received channel power. We have

to note the difference between (3.5) and (3.8) , the former is averaged over conditional

transitional probabilities for all the states Y
′
i while the latter is averaged over conditional

rates over the states Y .

8



CHAPTER 4

PF Scheduling

PFS selects the user i(t) at slot t according to

i(t) = arg max
j=1,...,n

r j(t)
Tj(t)

where r j(t) is the data rate that can be supported by user i at time t. The throughput

Tj(t) is typically evaluated through an exponentially smoothed average :

Tj(t) =


(

1− 1
tc

)
Tj(t−1)+ 1

tc
r j(t), j = i(t)(

1− 1
tc

)
Tj(t−1), j 6= i(t)

where tc is the time-window length over which one wants to regulate the fairness. The

PFS is asymptotically fair in the sense that all users receive the same fraction of the

time slots in a homogeneous system [11], [14]. When tc→ ∞, the average throughput’s

are stationary for the Rayleigh channel where the rate is linear with received SNR [11]

i.e. Ti(t) = Ti(t +1) = Ti. But we assume that the throughput’s are stationary even for

the case of rate logarithmic with received SNR as verified by simulations. Based on this

ground work for PFS we now try to analyze the delay parameters, throughput gain and

packet drop rate for various scenarios below.

4.1 IID Rayleigh Channels, Rate is linear with SNR

The date rate supported by user i at time t is given by ri(t) = log(1+ gaiτi(t)), where

gaiτi(t) is the SNR of user i at time t. We begin by making the assumption,rate is linear

with SNR i.e ri(t) = gaiτi(t) and also with all the users having the same iid Rayleigh

channel conditions.



4.1.1 Delay

The transition probability is state independent in this case and is assumed to be different

constant for different users. Let pi denote the transition probability of user i being

scheduled.

Pi
n,0 =pi (4.1)

Form the above eqn, plugging into (3.3) and (3.4) ,we get the pmf of renewal and delay

states to be geometric distribution’s

PZ(Zi = n) =(1− pi)
n pi (4.2)

PW (Wi = n) =PW (Wi = 0)∗ (1− pi)
n (4.3)

By normalizing, i.e ∑
∞
n=0 PW (Wi = n) = 1 , (4.3) simplifies to

PW (Wi = n) = (1− pi)
n pi (4.4)

To proceed further we need to evaluate the parameter pi.Since we are considering iid

channel conditions all the users experience the same shadow and path losses i.e. ai = a,

∀i = 1, ...,N. We now try to simplify (4.1) the with the linear assumption between rate

and SNR and the stationary property of throughput’s Ti and received channel power τi.

The user i with received channel power τi is scheduled if

τi

Ti
>

τ j

Tj

∀ j = 1, ...,Nand j 6= i. We already stated that asymptotically average throughput’s Ti

are stationary. But since it is iid channel conditions , each user experiences the same

decisions and hence the same stationary average throughput implies Ti = Tj ∀i, j =

1, ...,N.The above scheduling rule simplifies to τi > τ j similar to Max Rate scheduling

rule.The scheduling decision is delay independent and hence (3.6) simplifies to

10



EY [P
i

n,0/Y,τi
] =∑

Y ′i

P
i

n,0/Y,τi
∗

N

∏
j=1

P(Wj = m j) (4.5)

=P
i

n,0/τi
(4.6)

P
i

n,0/τi
denotes the probability of scheduling given the channel strength of user i. for

j = 1...N. The conditional transitional probability is now

P
i

n,0/τi
=

N

∏
j=1, j 6=i

Fτ j(t)(τi) (4.7)

=
(
Fτi(t)(τi)

)N−1 (4.8)

where Fτi(t)(x) and fτi(t)(x) are the cdf and pdf of the received channel power of user i.

The probability of scheduling of user i is the probability that the remaining users have

received channel power less than his own. The next step is obvious as all the users have

same channel conditions and hence same Fτi(t)(x)and fτi(t)(x). (3.5) can be written after

simplification of (4.6) as

pi = Eτi[P
i

n,0/τi
]

=

ˆ
∞

0

fτi(t)(x)P
i

n,0/τi
dx

=

ˆ
∞

0

fτi(t)(x)
(
Fτi(t)(τi)

)N−1 dx

Since it is a Rayleigh channel, from (3.1) fτi(t)(x) = λie−λix and Fτi(t)(x) = 1− e−λix

and we get

pi =

ˆ
∞

0

λie−λix
(

1− e−λix
)N−1

dx

=
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)

=
1
N

The above result makes sense as the users experience same iid channel conditions and

the decision is delay independent for PFS, every one has equal probability of being

scheduled at each slot. For the infinite window length, the average delay experience by

11



No of Users Simulated Calculated
N µ µ

10 9.0007 9
25 24.0015 24
40 38.9992 39

Table 4.1 The table of calculated and simulated average delays for various no of
usersN

each user is

µi =
∞

∑
n=0

n∗PZ(Zi = n)

=
∞

∑
n=0

n∗ (1− pi)
n ∗ pi

=
1
pi
−1

= N−1

The simulated and calculated average delays of users under the iid Rayleigh channel

conditions and rate linear with SNR assumption for infinite window is tabulated in Table

4.1 for various values of no of users N.As you can see that for iid channel conditions

average delay of the users in PF behaves like the delay of Round Robin scheduling.

In practical situations, people do not consider average delay as a reliable parameter

instead they want to know, no of slots M′required to schedule X% of packets as a pa-

rameter in analysis i.e. they want to ensure that the packets delays are with in the

threshold limits with high probability.Let us recall the definition of r.v Z which is the

probability of renewal at a particular delay .Hence no of slots M′ required to scheduled

X%of packets can be be thought of as probability of renewal at delay less than M′ to be
X

100 .

X
100

=
M′

∑
n=0

PZ(Zi = n) (4.9)

=
M′

∑
n=0

pi(1− pi)
n

=1− (1− pi)
M′+1

M′ =
log(1− X

100)

log(1− pi)
−1

12



No of
UsersN

M′

Simulated
X = 50%

M′

Calculated
X = 50%

M′

Simulated
X = 75%

M′

Calculated
X = 75%

M′

simulated
X = 95%

M′

Calculated
X = 95%

10 6 6 13 13 28 28
25 17 17 34 33 73 73
40 27 27 54 54 118 117

Table 4.2 The table of calculated and simulated M′ for various no of users N and X

We consider the cases of X% to be 50%,75% and 95% . So we tabulated the simulated

and calculated M′ for various no of users in Table 4.2 and M′is rounded off to integer

greater than M′.We observe the results for the case of 10 user system. The no of slots

required to schedule X% of packets increases with X . We also notice that for the in-

crease of X% from 50% to 75% , the no of slots increased by 6, but from 75% to 95%

the no of slots increases by 15. For the same X%, the value of M′increases with no of

users.

4.1.2 Throughput

As stated above as tc→∞ the average throughput’s are stationary.Since we are now con-

sidering iid channel conditions, each user’s throughput converges to the same value.Ti =

Tj,∀i, j = 1, ...,N. From (3.8) and (4.5)we evaluate throughput as

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

From (4.7) we simplify the above expression to

Ti =

∞̂

0

r(x)∗λie−λix(1− e−λix)N−1dx

=g

∞̂

0

x∗λie−λix(1− e−λix)N−1dx

=
g
λi

N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

One is often interested to calculate the gain of the scheduler with respect to the Round

robin scheduler. For the RR scheduler each user gets scheduled once in N slots. Hence

the average throughput of RR scheduler is T RR
i = 1

N E[r(τi)] =
g

N∗λi
. so the scheduling

13



No of
UsersN

G
Simulated

G
Calculated

10 2.9296 2.9290
25 3.8166 3.8160
40 4.3000 4.2785

Table 4.3 The table of calculated and simulated scheduling throughput gain for vari-
ous no of users N

throughput gain of the scheduler G is given by

G =
∑

N
i=1 Ti

∑
N
i=1 T RR

i

=N ∗
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

The simulated and calculated gains of the iid Rayleigh channel with infinite window

and linear assumption is tabulated in Table 4.3 for different no of users. One can notice

that the throughput gain is directly proportional to no of users N, but the rate of increase

decrease with N.

4.2 Packets dropped after maximum Delay,IID Rayleigh

Channels, Rate is linear with SNR

We now analyze how the delay and throughput changes for the case of finite maximum

delay setting M beyond which the packet is dropped by the scheduler. We still consider

the iid Rayleigh channels with the assumption that the rate is linear with SNR ri(t) =

gaiτi(t).

4.2.1 Delay

Since the scheduling decision is delay independent and does not depend on maximum

delay setting, we have the same transition probabilities, Pi
n,0 = pi =

1
N , for n = 0, ...,M

and i = 1, ...,N. So we now have to derive the expressions for average delay, before we

proceed further we have to re examine the pmf of renewal delay as the infinite delay

14



No of
UsersN

µ

Simulated
M = N

µ

Calculated
M = N

µ

Simulated
M = 1.5∗N

µ

Calculated
M = 1.5∗N

µ

Simulated
M = 2∗N

µ

Calculated
M = 2∗N

10 3.9718 3.9694 5.3657 5.3608 6.3979 6.4199
25 10.2256 10.2458 14.0797 14.0354 16.7918 16.7349
40 16.4934 16.5176 22.4745 22.4468 27.1193 27.0419

Table 4.4 The table of calculated and simulated average delays for various no of users
N and maximum delay settings M

states in previous cases reduced to finite length M.

PZ(Zi = n) =k(1− pi)
n pi

The constant k is evaluated by normalizing ∑
M
n=0 PZ(Zi = n) = 1 which results in k =

1
1−(1−pi)M+1 . The average delay is evaluated as

µi =
M

∑
n=0

n∗PZ(Zi = n)

=
M

∑
n=0

n∗ k(1− pi)
n ∗ pi

= k
(
(1− pi)(1−M ∗ (1− pi)

M+1 +(M+1)∗ (1− pi)
M)

pi

)

The simulated and calculated average delays of the iid Rayleigh channel with finite M

and linear assumption is tabulated in Table 4.4 for different no of users N and maximum

delay setting M. The average delays in this scenario decreased compared with the

same case considered in section 4.1. This is because the packets which waited long

for scheduling in the previous case are now dropped hence the the reduction in average

delay but finite packet drop rate. As you increase M, some of the packets with greater

delay dropped in the previous case are now scheduled which causes the increase in

average delay.

As discussed above we are interested to know the no of slots M′required to schedule

X%of packets rather than average delay. We use the same derivation as in 4.9

15



No of

UsersN

M′

Simulated
M = 1.5N

X = 50%

M′

Calculated
M = 1.5N

X = 50%

M′

Simulated
M = 2N

X = 50%

M′

Calculated
M = 2N

X = 50%

M′

Simulated
M = 1.5N

X = 75%

M′

Calculated
M = 1.5N

X = 75%

M′

Simulated
M = 2N

X = 75%

M′

Calculated
M = 2N

X = 75%

10 5 4 5 5 8 8 10 10
25 12 12 14 14 22 22 26 26
40 19 19 22 22 35 35 41 41

Table 4.5 The table of calculated and simulated M′ for various no of users and maxi-
mum delay settings

X
100

=
M′

∑
n=0

PZ(Zi = n)

=
M′

∑
n=0

k ∗ pi(1− pi)
n

=k
(

1− (1− pi)
M′+1

)
M′ =

log(1− X
k∗100)

log(1− pi)
−1 (4.10)

The simulated and calculated M′ of the iid Rayleigh channel with finite window length

M and linear assumption is tabulated in Table 4.5 for different no of users and maximum

delay setting M and M′ rounded off to integer greater than M′. We consider the case of

X% to be 50% and 95%.Similar to the average delay, no of slots M′ decreased for the

same case in previous section because the longer delayed packets are dropped, thus the

packets which are considered are the packets that are scheduled with delay less than M.

hence the decrease in M′.

4.2.2 Packet Drop

In the previous subsection we considered the case of no packet loss, but in reality pack-

ets are dropped beyond certain waiting time. Higher packet drop rates lessens the ef-

fective utilization of the bandwidth which in turns degrades system performance. So

the packet drop rate must also be constrained for good QoS. Let Pi
d denote the packet

drop probability of the user i which we define as ratio of no of packets dropped by user

i ( which would have have been scheduled if not dropped) to the sum of no of packets

renewed for the user i and no of packets dropped by the same user. The comprehensive

16



No of
UsersN

Pd
Simulated

M = N

Pd
Calculated

M = N

Pd
Simulated
M = 1.5N

Pd
Calculated
M = 1.5N

Pd
Simulated
M = 2N

Pd
Calculated
M = 2N

10 0.3137 0.3138 0.1856 0.1853 0.1103 0.1094
25 0.3463 0.3460 0.2028 0.2035 0.1241 0.1247
40 0.3544 0.3542 0.2132 0.2134 0.1279 0.1286

Table 4.6 The table of calculated and simulated packet drop probabilities for various
no of users and maximum delay settings

derivation of the expression for packet drop probability is derived in Appendix to be

Pi
d

1−Pi
d
=

N−1−µi

M+1
(4.11)

Note that for no packet drop case µi = N−1 and hence Pd = 0 is verified.The simulated

and calculated packet drop probability Pi
d of the iid Rayleigh channel with finite window

length M and linear assumption is tabulated in Table 4.6 for different no of users and

maximum delay setting M. The packet drop rate decreases with M because some of

the packets which are dropped in lesser Mcase are now scheduled which caused the

reduction in packet drop rate.

4.2.3 Throughput

The expression to evaluate the average throughput for PF scheduling for a Rayleigh

channel is derived similar to the section 4.1.3 with the same linear assumption of the

rate except window length is finite.

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

Since Pn,0/τiis same as in section 4.1 , the expression for throughput and scheduling gain

are same i.e.

Ti =
g
λi

N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

17



No of Users Gain Simulated Gain Calculated
10 2.9439(M = 10) 2.9290(M = 10)
25 3.8298(M = 25) 3.8160(M = 25)
40 4.2822(M = 40) 4.2785(M = 40)

Table 4.7 The calculated and simulated scheduling gain for different no of users and
maximum delay settings

G = N∗
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

The simulated and calculated scheduling gain G of the iid Rayleigh channel with finite

window and linear assumption is tabulated in Table 4.7 for different no of users and

maximum delay setting M. It is exactly like the case where no packets are dropped as

scheduling here is independent of delay.

4.3 IID Rayleigh Channels, Rate is logarithmic with SNR

In the previous two sections we simplified the analysis with the data rate to be linear to

SNR of the user i. Now we try to derive for the generalized logarithmic rate, the data

rate supported by user i at time t given his received channel power τi(t) as described

in previous sections is ri(t) = log(1+ gaiτi(t)) .Since we are considering iid channel

conditions all the users experience the same shadow and path losses i.e. ai = a, ∀i =

1, ...,N.

4.3.1 Delay

To proceed further in the analysis of delay we need to evaluate the parameter pi which

is evaluated as pi = Eτi[P
i

n,0/τi
]. The user i with received channel power τi is scheduled

if

r(τi)

Ti
>

r(τ j)

Tj

for all j = 1, ...,Nand j 6= i. We already stated that asymptotically average throughput’sTi

are stationary. But since it is iid channel conditions , each user experiences the same

18



No of
UsersN

µSimulated µCalculated

10 9 9
25 23.9990 24
40 38.9984 39

Table 4.8 The table of calculated and simulated average delays for various no of users

No of
UsersN

M′

Simulated
X = 50%

M′

Calculated
X = 50%

M′

Simulated
X = 75%

M′

Calculated
X = 75%

M′

simulated
X = 95%

M′

Calculated
X = 95%

10 6 6 13 13 28 28
25 17 17 34 33 73 73
40 27 27 54 54 117 117

Table 4.9 The table of calculated and simulated M′ for various no of users and maxi-
mum delay settings

decisions and hence the same stationary average throughput implies Ti = Tj ∀i, j =

1, ...,N.The above scheduling rule simplifies to log(1+gaτi)> log(1+gaτ j) =⇒ τi >

τ j. The scheduling decision principle is same as in section 4.1 and hence Pn,0/τi is same

in both cases which implies same pi =
1
N . The expressions for average delay.

µi = N−1

The simulated and calculated average delays of users under the iid Rayleigh channel

conditions and logarithmic rate assumption for infinite window is tabulated in Table 4.8

for various values of no of users N. Even though the rate is logarithmic with SNR,

the scheduling decision essentially simplified to that of rate linear with SNR, hence the

same pi causing to have same average delay and similar results in M′.

To know no of slots M′required to schedule X% of packets we need parameter pi, but it

is stated above that it is unchanged and hence the same expression,

M′ =
log(1− X

100)

log(1− pi)
−1

We consider the cases of X% to be 50%,75% and 95% . So we tabulated the simulated

and calculated M′ for various no of users and M′in Table 4.9 is rounded off to integer

greater than M′.
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4.3.2 Throughput

As stated above as tc→∞ the average throughput’s are stationary.Since we are now con-

sidering iid channel conditions, each user’s throughput converges to the same value.Ti =

Tj,∀i, j = 1, ...,N. From (3.8) and (4.5)we evaluate throughput as

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

From (4.7)we simplify the above expression to

Ti =

∞̂

0

r(x)∗λie−λix(1− e−λix)N−1dx

=

∞̂

0

log(1+gax)∗λie−λix(1− e−λix)N−1dx

=
∑

∞
r=0(−1)r+1 ∗

(N−1
r

)
∗Ei

(
− rλi

ag

)
∗ e

(r+1)λi
ag

r+1

where Ei(x) is the exponential integral represented by Ei(x)=
´ x
−∞

et

t dt. The above inte-

gral was simplified using mathematica. The scheduling throughput gain of the scheduler

G is given by

G =
∑

N
i=1 Ti

∑
N
i=1 T RR

i

=
N

e
λi
ag Ei

(
− rλi

ag

) ∗ ∑
∞
r=0(−1)r+1 ∗

(N−1
r

)
∗Ei

(
− rλi

ag

)
∗ e

(r+1)λi
ag

r+1

The simulated and calculated gains of the iid Rayleigh channel with infinite window

and linear assumption is tabulated Table 4.10 for different no of users with the value of

g = 10 and a = 1. Compared with the case of rate linear with SNR, the throughput gain

for 10 user system is higher in this scenario but is lesser for the case of 40 users system.

20



No of
UsersN

G
Simulated

G
Calculated

10 3.3170 3.3301
25 3.6143 3.6173
40 3.7516 3.7381

Table 4.10 The table of calculated and simulated scheduling gain for various no of
users

4.4 Packets dropped after maximum Delay,IID Rayleigh

Channels, Rate is logarithmic with SNR

We have a finite window length M i.e maximum delay in this case beyond which the

packet is dropped by the scheduler as its TTL expires. We still consider the iid Rayleigh

channels with the data rate supported by user i at time t given his received channel power

τi(t) as described in previous sections is ri(t) = log(1+gτi(t)) .

4.4.1 Delay

Since the scheduling decision is delay independent and also independent of maximum

delay setting M and we have shown in previous section even with the logarithmic rate

consideration the scheduling decision still remains same as that of linear assumption

and therefore has same Pn,0/τi as that of finite case and hence same Pi
n,0 = pi =

1
N ,

for n = 0, ...,M and i = 1, ...,N. The expressions for average delay remains as that of

average delay in section 4.2 for the reason given above .Average delay is evaluated as

µi = k
(
(1− pi)(1−M ∗ (1− pi)

M+1 +(M+1)∗ (1− pi)
M)

pi

)

The simulated and calculated average delays of the iid Rayleigh channel with finite

window and with logarithmic rate is tabulated Table 4.11 for different no of users and

maximum delay setting M. The average delays in this scenario decreased compared

with the same case considered in section 4.2. similar to the case of rate linear with

SNR.

As discussed above even the expression to evaluate the no of slots M′required to sched-

ule X%of packets rather than average delay remains the same as that of (4.10)
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No of
UsersN

µ

Simulated
M = N

µ

Calculated
M = N

µ

Simulated
M = 1.5∗N

µ

Calculated
M = 1.5∗N

µ

Simulated
M = 2∗N

µ

Calculated
M = 2∗N

10 3.9650 3.9694 5.3655 5.3608 6.4467 6.4199
25 10.2256 10.2458 14.06 14.0354 16.7125 16.7349
40 16.5166 16.5176 22.4727 22.4468 27.1426 27.0419

Table 4.11 The table of calculated and simulated average delays for various no of
users and Maximum Delay Settings

No of
UsersN

M′

Simulated
M = 1.5N
X = 50%

M′

Calculated
M = 1.5N
X = 50%

M′

Simulated
M = 2N
X = 50%

M′

Calculated
M = 2N
X = 50%

M′

Simulated
M = 1.5N
X = 75%

M′

Calculated
M = 1.5N
X = 75%

M′

simulated
M = 1.5N
X = 75%

M′

Calculated
M = 1.5N
X = 75%

10 4 4 5 5 9 8 10 10
25 12 12 14 14 22 22 26 26
40 19 19 22 22 35 35 42 41

Table 4.12 The table of calculated and simulated M′ for various no of users and Max-
imum Delay Settings

M′ =
log(1− X

k∗100)

log(1− pi)
−1

The simulated and calculated M′ of the iid Rayleigh channel with finite window and

logarithmic is tabulated Table 4.12 for different no of users and maximum delay setting

M and M′ rounded off to integer greater than M′. We consider the case of X% to be 50%

and 95%. The observations in change in M′are similar to that of explained in section

4.2.

4.4.2 Packet Drop

As noted above , even with the logarithmic rate the transitional probabilities and schedul-

ing decision are unaltered and hence this is similar to the result in (4.11) of section 4.2

Pi
d

1−Pi
d
=

N−1−µi

M+1

Note that for infinite window µ = N−1 and hence Pd = 0 is verified.The simulated and

calculated packet drop probability Pi
d of the iid Rayleigh channel with finite window
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No of
UsersN

Pd
Simulated

M = N

Pd
Calculated

M = N

Pd
Simulated

M =
1.5∗N

Pd
Calculated

M =
1.5∗N

Pd
Simulated
M = 2∗N

Pd
Calculated
M = 2∗N

10 0.3160 0.3138 0.1851 0.1853 0.1084 0.1094
25 0.3458 0.3460 0.2031 0.2035 0.1250 0.1247
40 0.3542 0.3542 0.2132 0.2134 0.1277 0.1286

Table 4.13 The table of calculated and simulated packet drop probabilities for various
no of users and Maximum Delay Settings

and logarithmic rate is tabulated Table 4.13 for different no of users and maximum

delay setting M.

4.4.3 Throughput

The expression to evaluate the average throughput for PF scheduling for a Rayleigh

channel is derived similar to the section 4.3.3 with the same logarithmic rate except

window length is finite.

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

Since Pn,0/τiis same as in section 4.3 , the expression for throughput and scheduling gain

are same i.e.

Ti =
∑

∞
r=0(−1)r+1 ∗

(N−1
r

)
∗Ei

(
− rλi

ag

)
∗ e

(r+1)λi
g

r+1

G =
N

e
λi
ag Ei

(
− rλi

ag

) ∗ ∑
∞
r=0(−1)r+1 ∗

(N−1
r

)
∗Ei

(
− rλi

ag

)
∗ e

(r+1)λi
ag

r+1

where Ei(x) is the exponential integral represented by Ei(x) =
´ x
−∞

et

t dt.The simulated

and calculated scheduling gain G of the iid Rayleigh channel with finite window and

linear assumption is tabulated in Table 4.14 for different no of users and maximum delay

setting M. Since the scheduling decision is independent of maximum delay setting M,
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No of Users Gain Simulated Gain
Calculated

10 3.3212 3.3301
25 3.6208 3.6173
40 3.7412 3.7381

Table 4.14 The calculated and simulated scheduling gain for different no of users and
maximum delay settings

the throughput gains are exactly similar to the case with no maximum delay setting.

4.5 Non IID large scale fading, Rate is linear with SNR

We consider same small scale fading i.e. λi = λ j,∀i, j = 1, ...,N and different large scale

fading .

4.5.1 Delay

To proceed further in the analysis of delay we need to evaluate the parameter pi which

is evaluated as pi = Eτi[P
i

n,0/τi
]. The user i with received channel power τi is scheduled

if

r(τi)

Ti
>

r(τ j)

Tj

for all j = 1, ...,Nand j 6= i. We already stated that asymptotically average throughput’sTi

are stationary. Using [15], it is shown in Appendix it is shown that for a Rayleigh chan-

nel with rate linear with SNR assumption

Ti

Tj
=

ai

a j
(4.12)

∀i = 1, ...,N. With the linear assumption, the scheduling decision for user i becomes
aiτi
Ti

>
a jτ j
Tj
∀ j = 1, ...,N, j 6= i. Using (4.12) the scheduling decision simplifies to τ j < τi

which is the same scheduling rules above for iid channel conditions. The conditional
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User Avg Channel

Rate

µ

Simulated

N = 10

µ

Calculated

N = 10

Avg Channel

Rate

µ

Simulated

N = 25

µ

Calculated

N = 25

Avg Channel

Rate

µ

Simulated

N = 40

µ

Calculated

N = 40

1 0.2368 8.9746 9 0.1224 24.0544 24 0.0851 38.9069 39

2 23.3218 8.9897 9 76.1566 24.0242 24 135.5026 39.0196 39

Table 4.15 The table of calculated and simulated average delays for various no of
users

transitional probability on τi is now evaluated as

Pi
n,0/τi

=
N

∏
j=1, j 6=i

Fτi(t)(τi) (4.13)

=
(

1− e−λix
)N−1

(4.14)

pi = Eτi[P
i

n,0/τi
]

=

ˆ
∞

0

fτi(t)(x)P
i

n,0/τi
dx

=

ˆ
∞

0

λie−λix
(

1− e−λix
)N−1

dx

=
1
N

For the infinite window length, the parameter pi is same as that for iid channels, hence

the average delay is same as that of of iid case.

µi = N−1

The simulated and calculated average delays for two users with different average chan-

nel strengths i.e. under the non iid Rayleigh channel conditions with infinite window

and linear assumption is tabulated in Table 4.15 for various values of no of users N.

Even in this case the average delay is similar to that of iid channel conditions under

similar settings.

To know no of slots M′required to schedule X% of packets we need parameter pi, but it
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User Avg Channel

Rate

M′

Simulated N = 10

X = 50%

M′

Calculated N = 10

X = 50%

M′

Simulated N = 10

X = 75%

M′

Calculated N = 10

X = 75%

M′

Simulated N = 10

X = 95%

M′

Simulated N = 10

X = 95%

1 0.2942 6 6 13 13 28 28

2 29.4065 6 6 13 13 28 28

Table 4.16 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 10 users

User Avg Channel

Rate

M′

Simulated N = 25

X = 50%

M′

Calculated N = 25

X = 50%

M′

Simulated N = 25

X = 75%

M′

Calculated N = 25

X = 75%

M′

Simulated N = 25

X = 95%

M′

Simulated N = 25

X = 95%

1 0.1519 17 17 33 33 75 73

2 95.8810 16 17 33 33 73 73

Table 4.17 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 25 users

is stated above that it is unchanged and hence the same expression,

M′ =
log(1− X

100)

log(1− pi)
−1

We consider the cases of X% to be 50%,75% and 95% . The simulated and calculated

values of M′ for two users with different average channel strengths i.e. under the non

iid Rayleigh channel conditions with infinite window and linear assumption is tabulated

in Table 4.16 and Table 4.17 for various values of no of users N. M′is rounded off to

integer greater than M′. Since pi is unchanged to that of iid channel conditions, hence

the same results as that of iid channel conditions case.

4.5.2 Throughput

As stated above as tc → ∞ the average throughput’s are stationary. From (3.8) and

(4.5)we evaluate throughput with linear assumption of rate as

Ti =Eτi[r(τi)∗P
i

n,0/τi
]
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No of
UsersN

G
Simulated

G
Calculated

10 2.9350 2.9290
25 3.8424 3.8160
40 4.2683 4.2785

Table 4.18 The table of calculated and simulated scheduling gain for various no of
users

From (4.13)we simplify the above expression to

Ti =

∞̂

0

r(x)∗λie−λix(1− e−λix)N−1dx

=

∞̂

0

gaix∗λie−λix(1− e−λix)N−1dx

=
gai

λi

N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

The scheduling throughput gain of the scheduler G is given by

G =
∑

N
i=1 Ti

∑
N
i=1 T RR

i

=N ∗
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

Note that despite the non iid channel conditions the scheduling gain remains the same

as that of iid channel conditions with rate linear with SNR assumption. The large scale

parameters have no effect on the scheduling gain and delay performance. The simulated

and calculated gains of the non iid Rayleigh channel with infinite window and linear

assumption is tabulated Table 4.18 for different no of users. The scheduling decision is

unchanged compared to that of iid channel conditions , hence the same results.We can

say that the throughput gain and average delay, no of slots M′are unaffected by non iid

large scale fading.
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User Avg Channel

Rate

µ

Simulated
N = 10

M = N

µ

Calculated
N = 10

M = N

Avg Channel

Rate

µ

Simulated
N = 25

M = 1.5N

µ

Calculated
N = 25

M = 1.5N

Avg Channel

Rate

µ

Simulated
N = 40

M = 2∗N

µ

Calculated
N = 40

M = 2∗N

1 0.2924 3.9578 3.9694 0.1522 14.1073 14.0354 0.1083 27.0645 27.0419

2 29.3277 3.9462 3.9694 96.4285 14.5543 14.0354 172.0611 26.7392 27.0419

Table 4.19 The table of calculated and simulated average delays for various no of
users

4.6 Packets dropped after maximum Delay, Non IID large

scale fading, Rate is linear with SNR

We consider same small scale fading i.e. λi = λ j,∀i, j = 1, ...,N and different large scale

fading.

4.6.1 Delay

Since the scheduling decision is delay independent and independent of maximum delay

setting M,we have the same transition probabilities, Pi
n,0 = pi =

1
N , for n = 0, ...,M and

i = 1, ...,N as in section 4.5.1.since the parameter piis same as that of iid channel case

with finite window , the expression for average delay and parameter M′are same as they

only depend on pi. The average delay is evaluated as

µi = k
(
(1− pi)(1−M ∗ (1− pi)

M+1 +(M+1)∗ (1− pi)
M)

pi

)

The simulated and calculated average delays for two users with different average chan-

nel strengths i.e. under the non iid Rayleigh channel conditions with finite window and

linear assumption is tabulated in Table 4.19 for various values of no of users N. The ob-

servations with maximum delay setting are similar to that of section 4.2. Interestingly

the value of pi is also unchanged hence the same results under similar settings.

The expression for nos of slots required M′to schedule X% of packets is

M′ =
log(1− X

k∗100)

log(1− pi)
−1

We consider the cases of X% to be 50%,75% and 95% . The simulated and calculated
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User Avg Channel

Rate

M′

Simulated

N = 10

X = 50%M = N

M′

Calculated

N = 10X = 50%M = N

M′

Simulated N = 10

X = 75%M = 1.5∗N

M′

Calculated N = 10X =

75%M = 1.5∗N

M′

Simulated N = 10X =

95%M = 2∗N

M′

Calculated N = 10X =

95%M = 2∗N

1 0.2911 3 3 8 8 18 17

2 29.2118 3 3 8 8 17 17

Table 4.20 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 10 users

User Avg Channel

Rate

M′

Simulated N = 25

X = 50%M = N

M′

Calculated

N = 25X = 50%M = N

M′

Simulated N = 25

X = 75%M = 1.5∗N

M′

Calculated

N = 25X = 75%M =

1.5∗N

M′

Simulated N = 25X =

95%M = 2∗N

M′

Calculated

N = 25X = 95%M =

2∗N

1 0.1531 9 9 26 26 44 43

2 95.4865 9 9 25 26 43 43

Table 4.21 the table of calculated and simulated M′ of two users with different average
channel strengths for a system of 25 users

values of M′ for two users with different average channel strengths i.e. under the non

iid Rayleigh channel conditions with finite window and linear assumption is tabulated

in Table 4.20 and Table 4.21 for various values of no of users N. M′is rounded off to

integer greater than M′.The observations with maximum delay setting are similar to that

of section 4.2. Interestingly the value of pi is also unchanged hence the same results

under similar settings.

4.6.2 Packet Drop

In the previous subsection we considered the infinite window meaning no packet loss,

but in reality packets are dropped beyond certain waiting time. The packet drop proba-

bility is shown Appendix A as

Pi
d

1−Pi
d
=

N−1−µi

M+1
(4.15)

The simulated and calculated average delays for two users with different average chan-

nel strengths i.e. under the non iid Rayleigh channel conditions with finite window and

linear assumption is tabulated in Table 4.22 for various values of no of users N.The ob-

servations with maximum delay setting are similar to that of section 4.2. Interestingly

the value of pi is also unchanged hence the same results under similar settings.

Note that for infinite window µ = N−1 and hence Pd = 0 is verified.
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User Avg Channel

Rate

Pi
d

Simulated

N = 10

M = N

Pi
d

Calculated

N = 10

M = N

Avg Channel

Rate

Pi
d

Simulated

N = 25

M = 1.5N

Pi
d

Calculated

N = 25

M = 1.5N

Avg Channel

Rate

Pi
d

Simulated

N = 40

M = 2N

Pi
d

Calculated

N = 40

M = 2N

1 0.2943 0.3138 0.3342 0.1534 0.1966 0.2030 0.1065 0.1278 0.1281

2 29.1376 0.3195 0.3342 95.0688 0.2018 0.2030 170.0511 0.1295 0.1281

Table 4.22 The table of calculated and simulated packet drops for various no of users
and maximum delay settings

No of Users Gain Simulated Gain Calculated
10 2.9439(M = 10) 2.9290(M = 10)
25 3.8298(M = 25) 3.8160(M = 25)
40 4.2822(M = 40) 4.2785(M = 40)

Table 4.23 The calculated and simulated scheduling gain for different no of users and
maximum delay settings

4.6.3 Throughput

The expression to evaluate the average throughput for PF scheduling for a Rayleigh

channel is derived similar to the section 4.5.3 with the same linear assumption of the

rate except window length is finite.

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

Since Pn,0/τiis same as in section 4.1 , the expression for throughput and scheduling gain

are same i.e.

Ti =
gai

λi

N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

G = N∗
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

The simulated and calculated scheduling gain G of the non iid Rayleigh channel with

finite window and linear assumption is tabulated in Table 4.23 for different no of users

and maximum delay setting M. The scheduling decision is still unchanged and hence

the same results under same settings.We can say that the throughput gain and average

delay, no of slots M′are unaffected by non iid large scale fading.
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4.7 Non IID small scale fading , Rate is linear with SNR

We consider same large scale fading and different small scale fading i.e. ai = a j,∀i, j =

1, ...,N.

4.7.1 Delay

To proceed further in the analysis of delay we need to evaluate the parameter pi which

is evaluated as pi = Eτi[P
i

n,0/τi
]. The user i with received channel power τi is scheduled

if

r(τi)

Ti
>

r(τ j)

Tj

for all j = 1, ...,Nand j 6= i. We already stated that asymptotically average throughput’sTi

are stationary. Using [15], it is shown in Appendix it is shown that for a Rayleigh chan-

nel with rate linear with SNR assumption

Ti

Tj
=

λ j

λi
= ki j (4.16)

∀i = 1, ..,N. With the linear assumption, the scheduling decision for user i becomes
τi
Ti
>

τ j
Tj
∀ j = 1, ...,N, j 6= i. Using (4.16) the scheduling decision simplifies to ki jτ j < τi

which is the same scheduling rule as above for iid channel conditions. The conditional

transitional probability on τi is now evaluated as

Pi
n,0/τi

=
N

∏
j=1, j 6=i

Fτi(t)(
τi

ki j
) (4.17)

=
(

1− e−λix
)N−1

(4.18)
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User Avg Channel

Rate

µ

Simulated

N = 10

µ

Calculated

N = 10

Avg Channel

Rate

µ

Simulated

N = 25

µ

Calculated

N = 25

Avg Channel

Rate

µ

Simulated

N = 40

µ

Calculated

N = 40

1 0.2368 8.9746 9 0.1224 24.0544 24 0.0851 38.9069 39

2 23.3218 8.9897 9 76.1566 24.0242 24 135.5026 39.0196 39

Table 4.24 The table of calculated and simulated average delays for various no of
users

pi = Eτi[P
i

n,0/τi
]

=

ˆ
∞

0

fτi(t)(x)P
i

n,0/τi
dx

=

ˆ
∞

0

λie−λix
(

1− e−λix
)N−1

dx

=
1
N

For the infinite window length, the parameter pi is same as that for iid channels, hence

the average delay is same as that of of iid case.

µi = N−1

The simulated and calculated average delays for two users with different average chan-

nel strengths i.e. under the non iid Rayleigh channel conditions with infinite window

and linear assumption is tabulated in Table 4.24 for various values of no of users N.piis

still the same and hence the expressions still remain unchanged.

To know no of slots M′required to schedule X% of packets we need parameter pi, but it

is stated above that it is unchanged and hence the same expression,

M′ =
log(1− X

100)

log(1− pi)
−1

We consider the cases of X% to be 50%,75% and 95% . The simulated and calculated

values of M′ for two users with different average channel strengths i.e. under the non

iid Rayleigh channel conditions with infinite window and linear assumption is tabulated

in Table 4.25 and Table 4.26 for various values of no of users N. M′is rounded off to

integer greater than M′.
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User Avg Channel

Rate

M′

Simulated N = 10

X = 50%

M′

Calculated N = 10

X = 50%

M′

Simulated N = 10

X = 75%

M′

Calculated N = 10

X = 75%

M′

Simulated N = 10

X = 95%

M′

Calculated N = 10

X = 95%

1 0.2942 6 6 13 13 28 28

2 29.4065 6 6 13 13 28 28

Table 4.25 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 10 users

User Avg Channel

Rate

M′

Simulated N = 25

X = 50%

M′

Calculated N = 25

X = 50%

M′

Simulated N = 25

X = 75%

M′

Calculated N = 25

X = 75%

M′

Simulated N = 25

X = 95%

M′

Calculated N = 25

X = 95%

1 0.1519 17 17 33 33 75 73

2 95.8810 16 17 33 33 73 73

Table 4.26 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 25 users

4.7.2 Throughput

As stated above as tc → ∞ the average throughput’s are stationary. From (3.8) and

(4.5)we evaluate throughput with linear assumption of rate as

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

From (4.17)we simplify the above expression to

Ti =

∞̂

0

r(x)∗λie−λix(1− e−λix)N−1dx

=

∞̂

0

gax∗λie−λix(1− e−λix)N−1dx

=
ga
λi

N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

One is often interested to calculate the gain of the scheduler with respect to the Round

robin scheduler. For the RR scheduler each user gets scheduled once in N slots. Hence

the average throughput of RR scheduler is T RR
i = 1

N E[r(τi)] =
ga

N∗λi
. so the scheduling

throughput gain of the scheduler G is given by

G =
∑

N
i=1 Ti

∑
N
i=1 T RR

i

=N ∗
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2
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No of
UsersN

G
Simulated

G
Calculated

10 2.9350 2.9290
25 3.8424 3.8160
40 4.2683 4.2785

Table 4.27 The table of calculated and simulated scheduling gain for various no of
users

Note that despite the non iid channel conditions the scheduling gain remains the same

as that of iid channel conditions with rate linear with SNR assumption. The large scale

parameters have no effect on the scheduling gain and delay performance. The simulated

and calculated gains of the non iid Rayleigh channel with infinite window and linear

assumption is tabulated Table 4.27 for different no of users. The expression is evaluated

under these conditions to that of iid conditions. We can say that the throughput gain and

average delay, no of slots M′ required to schedule X% are unaffected by non iid small

scale fading.

4.8 Packets dropped after maximum Delay,Non IID small

scale fading , Rate is linear with SNR

We consider same large scale fading and different small scale fading i.e. ai = a j,∀i, j =

1, ...,N.

4.8.1 Delay

Since the scheduling decision is delay independent and independent of maximum delay

setting M,we have the same transition probabilities, Pi
n,0 = pi =

1
N , for n = 0, ...,M and

i = 1, ...,N as in section 4.5.1.since the parameter piis same as that of iid channel case

with finite window , the expression for average delay and parameter M′are same as they

only depend on pi. The average delay is evaluated as

µi = k
(
(1− pi)(1−M ∗ (1− pi)

M+1 +(M+1)∗ (1− pi)
M)

pi

)
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User Avg Channel

Rate

µ

Simulated
N = 10

M = N

µ

Calculated
N = 10

M = N

Avg Channel

Rate

µ

Simulated
N = 25

M = 1.5N

µ

Calculated
N = 25

M = 1.5N

Avg Channel

Rate

µ

Simulated
N = 40

M = 2N

µ

Calculated
N = 40

M = 2N

1 0.2924 3.9578 3.9694 0.1522 14.1073 14.0354 0.1083 27.0645 27.0419

2 29.3277 3.9462 3.9694 96.4285 14.5543 14.0354 172.0611 26.7392 27.0419

Table 4.28 The table of calculated and simulated average delays for various no of
users

User Avg Channel

Rate

M′

Simulated

N = 10

X = 50%

M = N

M′

Calculated

N = 10

X = 50%

M = N

M′

Simulated

N = 10

X = 75%

M = 1.5N

M′

Calculated

N = 10

X = 75%

M = 1.5N

M′

Simulated

N = 10

X = 95%

M = 2N

M′

Calculated

N = 10

X = 95%

M = 2N

1 0.2911 3 3 8 8 18 17

2 29.2118 3 3 8 8 17 17

Table 4.29 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 10 users

The simulated and calculated average delays for two users with different average chan-

nel strengths i.e. under the non iid Rayleigh channel conditions with finite window and

linear assumption is tabulated in Table 4.28 for various values of no of users N.

The expression for nos of slots required M′to schedule X% of packets is

M′ =
log(1− X

k∗100)

log(1− pi)
−1

We consider the cases of X% to be 50%,75% and 95% . The simulated and calculated

values of M′ for two users with different average channel strengths i.e. under the non

iid Rayleigh channel conditions with finite window and linear assumption is tabulated

in Table 4.29 and Table 4.30 for various values of no of users N. M′is rounded off to

integer greater than M′.

User Avg Channel

Rate

M′

Simulated

N = 25

X = 50%

M = N

M′

Calculated

N = 25

X = 50%

M = N

M′

Simulated

N = 25

X = 75%

M = 1.5N

M′

Calculated

N = 25

X = 75%

M = 1.5N

M′

Simulated

N = 25

X = 95%

M = 2N

M′

Calculated

N = 25

X = 95%

M = 2N

1 0.1531 9 9 26 26 44 43

2 95.4865 9 9 25 26 43 43

Table 4.30 The table of calculated and simulated M′ of two users with different aver-
age channel strengths for a system of 25 users
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User Avg Channel

Rate

Pi
d

Simulated

N = 10

M = N

Pi
d

Calculated

N = 10

M = N

Avg Channel

Rate

Pi
d

Simulated

N = 25

M = 1.5N

Pi
d

Calculated

N = 25

M = 1.5N

Avg Channel

Rate

Pi
d

Simulated

N = 40

M = 2N

Pi
d

Calculated

N = 40

M = 2N

1 0.2943 0.3138 0.3342 0.1534 0.1966 0.2030 0.1065 0.1278 0.1281

2 29.1376 0.3195 0.3342 95.0688 0.2018 0.2030 170.0511 0.1295 0.1281

Table 4.31 The table of calculated and simulated packet drops for various no of users
and maximum delay settings

4.8.2 Packet Drop

In the previous subsection we considered the infinite window meaning no packet loss,

but in reality packets are dropped beyond certain waiting time. The packet drop proba-

bility is shown Appendix A as

Pi
d

1−Pi
d
=

N−1−µi

M+1
(4.19)

The simulated and calculated average delays for two users with different average chan-

nel strengths i.e. under the non iid Rayleigh channel conditions with finite window and

linear assumption is tabulated in Table 4.31 for various values of no of users N.

Note that for infinite window µ = N−1 and hence Pd = 0 is verified.

4.8.3 Throughput

The expression to evaluate the average throughput for PF scheduling for a Rayleigh

channel is derived similar to the section 4.5.3 with the same linear assumption of the

rate except window length is finite.

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

Since Pn,0/τiis same as in section 4.1 , the expression for throughput and scheduling gain

are same i.e.

Ti =
gai

λi

N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2
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No of Users Gain Simulated Gain Calculated
10 2.9439(M = 10) 2.9290(M = 10)
25 3.8298(M = 25) 3.8160(M = 25)
40 4.2822(M = 40) 4.2785(M = 40)

Table 4.32 The calculated and simulated scheduling gain for different no of users and
maximum delay settings

G = N∗
N−1

∑
r=0

(−1)r(N−1
r

)
(r+1)2

The simulated and calculated scheduling gain G of the non iid Rayleigh channel with

finite window and linear assumption is tabulated in Table 4.32 for different no of users

and maximum delay setting M.The throughput gain expression is evaluated to that of

iid channel conditions with maximum delay settings.Further it is same as that of with

no maximum delay setting.We can say that the throughput gain and average delay, no

of slots M′ required to schedule X% are unaffected by non iid small scale fading.

4.9 Non IID in small scale fading and large scale fading,

Rate is logarithmic with SNR

We start the analysis of non iid channel case with the generalized logarithmic rate i.e

the data rate supported by user i at time t given his received channel power aiτi(t) as

described in previous sections is ri(t) = log(1+gaiτi(t)) .

4.9.1 Delay

To proceed further in the analysis of delay we need to evaluate the parameter pi which

is evaluated as pi = Eτi[P
i

n,0/τi
]. The user i with received channel power τi is scheduled

if

r(τi)

Ti
>

r(τ j)

Tj
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for all j = 1, ...,Nand j 6= i. We already stated that asymptotically average throughput’sTi

are stationary. Using [15], it is shown in Appendix it is shown that for a Rayleigh chan-

nel with logarithmic rate

Ti

Tj
=ri, j ==

´
∞

0 λ2e−λ2x
(

log(1+a1garxar)e−λ1gar−1xar − e
λ1
ga1 Ei[−λ1gar−1xar− λ1

ga1
]

)
dx

´
∞

0 λ1e−λ1x

(
log(1+ag1−ar+r

r x
1
ar )e−λ2g 1−ar

r x
1
ar − e

λ1
ga1 Ei[−λ2g1−ar

r x
1
ar − λ21

ga2
]

)
dx

(4.20)

∀i, j = 1, ...,N. Though the above expression can not be simplified to closed form ex-

pression, we can numerically evaluate it using mathematica. With the logarithmic rate,

the scheduling decision for user i becomes log(1+gaiτi)
Ti

>
log(1+ga jτ j)

Tj
∀ j = 1, ...,N, j 6=

i. We can approximate this to log(gτi) > ri, jlog(gτ j) which is simplified to τ j <

g
1

ri, j−1
τ

1
ri, j
i = ki, jτ

1
ri, j
i . The conditional transitional probability on τi is now evaluated

as

Pi
n,0/τi

=
N

∏
j=1, j 6=i

Fτ j(t)(ki jτ

1
ri, j
i ) (4.21)

=
N

∏
j=1, j 6=i

(1− eλ jτ

1
ri, j

i ) (4.22)

pi = Eτi[P
i

n,0/τi
]

=

ˆ
∞

0

fτi(t)(x)P
i

n,0/τi
dx

=

ˆ
∞

0

λie−λix ∏
j=1−→N, j 6=i

(1− eλ jτ

1
ri, j

i )dx

For the case of no packet drop rate, the average delay is evaluated as

µi =
1
pi
−1
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To know no of slots M′required to schedule X% of packets we need parameter pi, the

analysis still remains the same hence the same expression,

M′ =
log(1− X

100)

log(1− pi)
−1

4.9.2 Throughput

As stated above as tc→∞ the average throughput’s are stationary. From (3.8) and (4.5)

we evaluate throughput with linear assumption of rate as

Ti =Eτi[r(τi)∗P
i

n,0/τi
]

From (4.21) we simplify the above expression to

Ti =

∞̂

0

r(x)∗λie−λix
N

∏
j=1, j 6=i

(1− eλ jτ

1
ri, j

i )dx

=

∞̂

0

log(1+gaix)∗λie−λix
N

∏
j=1, j 6=i

(1− eλ jτ

1
ri, j

i )dx

The scheduling throughput gain of the scheduler G given by

G =
∑

N
i=1 Ti

∑
N
i=1 T RR

i
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CHAPTER 5

MLWDF Scheduling

Major drawback of the PF scheduling is that it assumes that users are delay insensitive,

but recently the delay has become the important factor for real time applications like

video conferencing, video streaming etc... There is no way to control delay in PFS given

a system of users N. To address this Modified Largest Weighted Delay First (MLWDF)

scheduling algorithm has been proposed to address delay issue. MLWDFS selects the

user i(t) at slot t according to

i(t) = arg max
j=1,...,n

r j(t)Wj(t)
Tj(t)

where ri(t) is the data rate that can be supported by user i at time t and Wi(t) is the

HOL delay of user i at time t.The throughput Tj(t) is typically evaluated through an

exponentially smoothed average :

Tj(t) =


(

1− 1
tc

)
Tj(t−1)+ 1

tc
r j(t), j = i(t)(

1− 1
tc

)
Tj(t−1), j 6= i(t)

where tc is the time-window length over which one wants to regulate the fairness. When

tc → ∞,we assume the average throughput’s are stationary (no proof ).Unlike PFs the

transitional probability is delay dependent, so the analysis becomes complicated. To

better understand the problem, we carried out the simulations of the MLWDF schedul-

ing for a single cellular system with 10 users under iid channel conditions with infinite

window length and rate linear with SNR assumption.Figure 2 shows the pmf of the

scheduling delay for one user.

It follows from the above, that we can assume the pmf of renewal delay to be of Poisson

distribution. The pmf of Scheduling Delay is

PZ(Zi = n) =
e−λiλ n

i
n!



0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Delay

P
ro

ba
bi

lit
y 

of
 R

en
ew

al

Fig. 5.1 Plot of pmf of Renewal delay of users for MLWDF scheduling

∀n = 0−→ ∞, i = 1−→ N.From Appendix it is shown that for iid channel conditions

PW (Wi = n) =
∞

∑
j=n

1
N

P(Zi = j)

=
1
N

γ(n+1,λ )
Γ(n+1)

where γ(n,λ ) is an incomplete gamma function defined byγ(n,λ ) =
´

∞

0 e−ttn−1dt and

Γ(n) is the gamma function defined as Γ(n) = (n− 1)!.Based on this ground work for

MLWDFS we now try to analyze the delay parameters, throughput gain and packet drop

rate.

5.1 IID Rayleigh Channels, Rate is linear with SNR, No

packet drop rate

We consider the case of no packet is being dropped by the scheduler. We still consider

the iid Rayleigh channels with the linear assumption of the data rate ri(t) = gaiτi(t).
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No of
UsersN

µi

Simulated
µi

Calculated

10 9.001 9
25 24.008 24

Table 5.1 The table of simulated and estimated average delays for various no of users
and Maximum Delay Settings

5.1.1 Delay

To proceed further to calculate average delay µi and no of slots M′required to schedule

X% of packets of user i,we need the parameter λi or µiwhich is the parameter of the

Poisson distribution and the average delay. The average delay of user i is calculated as

µi =
∞

∑
n=0

n∗P(Zi = n)

=λi

But we know that for iid channel conditions , average delay is N− 1 and hence µi =

λi = N − 1, ∀i = 1, ...,N.The simulated and calculated average delay of user i ,µi of

the iid Rayleigh channel with infinite window and rate linear with SNR is tabulated

for different no of users N and maximum delay setting M in Table 5.1. Since it is iid

channel conditions with no maximum delay setting, it is similar to that of round robin

scheduler.

We now shift our focus to the calculation of no of slots M′required to schedule X%

of packets .Let us recall the definition of r.vZ which is the probability of renewal at a

particular delay of the total renewals.Hence no of slots M′ required to scheduled X%of

packets is simplified above as

X
100

=
M′

∑
n=0

PZ(Zi = n) (5.1)

From the above equation reduces to

X
100

=
M′

∑
n=0

e−λiλ n
i

n!

We consider the cases of X% to be 50%,75% and 95% . So we tabulated the simulate

and calculated M′ for various no of users and M′is rounded off to integer greater than
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No of
UsersN

M′

Simulated
X = 50%

M′

Calculated
X = 50%

M′

Simulated
X = 75%

M′

Calculated
X = 75%

M′

simulated
X = 95%

M′

Calculated
X = 95%

10 9 9 11 11 15 14
25 24 24 29 27 34 32
40 39 39 46 43 58 55

Table 5.2 The table of calculated and simulated M′ for various no of users and Maxi-
mum Delay Settings

M′in Table 5.2.We observe the results for the case of 10 user system. The no of slots re-

quired to schedule X% of packets increases with X . We also notice that for the increase

of X% from 50% to 75% , the no of slots increased by 2, but from 75% to 95% the no

of slots increases by 4. For the same X%, the value of M′increases with no of users.

5.1.2 Throughput

As stated above as tc→∞ the average throughput’s are stationary.Since we are now con-

sidering iid channel conditions, each user’s throughput converges to the same value.Ti =

Tj,∀i, j = 1, ...,N. The user i with received channel power τi is scheduled if

Wi(t)∗ r(τi(t))
Ti

>
Wj(t)∗ r(τ j(t))

Tj

for all j = 1, ...,Nand j 6= i. With the above relation,linear assumption of rate and sta-

tionary property of received channel power as well as delay state process, the scheduling

decision for user i becomes miτi >m jτ j ∀ j = 1, ...,N, j 6= i. the scheduling decision sim-

plifies to τ j < τi
mi
m j

. The conditional transitional probability on delay state Y in which

user i is in delay state n, i.e. mi = n and received channel power τi is now evaluated as

Pi
n,0/τi

=
N

∏
j=1, j 6=i

Fτi(t)(τi
n

m j
) (5.2)

=
N

∏
j=1, j 6=i

(
1− e

−λiτi
n

m j

)
(5.3)

From (3.8) and (4.5) we evaluate throughput as

Ti = Eτi[r(τi)∗EY [P
i

n,0/Y,τi
]]
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where the summation is over all the possible system delay states Y = [m1...mN ] where

m j is varied from 0 to M for all j = 1, ...,N .To move ahead we need to evaluate

EY [P
i

n,0/Y,τi
] =∑

Y
P(Y = y)∗Pi

n,0/Y,τi

From (3.2) it simplifies to

EY [P
i

n,0/Y,τi
] =∑

Y
PW (Wi = n)

N

∏
j=1, j 6=i

PW (Wj = m j)∗Pi
n,0/Y,τi

=
M

∑
n=0

PW (Wi = n)∑
Y ′i

N

∏
j=1, j 6=i

PW (Wj = m j)∗Pi
n,0/Y,τi

where Y
′
i = [m1...mN ] where m j is varied from 0 to M for all j = 1, ...,N except for j = i

and mi = n. It is further simplified by (5.3) to

EY [P
i

n,0/Y,τi
] =

∞

∑
n=0

PW (Wi = n)∑
Y ′

N

∏
j=1, j 6=i

PW (Wj = m j)∗
N

∏
j=1, j 6=i

(
1− e

−λiτi
n

m j

)

The summation over Y ′ is simplified to

EY [P
i

n,0/Y,τi
] =

∞

∑
n=0

PW (Wi = n)∗g j(nτi)
N−1 (5.4)

where

g j(nτi) =
∞

∑
m j=0

(1− e
−λiτi

n
m j )∗P(Wj = m j)

=
∞

∑
m=0

(1−a
1
m
i )∗P(Wj = m j)

where ai = e−λixi and a < 1.

g j(nτi) =1−
∞

∑
m=0

a
1
m
i ∗P(Wj = m)

=1−
∞

∑
m=0

lm(mixi) (5.5)
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where lm(x) = a
1
m
i ∗P(Wj = m j). and by ratio test the series ∑

∞
m=0 lm(mixi) converges.

So we can approximate the summation to finite no of terms say M. So the expression

simplifies to

g j(nτi) =1−
M

∑
m=0

lm(mixi)

So the throughput is derived by using multinomial expansion, we get

Ti =ga
ˆ

∞

x=0
x∗λie−λix ∗

M

∑
n=0

PW (Wi = n)∗gi(nx)N−1dx

Since the summation converges we can swap integration and union we get

Ti =ga
M

∑
n=0

P(Wi = n)∗
ˆ

∞

0
x∗λie−λix ∗gi(nx)N−1dx

Using multinomial expansion, it is further simplified to

Ti =ga
M

∑
n=0

P(W = n)∗ (5.6)

∑
ko+...+kM=N−1

ˆ
∞

0
λi ∗ (−1)k0 ∗ c(k0...kM)∗

M

∏
m=1

(
P(W = m)km ∗ x∗ e−λix(1+

n∑
M
i=1 ki
m )

)
dx

=
ga
λi

M

∑
n=0

P(W = n)∗ ∑
ko+...+kM=N−1

(
(−1)k0c(k0...kM)

(1+n∑
M
m=0

km
m )2
∗

M

∏
m=1

P(Wi = m)km

)
(5.7)

One is often interested to calculate the gain of the scheduler with respect to the Round

robin scheduler. For the RR scheduler each user gets scheduled once in N slots. Hence

the average throughput of RR scheduler is T RR
i = 1

N E[r(τi)] =
g

N∗λi
. so the scheduling

throughput gain of the scheduler G is given by

G =
∑

N
i=1 Ti

∑
N
i=1 T RR

i

=N ∗
M

∑
n=0

P(W = n)∗ ∑
ko+...+kM=N−1

(
(−1)k0c(k0...kM)

(1+n∑
M
m=0

km
m )2
∗

M

∏
m=1

P(Wi = m)km

)

The simulated throughput gains of user i ,µi of the iid Rayleigh channel with finite

window and rate linear with SNR is tabulated for different no of users N in Table 5.3.
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No of Users Gain Simulated Gain Calculated
10 2.3419 2.51(M=20)
25 3.0773 3.140(M=40)

Table 5.3 Table showing the simulated and calculated gains for mlwdf scheduling

The through put similar to that of PF increases with no of users but the gain is less that

that of PF scheduling.

5.2 Packets dropped after finite time,IID Rayleigh chan-

nels, rate linear with SNR

We have finite window length M, the maximum delay beyond which the packet is

dropped by the scheduler as its TTL expires. We still consider the iid Rayleigh chan-

nels with the linear assumption of the data rate ri(t) = gτi(t).To understand the problem

for finite window case, we carried out the simulations of the MLWDF scheduling for

a single cellular system with 10 users under iid channel conditions with finite window

length and rate linear with SNR assumption.Figure 3 shows the pmf of the scheduling

delay for one user

From the figure , we can assume for the finite case, the pmf of renewal delay to be of

truncated Poisson distribution.The pmf of Scheduling Delay is

PZ(Zi = n) = ki∗
e−λiλ n

i
n!

(5.8)

∀n = 0 −→ M, i = 1 −→ N and ki is a normalizing constant derived by ∑
∞
n=0 PZ(Zi =

n) = 1, we get ki =
1

∑
∞
n=0

e−λi λn
i

n!

. The following relation between the pmf for Wi and Zi is

derived in appendix.

PW (Wi = n) =
1
N

(
M

∑
m=n

PZ(Zi = m)+
Pi

d

1−Pi
d

)
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Fig. 5.2 Plot of pmf of Renewal delay of users for MLWDF scheduling for finite win-
dow length

No of
UsersN

PdSimulated
M = N

PdSimulated
M = 1.5N

PdSimulated
M = 2N

25 0.1946 0.0267 0.00072
40 0.1951 0.0250 0.00034

Table 5.4 The Table of simulated packet drop probabilities for various no of users and
Maximum Delay Settings

5.2.1 Packet Drop

The packet drop rate of user i for iid channel conditions as a function of average delay

µiis derived in appendix to be Pi
d

1−Pi
d
= N−1−µi

M+1 . We do not have another relation between

Pd or µior λi. Hence the analysis was not unable to move forward from here. So we end

the MLWDF section only with the results from simulation.The simulated packet drop

probability Pi
d of the iid Rayleigh channel with finite window and rate linear with SNR

is tabulated below for different no of users and maximum delay setting M.
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No of
UsersN

µi

Simulated
M = N

µi

Simulated
M =

1.5∗N

µi

SimulatedM =

2∗N

25 17.6991 22.9314 23.9634
40 29.0615 37.4378 38.9734

Table 5.5 The table of simulated and estimated average delays for various no of users
and Maximum Delay Settings

No of

UsersN

M′

Simulated
M = 1.5N

X = 50%

M′

Simulated
M = 2N

X = 50%

M′

Simulated
M = 1.5N

X = 75%

M′

Simulated
M = 2N

X = 75%

25 23 24 28 29
40 37 39 45 46

Table 5.6 The table of calculated and simulated M′ for various no of users and Maxi-
mum Delay Settings

5.2.2 Delay

The simulated average delay of user i ,µi of the iid Rayleigh channel with finite win-

dow and rate linear with SNR is tabulated below for different no of users N and maxi-

mum delay setting M.The average delays in this scenario decreased compared with the

same case considered in section 5.1. This is because the packets which waited long

for scheduling case in the previous case are now dropped hence the the reduction in

average delay but finite packet drop rate. As you increase M, some of the packets with

greater delay dropped in the previous case are now scheduled which causes the increase

in average delay with increase in M.

We consider the cases of X% to be 50%,75% and 95% . So we tabulated the simulate

and calculated M′ for various no of users and M′is rounded off to integer greater than

M′.The average delays in this scenario decreased compared with the same case consid-

ered in section 5.1. This is because the packets which waited long for scheduling case

in the previous case are now dropped hence the the reduction in average delay but finite

packet drop rate. As you increase M, some of the packets with greater delay dropped in

the previous case are now scheduled which causes the increase in average delay.
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No of Users Gain Simulated
10 2.3829 (M=10)
25 3.078 (M=40)
40 3.4437 (M=80)

Table 5.7 Table showing the simulated and calculated gains for mlwdf scheduling

5.2.3 Throughput

The simulated throughput gains of user i ,µi of the iid Rayleigh channel with finite

window and rate linear with SNR is tabulated below for different no of users N and

maximum delay setting M.in Table 5.7 The throughput here is supposed to be increased

compared to the above case, here there is increase but it is very negligible.
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CHAPTER 6

Conclusions

In all the cases of PFS with no maximum delay setting M and rate linear with SNR, the

throughput gain, average delay and no of slots M′required to schedule X% of packets

are unaffected by both non iid large scale and small scale fading.Similarly in all the

cases of PFS with maximum delay setting M and rate linear with SNR, the throughput

gain, average delay and no of slots M′required to schedule X% of packets are unaffected

by both non iid large scale and small scale fading. further in PFS all the cases of rate

linear with SNR, the expression for throughput gain is independent of maximum delay

setting M.We now compare of various trade offs between PFS and MLWDFS.

The average delay is same in MLWDF and PF under iid channel condition with no

maximum delay setting and rate linear with SNR. Hence it is proof of the fact that

average delay is not the relaible indicator. How ever we observe that the no fo slots

required to schedule 95%packets in 25 users system is 73 in PFS but 34 in MLWDFS.

The better performance in MLWDFs is because it considers delay in scheduling. the

trade off in better delay performance is in throuput gain which is 2.9296 in PFS and

2.3419 in MLWDFS for 10 users system.

Interestingly the average delay in MLWDF is less than in PF under iid channel condition

with same maximum delay setting and rate linear with SNR. In the 25 users system with

maximum delay M = 1.5N,the average delay is 14.0797 in MLWDFS and is 22.9314

in PFS. Similarly the performance in no of slots required to schedule X% packets is

worse in MLWDF than in PF under iid channel condition with same maximum delay

setting and rate linear with SNR. In the 40 users system with maximum delay M = 2N

and X = 50%,the M′ is 39 in MLWDFS and is 22 in PFS.This better performance in

delay does not come without a tradeoff. In the 25 users system with maximum delay

M = N,the packet drop is 0.1946 in MLWDFS and is 0.3463 in PFS which is almost

double. These are the interesting tradeoffs between throughput gain average delay and

packet drop rate. One can choose the algorithm which is beneficial depending upon

their working conditions.



Generically we can say for the non real time users PFs is preferred over MLWDFS but

for mixture of real time and non real time users, MLWDF is the more apt one.
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APPENDIX A

Let us consider a cell with only 2 users. We need to evaluate the ratio of throughput

of theses users given that these two users experience different channel conditions. We

assume Rayleigh channel with rate linear with SNR. From [15] , the relation between

ratio of throughput’s is evaluated as

T1

T2
= r =

P(X1 > rX2)E [X1/X1 > rX2]

P(X2 > r−1X1)E [X2/X2 > r−1X1]
(A.1)

where X1 and X2denote the data rates of two users. For rate linear with SNR assump-

tion X i = g ∗ aiτi(t).ai is the distance dependent component of the received channel

power (Large scale fading ) while τi(t) is the random component which is modeled

here as Rayleigh fading (Small scale fading). The scheduling rule X1 > T1
T2

X2 simpli-

fies to τ1(t)>
a2T1
a1T2

τ2(t) = arτ2(t), where a = a2
a1

.Since τi(t) is assumed to be stationary

,(A.1)modifies to

T1

T2
= r =

P(τ1 > arτ2)E [ga1τ1/τ1 > arτ2]

P(τ2 > (ar)−1τ1)E [ga2τ2/τ2 > (ar)−1τ1]
(A.2)

The above expression simplifies to

T1

T2
= r =

a1

a2

´
∞

0 fτ2(t)(x)
´

∞

arx y∗ fτ1(t)(y)dydx´
∞

0 fτ1(t)(x)
´

∞
x
ar

y∗ fτ2(t)(y)dydx

ar =

´
∞

0 fτ2(t)(x)
´

∞

arx y∗ fτ1(t)(y)dydx´
∞

0 fτ1(t)(x)
´

∞
x
ar

y∗ fτ2(t)(y)dydx

where fτ1(t)(x) = λe−λ1x and fτ2(t)(x) = λ2e−λ2x are pdfs of randomly varying compo-

nent of received channel power.The above equation simplifies to

ar =
λ2

λ1ar
∗

ar
λ1ar+λ2

+ 1
λ1

1
λ1ar+λ2

+ 1
λ2



Of the solutions of the above equation, the only real solution is ar = λ2
λ1

. So for same

small scale channel fade conditions, i.e λ1 = λ2. The throughput ratio simplifies to ratio

of large scale fading components as

T1

T2
=

a1

a2

Similarly for same large scale channel fade conditions, i.e a1 = a2. The throughput ratio

simplifies to

T1

T2
=

λ2

λ1

We can extend this analogy given any number of users N, Consider only the slots these

two users are scheduled ,the ratio of throughput’s of these two users is still same as

which reduces to

Ti

Tj
= ri, j = a−1

i, j
λ j

λi

∀i, j = 1, ...,N.We now move on to logarithmic rate case. To evaluate the ratio of

throughput of theses users given that these two users experience different channel condi-

tions. We assume Rayleigh channel with logarithmic rate. The scheduling rule here sim-

plifies to log(1+gτ1(t))>
a2T1
a1T2

log(1+gτ2(t)),with assumption log(1+gx) = log(gx)

which further simplifies to τ1(t)> gar−1τar
2 (t). With this (A.2) ,simplifies to

T1

T2
= r =

P(τ1 > gar−1τr
2)E

[
log(1+ga1τ1)/τ1 > gar−1τar

2
]

P(τ2 > g
1−ar

r τ
1
ar
1 )E

[
log(1+ga2τ2)/τ2 > g

1−ar
r τ

1
ar
1

]

T1

T2
= r =

´
∞

0 fτ2(t)(x)
´

∞

gar−1xar log(1+ga1y)∗ fτ1(t)(y)dydx´
∞

0 fτ1(t)(x)
´

∞

g 1−ar
r x

1
ar

log(1+ga2y)∗ fτ2(t)(y)dydx
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After substituting for pdfs of Rayleigh channel it appears as

T1

T2
=r =

´
∞

0 λ2e−λ2x ´ ∞

gar−1xar log(1+ga1y)∗λ1e−λ1xdydx´
∞

0 λ1e−λ1x
´

∞

g 1−ar
r x

1
ar

log(1+ga2y)∗λ2e−λ2ydydx

=

´
∞

0 λ2e−λ2x
(

log(1+a1garxar)e−λ1gar−1xar − e
λ1
ga1 Ei[−λ1gar−1xar− λ1

ga1
]

)
dx

´
∞

0 λ1e−λ1x

(
log(1+ag1−ar+r

r x
1
ar )e−λ2g 1−ar

r x
1
ar − e

λ1
ga1 Ei[−λ2g1−ar

r x
1
ar − λ21

ga2
]

)
dx

We consider the system of N users in a cell with each user having a maximum delay

constraint of M slots beyond which the packets are dropped. All the users are assumed

to be having non iid channel conditions. Below are the terms that are used for derivation

for packet drop rate expression.

K−No of slots for which the users are scheduled.

Qi−No of renewals of user i of total renewals of K

ni
0,n

i
1, ....,n

i
M are the no of renewals occurred at Delays 0....M of user i

wi
0,w

i
1, ....,w

i
M are the no of times the user is the delay states 0....M of user i

ni
d− the no of packets dropped of user i

µi−average Delay of user i

We now derive the expression for packet drop in terms of the parameter µ .The total no

of slots for which users are scheduled is total no of renewals of all users as any one user

is scheduled at each slot

K =
N

∑
i=0

Qi (A.3)

No of renewals of a user i is sum of all its renewals i.e.

Qi =
M

∑
j=0

ni
j (A.4)

Packet drop Probability of user i is defined as follows

Pi
d =

ni
d

Qi +ni
d

(A.5)
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The scheduling probability of the user at delay state i is given by

P(Z = i) =
ni

Q

The average delay is given by

µi =
M

∑
i=0

i∗PZ(Z = i)

=
M

∑
i=0

i∗ ni

Qi

At each slot user will be in any of delay states 0....M and hence the total no of slots can

be written as

K =
M

∑
j=0

wi
j (A.6)

No of times the user is in a state j implies sum of no of renewals at states greater than

and equal to state j plus the no of packets dropped i.e..

wi
j =

M

∑
k= j

ni
k +ni

d (A.7)

We recall the definition of pmf of Delay states PW (Wi = n), as the probability of being

present in that delay state of user i which can be translated to

PW (Wi = n) =
wi

n
K

From (A.7) and (A.3), the above equation simplifies to

PW (Wi = n) =
∑

M
k= j ni

k +ni
d

∑
N
i=0 Qi

(A.8)
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Substituting back into (A.6)we get

K =
M

∑
j=0

(
M

∑
k= j

ni
k +ni

d

)
N

∑
i=1

Qi =
M

∑
j=0

( j+1)∗ni
j +(M+1)∗ni

d

∑
N
i=1 Qi

Qi
=

∑
M
j=0 j ∗ni

j

Qi
+

∑
M
j=0 ni

j

Qi
+

(M+1)∗ni
d

Qi

For iid channel conditionsQi =Q∀i= 1−→N, and (A.4),(A.5) from the above equation

reduces to

N =µi +1+(M+1)∗
Pi

d

1−Pi
d

Pi
d

1−Pi
d
=

N−1−µi

M+1
(A.9)

For iid channel conditions , (A.8) and with same above simplification it reduces to

PW (Wi = n) =
∑

M
k= j ni

k +ni
d

N ∗Q

=
1
N

(
∑

M
k= j ni

k

Q
+

ni
d

Q

)

=
1
N

(
M

∑
m=n

PZ(Zi = m)+
Pi

d

1−Pi
d

)

For PF in [16]it was proved for rate linear with SNR assumption even under non iid

conditions, every one gets the same no of slots to be served which impliesQi = Q∀i =

1−→ N, which simplifies to

Pi
d

1−Pi
d
=

N−1−µi

M+1
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