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ABSTRACT

KEYWORDS: Regenerating codes ; Quasi-cyclic; Minimum Storage Regenera-

tion; Maximum Distance Separable.

Regenerating codes for distributed storage systems promise significant improve-

ments in the cost and maintenance requirements of large-scale data centers. Re-

search in this area continues to define important new parameters and requirements

that have the biggest impact in practice. One of the simplest requirements for

a regenerating code is the so-called MSR property, which minimizes the num-

ber of bits downloaded during repair. Quasi-cyclic MSR codes are of particular

interest, mainly for reducing the encoding and decoding complexity. However,

quasi-cyclic MSR codes have not been studied in detail in the existing literature.

In this work, we prove the negative result that quasi-cyclic MSR codes with

no symbol extension do not exist if the number of systematic nodes is greater

than or equal to 4. We provide several examples of quasi-cyclic near-MSR codes,

which could be useful for reducing implementation complexity. We point out

some interesting connections between zeros of quasi-cyclic codes and the MSR

requirement, which are useful in the study of quasi-cyclic regenerating codes with

symbol extension.
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CHAPTER 1

INTRODUCTION

In a distributed storage system, bits of a single file are coded for error protection,

split into several parts and each part is stored in a separate node or storage device.

Suppose that there are a total of n nodes storing b bits each, and let k of them be

systematic nodes. The coding is mainly to protect against node failures. In large

distributed storage systems, failure of a single node is typical. Upon failure, a new

node needs to be installed with the same data as the failed node - a process which

is termed exact repair. To obtain the data, the new node connects to the surviving

n − 1 nodes and downloads some bits. The number of bits downloaded by the

new node is a measure of the cost needed for repair. An upper bound for this cost

is the size of the file equal to kb. However, by careful code design, the number

of downloaded bits can be made as low as (n − 1)b/(n − k). Codes that aim to

reduce the download cost for repair are termed regenerating codes.

The area of regenerating codes for distributed storage was introduced in Di-

makis et al. (2010). In the past few years, there has been very active research in

this area, as summarized in Dimakis et al. (2011). Important code designs, meth-

ods and bounds were first presented and explored in Shah et al. (2012). Code

constructions using array codes are presented in Tamo et al. (2011). The connec-

tion to linear algebraic “interference alignment” is particularly interesting, and has

been explored further in Cadambe et al. (2011). Other algebraic code construc-

tions include Oggier and Datta (2011) and GastoÌĄn et al. (2011).

If the (n, k) regenerating code is over the finite field GF(2m), then each node

stores α = b/m symbols from GF(2m). Typically, b is chosen such that α is



an integer multiple of n − k, and α/(n − k) is termed the degree of symbol

extension. A code that can achieve the lower bound of (n− 1)α/(n− k) symbols

for regeneration is termed a MSR code. The code is said to have no symbol

extension if α = n − k. As can be seen, the simplest regenerating codes do not

have symbol extension. However, as shown in Shah et al. (2012), the range of n

and k for which MSR codes exist with no symbol extension is very limited. The

constructions in Tamo et al. (2011)Cadambe et al. (2011) produce MSR codes

using α = O((n − k)k) resulting in an exponential degree of symbol extension

and very high complexity.

Code constructions for rate k/n > 1/2 are known to be particularly hard with

existing solutions, except for a few cases, needing high complexity in terms of

a large b or a large finite field alphabet. Since most of the known code construc-

tions do not have cyclic structures, decoding complexity can be higher than that of

standard Reed-Solomon codes. Cyclic constructions, which have a potential for

reducing encoding and decoding complexity, have not received much attention,

except for GastoÌĄn et al. (2011); Thangaraj and Sankar (2011). In GastoÌĄn

et al. (2011), quasi-cyclic regenerating codes for the case n = 2k with the new

node connecting to k + 1 of the remaining nodes was considered. Code construc-

tions were provided for some values of n and k, and a general existence result was

proved.

In this work, we are concerned with the existence and possible constructions of

quasi-cyclic regenerating codes. Our main result is that quasi-cyclic MSR codes

with no symbol extension do not exist for k ≥ 4. To prove this result, we use

a parity-check matrix description for regenerating codes, and impose the require-

ments of quasi-cyclic structure Lally and Fitzpatrick (2001). The proof, though

elementary, comprises several steps, and results from a careful juxtaposition of
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linear-algebraic alignment properties needed for MSR codes and the algebraic

quasi-cyclic property.

We provide some examples of quasi-cyclic regenerating codes that are close

to MSR, i.e., number of downloaded bits is close to the lower bound. In some

of these cases, we consider symbol extension of small degree. Though these

codes are not strictly MSR, they are close in terms of number of downloaded bits,

and their encoding/decoding complexity is the same as that of comparable Reed-

Solomon codes. Finally, we make some initial observations about quasi-cyclic

MSR codes with symbol extension.

In comparison with prior work in this area, the novel aspects are the use of the

parity-check matrix description, which results in some significant simplifications.

The results and construction examples for quasi-cyclic MSR codes are new to the

best of our knowledge, and have been presented for the first time here.
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CHAPTER 2

SYSTEM MODEL

We consider a distributed storage system, where a K-bit message is encoded into

a N -bit codeword and stored in n = N
b

nodes with each node storing b bits. The

code is constructed such that a data collector, interested in accessing the message,

will be able to recover the message by connecting to any k = K
b

out of the n

nodes, downloading kb = K bits, and running a decoding algorithm. We will

let b = αm (for some positive integers α and m), and view the bits stored in

each node as a length-α vector over GF(2m). We stick to characteristic-2 fields,

though similar ideas extend to other fields. The vector stored in node i is denoted

ci = [ci,1 ci,2 ... ci,α], 1 ≤ i ≤ n with coordinates ci,j ∈ GF(2m). A codeword

distributed over n nodes is denoted c = [c1 c2 ... cn] in the node-wise form. The

set of all such codewords is denoted as the code C. The code C, when considered

over the alphabet A = GF(2m)α, has block-length n and message-length k = K
b

.

For the data collector to be successful, the codeC needs to be MDS overA. In this

work, we will further assume that C is cyclic over A, i.e., if c = [c1 c2 ... cn] ∈ C,

then [c2 c3 ... cn c1] ∈ C. This will, as expected, require that n|(2m − 1). We will

set n = 2m − 1 in most examples.

When considered over the alphabet GF(2m), the code C has block-length nm

and message-length km. In this alphabet, the code C need not be MDS, but

we will suppose that C is linear over GF(2m). Now, since C is cyclic over A,

we see that C is α-quasi-cyclic over GF(2m), i.e., C is closed under a cyclic

shift by α positions. Following the standard convention in the study of quasi-

cyclic codes (see Lally and Fitzpatrick (2001) and references thereon), a codeword



c = [c1 c2 ... cn] ∈ C can be thought of as a concatenation of α vectors of length-n

ci = [c1,i c2,i ... cn,i] for i = 1, 2, ..., α. We will use the notation c = [c1|c2|...|cα]

to denote this concatenation. Note that each vector cj is stored over n nodes with

one symbol ci,j stored in node i.

Using the structure results for quasi-cyclic codes from Lally and Fitzpatrick

(2001),C over GF(2m) with codewords in the concatenated form c = [c1|c2|...|cα]

has a parity-check matrixH of size (n−k)α×nα composed of block sub-matrices

Hij , for 1 ≤ i, j ≤ α. EachHij is circulant, in the sense that row r is a cyclic right

shift by 1 of row r − 1 for r = 2, 3, . . .. The matrices Hii are (n − k) × n parity

check matrices of cyclic MDS codes over GF(2m). The matrices Hij are all-zero

when i < j. However, Hij can be non-zero for i > j. There is another additional

constraint imposed upon these off-diagonal matrices. Considering hii(x) to be

the generator polynomial of the cyclic code with generator matrix Hii, common

roots of hii(x) and hjj(x) must necessarily be roots of hij(x) Lally and Fitzpatrick

(2001); Thangaraj and Sankar (2011).

We briefly describe regeneration in terms of the parity-check matrix, since it

is non-standard in this area. In this work, we restrict ourselves to regenerating

node n by accessing all remaining n − 1 nodes. Since the code is cyclic over A,

regeneration of any other node follows by a cyclic shift. For regenerating node n,

we require α codewords from the dual code of C (over GF(2m)), or the row-space

of H , with some specific properties Thangaraj and Sankar (2011). Let M be an

α×α(n− k) matrix such that the rows of the product MH are, precisely, these α

dual codewords. Denoting the i-th column of H as H(i), the i-th column of MH

is MH(i). We form an α× α matrix Mi, 1 ≤ i ≤ n, as

Mi = [MH(i) MH(i+ n) · · ·MH(i+ (α− 1)n)].
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Note that for a codeword in the node-wise form c = [c1 c2 ... cn], we have∑
iMi(ci)

T = 0.

For regeneration, we need M such that rank(Mn) = α, i.e., Mn is invertible.

The number of symbols over GF(2m) that node i needs to send to node n for

regeneration is precisely rank(Mi).

The code C is said have no symbol extension if α = n − k. The code C

is said to be Minimum Storage Regenerating (MSR) if there exists M such that

rank(Mi) = α/(n − k) for 1 ≤ i ≤ n − 1 and rank(Mn) = α. In particular,

the MSR condition with no symbol extension (α = n − k) requires M such that

rank(Mi) = 1 for 1 ≤ i ≤ n− 1, and rank(Mn) = n− k.

In Sections 3.1 and 3.2, we prove the main result of this work. Since the proof

involves several intertwined steps, we first provide a proof for the specific case

of n = 7, k = 4 for the sake of clarity of exposition. This is followed by a

generalization, which is brief.
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CHAPTER 3

Results of non-existence for specific parameters

3.1 Non-existence of (7,4) quasi-cyclic MSR code for

α=3

For n = 7, k = 4 and α = n − k = 3 (no symbol extension), a linear MSR code

is known to exist Shah et al. (2012). We show, in this section, that a quasi-cyclic

MSR code does not exist for the same parameters. The proof is by contradiction,

and assumes characteristic-2 fields for simplicity. The same proof extends to other

characteristics readily. So, we assume that there exists a (7, 4) quasi-cyclic MSR

distributed storage code C with a 9× 21 parity-check matrix

H =


H11 03×7 03×7

H21 H22 03×7

H31 H32 H33


Further, there exists a 3 × 9 matrix M for regeneration such that rank(Mi) = 1,

1 ≤ i ≤ 6, and rank(M7) = 3.

We know from the previous section that the 3 × 3 regenerative matrices Mi

can be written as

Mi = [MH(i) MH(i+ 7) MH(i+ 14)].

For 1 ≤ i ≤ 6, since rank(Mi) = 1, we have dim(N(Mi)) = 2, where N(·)



denotes the right nullspace for a matrix. Let ai = [ai1 ai2 ai3] and bi = [bi1 bi2 bi3]

be a basis for N(Mi). We see that

Mi(ai)
T = M(ai1H(i) + ai2H(i+ 7) + ai3H(i+ 14))T = 03×1,

or

ai = (ai1H(i) + ai2H(i+ 7) + ai3H(i+ 14)) ∈ N(M).

Similarly,

bi = (bi1H(i) + bi2H(i+ 7) + bi3H(i+ 14)) ∈ N(M).

Now, since the code C is MDS and has minimum distance 4 over GF (2m)3, we

have that the set of columns

{H(i), H(i+ 7), H(i+ 14) : i ∈ S}

are linearly independent for any three-element subset S ⊂ [1 : 7], where [i : j]

denotes the integer set {i, i + 1, . . . , j}. Further, since rank(M7) = 3, we have

that rank(M) = 3, and rank(N(M)) = 6. So, we have

Lemma 1 For S ⊂ [1 : 6] with |S| = 3, the set

BS = {ai,bi : i ∈ S}

is a basis for N(M).

The next lemma further clears up the structure of BS .

Lemma 2 For 1 ≤ i ≤ 6, either ai1 6= 0, or bi1 6= 0.
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Proof: We will prove, by contradiction, for i = 1. The proof for other cases

is similar. The main idea used is that Hii are 3× 7 parity-check matrices of MDS

codes. So, (1) any three of their columns are independent, and (2) any one of their

columns can be written as a linear combination of three other columns.

Suppose a11 = b11 = 0. Writing a4 ∈ N(M) in the basis B{1,2,3}, and

restricting to the first three positions, we have

a41[H(4)]1:3 = η[H(2)]1:3 + κ[H(3)]1:3,

where η, κ are constants occurring in the linear combination, and an obvious no-

tation has been used for the restriction. From the above, since the (7,4) code with

parity-check matrix H11 is MDS, we have a41 = 0. Similarly, writing b4 in the

basis B{1,2,3} and a5,b5 in B{1,2,3}, we can show that b41 = a51 = b51 = 0.

Now, using the basis B{1,4,5}, we get that ai1 = bi1 = 0 for 1 ≤ i ≤ 6. So,

without loss of generality, we can set ai = [0 1 0] and bi = [0 0 1]. Therefore,

H(15), H(16), H(17) ∈ N(M), which implies that H(21) ∈ N(M), because

H(21) is a linear combination of H(15), H(16), H(17).

Now, H(21) ∈ N(M) contradicts

rank(M7) = rank([MH(7) MH(14) MH(21)]) = 3,

and the proof is complete.

Using Lemma 2, we let, without loss of generality, ai1 = 1 and bi1 = 0. With

the above choice, we further have bi2 6= 0. The proof of this is similar to that

of Lemma 2, and we omit the details. So, we can further set, without loss of

9



generality, bi2 = 1 and ai2 = 0, and we have, finally,

ai = H(i) + ai3H(i+ 14) ∈ N(M),

bi = H(i+ 7) + bi3H(i+ 14) ∈ N(M),

for 1 ≤ i ≤ 6. From the structure of ai and bi, it is clear that any bj , when written

as a linear combination of a basis BS , only involves bi, i ∈ S. Writing b4 in the

basis B{1,2,3} (which is, in fact, in terms of b1, b2 and b3), and restricting to the

second three positions, we have

[H(11)]4:6 = c1[H(8)]4:6 + c2[H(9)]4:6 + c3[H(10)]4:6. (3.1)

Now, [H(i + 7)]4:6, 1 ≤ i ≤ 7, are the columns of H22, which is a parity-check

matrix of a cyclic MDS code. So, (3.1) becomes

H22[c1 c2 c3 1 0 0 0]T = 03×1,

and, we see that, [c1 c2 c3 1 0 0 0] is the unique generating codeword of the cyclic

MDS code < H22 >
⊥ (for a matrix H , < H >⊥ denotes the code with parity-

check matrix H). So, we get that

b4 = c1b1 + c2b2 + c3b3 (3.2)

resulting in

c1H(8) + c2H(9) + c3H(10) +H(11)+

c1b13H(15) + c2b23H(16) + c3b33H(17) + b43H(18) = 06×1. (3.3)
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From (3.3), we see that

[01×7|c1 c2 c3 1 0 0 0|c1b13 c2b23 c3b33 b43 0 0 0] ∈ C. (3.4)

Since H22 is the parity-check matrix of a cyclic code, we have

H22[0 c1 c2 c3 1 0 0]T = 03×1.

So, writing b5 in the basis B{2,3,4} (which is, in fact, in terms of b2, b3 and b4),

we get

b5 = c1b2 + c2b3 + c3b4. (3.5)

Proceeding as before, we get that

[01×7|0 c1 c2 c3 1 0 0|0 c1b23 c2b33 c3b43 b53 0 0 0] ∈ C.

Since C is quasi-cyclic, we get that

[01×7|c1 c2 c3 1 0 0 0|c1b23 c2b33 c3b43 b53 0 0 0] ∈ C. (3.6)

By a similar argument, we further have

[01×7|c1 c2 c3 1 0 0 0|c1b33 c2b43 c3b53 b63 0 0 0] ∈ C. (3.7)

Adding the codewords in (3.4) and (3.6), and the codewords in (3.6) and (3.7),

we get that

[c1(b13 + b23) c2(b23 + b33) c3(b33 + b43) (b43 + b53) 0 0 0],

[c1(b23 + b33) c2(b33 + b43) c3(b43 + b53) (b53 + b63) 0 0 0]

11



are minimum weight codewords of < H33 >
⊥ with the same support. Therefore,

these codewords are proportional to each other (or they could be equal, which is

dealt with later). This means that

b13 + b23

b23 + b33

=
b23 + b33

b33 + b43

=
b33 + b43

b43 + b53

=
b43 + b53

b53 + b63

.

Now, we can always find a b73 ∈ GF(2m) such that

b53 + b63

b63 + b73

=
b43 + b53

b53 + b63

.

The existence of such a b73 (if all bi3 are equal, then b73 is simply equal to one of

them) would imply that

[01×7|c1 c2 c3 1 0 0 0|c1b43 c2b53 c3b63 b73 0 0 0] ∈ C,

which in turn implies that

[01×7|0 0 0 c1 c2 c3 1|0 0 0 c1b43 c2b53 c3b63 b73] ∈ C.

Hence, we see that H(14) + b73H(21) ∈ N(M), and, finally, we have the contra-

diction that rank(M7) < 3.

Thus, it is not possible to construct a (7, 4) MSR quasi-cyclic code.
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3.2 Non-existence of quasi-cyclic MSR codes for α=n-

k and k ≥ 4

Linear MSR codes with α = n−k (no symbol extension) do not exist if n < 2k−2

Shah et al. (2012). In this section, we show that quasi-cyclic MSR codes with

α = n − k do not exist for k ≥ 4 with no regard to rate. The proof is similar in

spirit to that in Section 3.1 that dealt with the special case of n = 7. So, we will

be brief and focus mostly on the generalization steps.

The proof is by contradiction. So, we assume that there exists an (n, k) quasi-

cyclic MSR distributed storage code C with an (n−k)α×nα parity-check matrix

H composed of (n − k) × n block matrices Hij , 1 ≤ j ≤ i ≤ α. Further,

there exists an α × (n− k)α matrix M for regeneration such that rank(Mi) = 1,

1 ≤ i ≤ n− 1, and rank(Mn) = α.

For 1 ≤ i ≤ n− 1, let aij = [aij1 aij2 · · · aijα], 1 ≤ j ≤ α− 1 be a basis for

N(Mi). We see that

aij = (aij1H(i) + aij2H(i+ n)+

· · ·+ aijαH(i+ (α− 1)n)) ∈ N(M)

for 1 ≤ j ≤ α− 1. The generalization of Lemma 1 is immediate.

Lemma 3 For S ⊂ [1 : n− 1] with |S| = n− k, the set

BS = {aij : i ∈ S, 1 ≤ j ≤ α− 1}

is a basis for N(M).

13



The generalization of Lemma 2 needs a few more arguments.

Lemma 4 For each i ∈ [1 : n− 1], aij1 6= 0 for at least one j ∈ [1 : α− 1].

Proof: We will prove for i = 1, since the proof for any i is similar. Suppose

a1j1 = 0 for all 1 ≤ j ≤ α − 1. Writing an−k+l,j in terms of vectors in B[1:n−k],

we get an−k+l,j,1 = 0 for 1 ≤ j ≤ α − 1 for 1 ≤ l ≤ k − 1. Writing aij ,

2 ≤ i ≤ n− k, in the basis BS with S = [1 : i− 1] ∪ [i + 1 : n− k + 1], we get

that aij1 = 0. Thus, aij1 = 0 for all i ∈ [1 : n− 1], j ∈ [1 : α− 1]. For each i, the

aij , 1 ≤ j ≤ α− 1, are linearly independent. So, we can now set

ai,α−1 = [01×α−1 1], 1 ≤ i ≤ n− 1,

which implies that H(i + (α − 1)n) ∈ N(M) for 1 ≤ i ≤ n− 1. This results in

H(nα) ∈ N(M), and the contradiction that rank(Mn) < α.

Now, proceeding as in Section 3.1, we can set, without loss of generality,

aij = [01×j−1 1 01×α−j−1 aijα]

for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ α − 1. We focus on j = α − 1 and set, for

1 ≤ i ≤ n− 1,

bi = ai,α−1 = H(i+ (α− 2)n) + biαH(i+ (α− 1)n), (3.8)

where biα = ai,α−1,α.

Now, expressing bn−k+j , 1 ≤ j ≤ k − 1 in terms of bj , b1+j , . . ., bn−k−1+j ,

14



we have that

cj =[01×(α−2)n|

c1 c2 · · · cn−k 1 0k−1| (3.9)

c1bjα c2b1+j,α · · · cn−kbn−k−1+j,α bn−k+j,α 0k−1] ∈ C.

Considering cj + cj+1, 1 ≤ j ≤ k − 2, we get k − 2 minimum weight codewords

of < Hα,α >
⊥ with the same support. Since k ≥ 4, there are at least two such

codewords, and a similar argument as in Section ?? shows the existence of bnj

such that

H((α− 1)n) + bnjH(n) ∈ N(M)

resulting in the contradiction that rank(Mn) < α.

This completes the proof. So, the only interesting parameters for quasi-cyclic

MSR codes with k/n > 1/2 and no symbol extension are (3, 2) and (4, 3) with

α = 1, and (5, 3) with α = 2. Of these, (3, 2) and (4, 3) are easily seen to be not

possible. So, the (5,3) quasi-cyclic MSR code with α = 2 reported in Thangaraj

and Sankar (2011) is the only non-trivial one with no symbol extension.
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CHAPTER 4

Numerical Search for Codes

Since it is not possible to construct (7,4) quasi-cyclic MSR codes with α = 3,

we attempted to search (by computer) for quasi-cyclic codes that perform close to

MSR. The goal is to find H and M such that rank(M7) = 3, and βi = rank(Mi)

for 1 ≤ i ≤ 6 are either 1 or 2. We obtained one code over GF(8) for which

β1 = β2 = β4 = 1 and β3 = β5 = β6 = 2. To specify the parity-check

matrix H , we provide the first rows of Hij , denoted hij(x) in polynomial notation

(γ ∈ GF(23) is primitive):

h11(x) = γ + γ3x+ γ6x2 + γ6x3 + x4,

h21(x) = γ6 + γ5x+ γ5x2 + γ2x3 + x4,

h31(x) = 1 + γ4x+ γ2x2 + γ4x3 + x4,

h22(x) = γ5 + γ2x+ γ3x2 + γ3x4 + γ6x5 + γ4x6,

h32(x) = γ2 + γ3x2 + γx3 + γ4x4 + γ5x5 + γ6x6,

h33(x) = γ4x+ x2 + γx3 + γ3x4 + γx5 + γ3x6.

The three regenerative vectors are given by

[γ41γ3γ2γ50 γ | γ2γγ6γ61γ2γ6 | γ51γ6γγ61γ5]

[1 1γ2γ6γ6γ6γ3 | γ5γγ50 0 γγ6 | γ1γ50γ2γ6γ4]

[γ2γ4γ400γ5γ6 | 1γ51γ3γ γ 0 | γ3γ41γ5γ20γ]

The above (7,4) code is an improvement over the code reported in Thangaraj and

Sankar (2011).



We have found (7,4) quasi-cyclic codes that are close to MSR with symbol

extension. For instance, with α = 9, we get H and M with βi = 4, 1 ≤ i ≤ 6 and

rank(M7) = 9. Note that an MSR code would have βi = 3. Similarly we have

a (7, 4), α = 12 code with βi = 5, 1 ≤ i ≤ 5 and rank(M7) = 12, while for an

MSR code βi would have been 4. All these codes are over GF(8).

For (n, k) = (9, 5), α = 4, we found a code over GF(64) such that βi = 2,

1 ≤ i ≤ 8, and rank(M9) = 4. For (n, k) = (7, 2), α = 5 in GF (23), we found a

code with βi = 1, 1 ≤ i ≤ 5, β6 = 2, rank(M7) = 5. A summary of our findings

by computer search are given in Table 4.1.

(n, k) α βi, 1 ≤ i ≤ n− 1 Field size
(7,5) 2 [1 1 1 2 1 2] 8
(7,4) 3 [1 1 2 1 2 2] 8

9 [4 4 4 4 4 4]
12 [5 5 5 5 5 5]

(7,3) 4 [1 1 1 1 2 2] 8
8 [3 3 3 3 3 3]

(7,2) 5 [1 1 1 1 1 2] 8
10 [3 3 3 3 3 3]

(9,5) 4 [2 2 2 2 2 2 2 2] 64

Table 4.1: Codes found by computer search.

The exact code obtained by numerical search for n = 7, k = 4, with α = 9,

such that rank(Mi)=4, for 1 ≤ i ≤ 6, and rank(M7)=9 is presented in Appendix

B.
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CHAPTER 5

Role of constraints on the parity check matrix

In all the discussions thus far, we have not been able to get a hold on the exact

nature of these cyclic codes. That is because for the MSR case with no symbol

extension, the proof of contradiction doesn’t require any specific structure, other

than the plain cyclic nature. We know that the parity check matrices play a very

important role in the exact form of the cyclic code. For instance, we know that

any parity check matrix Hij of a cyclic code can be characterized by the first row

of the matrix, and this is given in polynomial notation as hij(x). We know from

Thangaraj and Sankar (2011) that those elements which are roots of both hii(x)

and hjj(x), are necessarily roots of hij(x). This only enforces further constraints

on the parity check structure. In cases of symbol extension, we realize that the

conditions enforced by this quasi-cyclic structure play a fairly involved role in

determining the non-existence of codes, for parameters where codes would have

existed otherwise. This is observed while trying to prove the non-existence of

(7, 4) codes with α = 6.

Lemma 5 There exists no (7, 4) code C, such that α = 6.

Proof: The proof of this lemma is presented in Appendix A.

The proof of the above lemma ensures that the roots of the polynomials form-

ing the parity check matrices cannot be picked out at random. On the contrary,

it is very specific parity check matrices, with particular properties which can be

used as valid parity check matrices to form a code that can be regenerated.



CHAPTER 6

Existence of quasi-cyclic codes for random

parameters

Most of the results presented up until now are negative results, proving non-

existence of codes. But, in case we relax the MSR constraint on (n, k) codes,

it is possible to obtain codes for all (n, k). We will prove that it is possible to

obtain (n, k) codes such that if (n − 1) divides k(n − k), rank(Mi)=
k(n−k)
n−1

, for

1 ≤ i ≤ n − 1, and rank(Mn) = n − k, where α = n − k. To prove this, we first

prove the following lemma.

Lemma 6 For Si ⊂ [1 : n], 1 ≤ i ≤ n− k, with |Si| = n− k − 1, if the message

vector matrix M , and the parity check matrix H are picked such that k ∈ Si,⇒

Mi’s kth column is zero, this is definitely a code that can be reconstructed.

Proof: The proof of this lemma is presented in Appendix .

Now, we can use the above lemma to prove the claim made in the beginning

of this chapter. If the subsets Si, 1 ≤ i ≤ n− k are picked such that 1, 2, ..., n− 1

occur an equal number of times in S1 through Sn−k, then that would mean exactly
(n−k−1)(n−k)

n−1
columns of Mi are zero, for 1 ≤ i ≤ n − 1. This means we have

obtained a construction by which rank(Mi) = n − k − (n−k−1)(n−k)
n−1

= k(n−k)
n−1

, for

1 ≤ i ≤ n − 1. Since this is a code that can be reconstructed, from Lemma 6, it

is implied that rank(Mn) = n− k.



The above proof also ensures that even if n − 1 does not divide k(n − k),

picking the sets Si in the above manner will give us
∑i=n−1

i=0 rank(Mi) = k(n −

k). The exact split of the ranks can be customised by manner of choosing Si’s

appropriately.
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CHAPTER 7

Concluding Remarks

We proved the non-existence of quasi-cyclic MSR codes with no symbol extension

when k ≥ 4. The condition k ≥ 4 is quite intriguing, since it validates the

existence of (5, 3) MSR quasi-cyclic codes discussed in Thangaraj and Sankar

(2011), and also precludes (7, 4) quasi-cyclic MSR codes, for which there exist

linear codes. This makes the quasi-cyclic requirement much stronger than that

of the MSR requirement. It also emphasises, strongly, the difficulty in obtaining

quasi-cyclic MSR codes for rate≥ 0.5.

The analysis of quasi-cyclic MSR codes with symbol extension (α = µ(n−k),

µ = 2, 3, . . .) is an interesting problem. An important factor in this analysis is the

nature of the roots of the generator polynomials of < Hii >
⊥. We state, without

proof, the requirements that we could derive for the existence of a (7, 4) quasi-

cyclic MSR code with α = 6. The requirements are the following: (1) the spacing

between the zeros of < H44 >⊥ and < H55 >⊥ should be the same, and (2)

the spacing between the zeros of < H33 >
⊥ and < H66 >

⊥ should be the same.

However, the remaining requirements are non-linearly coupled and require further

study.

Going by the results of computer search, it appears that a significantly large

symbol extension will be needed for quasi-cyclic MSR codes, if they exist at all.

Therefore, near-MSR codes offer an interesting compromise from a complexity

perspective.



APPENDIX A

Proof to Lemma 5

Consider an (n, k) quasi-cyclic MSR code for α = 6. Let the parity check ma-

trix have the regular lower-triangular sub-structure, containing matricesHij where

Hij = 03×7 for i > j. We also know that Hii defines (7, 4) codes for 1 ≤ i ≤ 6,

and that Hij is defined such that the parity check polynomial of Hij , hij(x) nec-

essarily has all roots which are common roots to the corresponding parity check

polynomials hii(x) and hjj(x).

Since the rank of the regenerative matricesMi needs to be 2 for 1 ≤ i ≤ 6, any

3 columns ofMi are dependent. SinceMi = MHi = [H(i)H(i+7) ...H(i+35)],

there need to be four independent null-space vectors of M , which can be formed

using the column vectors of Hi. This implies that we can obtain code-words of H

of the form [01×21 cc.∗αc.∗β]. Here c is a minimum distance codeword ofH44 of

the form [c1 c2 c3 1 0 0 0]. α is a vector of the form [α1 α2 α3 α4 α5 α6 0]. Similarly,

β is a vector of the form [β1 β2 β3 β4 β5 β6 0]. There is also a codeword of the form

[01×21 c c.∗α
′
c.∗β ′

] and of the form [01×21 c c.∗α
′′
c.∗β ′′

], where α′ refers to the

cyclically left shifted version of α and α′′ refers to the cyclically twice-left shifted

version of α. β ′ and β ′′ are defined similarly. Due to the rank 2 condition, there

also exist codewords of the form [01×14dd̂(d.∗γ+d̂.∗α)(d.∗δ+d̂.∗β)]. Similarly

there also exist codewords of the form [01×14 d d̂ (d.∗γ′
+ d̂.∗α′

) (d.∗δ′ + d̂.∗β ′
)]

and [01×14 d d̂ (d. ∗ γ′′
+ d̂. ∗ α′′

) (d. ∗ δ′′ + d̂. ∗ β ′′
)], where γ, δ are vectors

defined similarly as α, β and γ′
, γ

′′
, δ

′
, δ

′′ are also defined as their corresponding

predecessors.



Now, let us define αi + αi+1 = Ai,βi + βi+1 = Bi,γi + γi+1 = Gi and

δi + δi+1 = Di. Now, among the obtained codewords, adding the first to the

second, the second to the third, the fourth to the fifth and the fifth to the sixth

codewords, we obtain four new codewords of H of the following form

C1 = [01×28 c1A1 c2A2 c3A3 A4 01×3 c1B1 c2B2 c3B3 B4 01×3]

C2 = [01×28 c1A2 c2A3 c3A4 A5 01×3 c1B2 c2B3 c3B4 B5 01×3]

C3 = [01×28d1G1+d̂1A1d2G2+d̂2A2d3G3+d̂3A3G401×3d1D1+d̂1B1d2D2+d̂2B2d3D3+d̂3B3D401×3]

C4 = [01×28d1G2+d̂1A2d2G3+d̂2A3d3G4+d̂3A4G501×3d1D2+d̂1B2d2D3+d̂2B3d3D4+d̂3B4D501×3]

(A.1)

The first seven elements of each of these codewords are minimum distance

codewords of H55, and so are scalar multiples of one another. Assuming the first

seven elements of the C3 is k′ times the first seven elements of C1, and the first

seven elements of the C4 is k′′ times the first seven elements of the C2, we can

perform the following operations D1 = C3 +k
′
C1 and D2 = C4 +k

′′
C2. The first

seven elements of D1 and D2 are all zero by definition of k′
, k

′′ . This gives us the
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following equations

G1 +
(d̂1 + k

′
c1)

d1

A1 = 0.

G2 +
(d̂2 + k

′
c2)

d2

A2 = G2 +
(d̂1 + c1k

′′
)

d1

A2 = 0.

G3 +
(d̂3 + k

′
c3)

d3

A3 = G3 +
(d̂2 + c2k

′′
)

d2

A3 = 0.

G4 + k
′
A4 = G2 +

(d̂3 + c3k
′′
)

d3

A4 = 0.

G5 + k
′′
A5 = 0.

(A.2)

Since none of the Ai values can be zero (which would mean all the values are

zero, and hence there will exist a value of β7 to make M7 not full rank), the above

equations necessarily mean that (d̂2+k
′
c2)

d2
= (d̂1+c1k

′′
)

d1
, (d̂3+k

′
c3)

d3
= (d̂2+c2k

′′
)

d2
and

k
′

= (d̂3+c3k
′′

)
d3

. Let us call s1 = (d̂1+c1k
′
)

d1
,s2 = (d̂2+k

′
c2)

d2
= (d̂1+c1k

′′
)

d1
, s3 =

(d̂3+k
′
c3)

d3
= (d̂2+c2k

′′
)

d2
,s4 = k

′
= (d̂3+c3k

′′
)

d3
and s5 = k

′′ .

Now consider the last seven elements of D1 and D2. They form minimum

distance codewords of H66. These codewords are given by D1 = [d1(G1 +

s1A1) d2(G2 + s2A2) d3(G3 + s3A3) G4 + s4A4 0 0 0] and D2 = [d1(G2 +

s2A2)d2(G3 +s3A3)d3(G4 +s4A4)G5 +s5A5 000]. Since both of these are min-

imum distance codewords, they are scalar multiples of each other. This implies

that if [a1 a2 a3 1 0 0 0] is a minimum distance codeword of H66, 1, d3
a3
, d2
a2
, d1
a1

form

a GP. This means that the common difference between the roots of h33(x) and the

roots of h66(x) are identical. We also know that the common difference between

the roots of h44(x) and those of h55(x) are also identical. We have also proved
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that since M7 needs to be full rank, the two common differences (that of h33, h66

and that of h44, h55) must necessarily be different.

Now, since [d d̂] is a codeword of the sub-matrix containing H33, H43, H44, we

know that the following two equations hold.

h33(x)d(x) = 0.

h43(x)d(x) + h44(x)d̂(x) = 0.

(A.3)

The first equation implies that d(x) has roots which are exactly the three non-roots

of h33(x) (Since the largest exponent in d(x) is x3 due to its minimum distance

property). By definition of h43(x), it necessarily contains roots which are common

to both h33(x) and h44(x). This means the product h43(x)d(x) necessarily divides

h44(x). For the second equation to be zero, the term (h43(x)d(x)
h44(x)

+ d̂(x) must nec-

essarily have roots which are non-roots of h44(x). Since by definition of d(x), the

first term of the summation has all roots which are non-roots of both h33(x) and

h44(x), d̂(x) must necessarily contain roots which are non-roots of both h33(x)

and h44(x). Since h33(x) and h44(x) have necessarily different common differ-

ences of roots, they must necessarily have at least one common root. So assume

there is more than one common root, then the number of common non-roots are 3

in number, which would make the leading exponent of d̂(x) go up to 3. This is not

possible since d̂(x) is a quadratic expression. Therefore, the number of common

roots is exactly one, and the number of common non-roots is exactly 2.

Now assume the roots of h33(x) are αi1 , αi1+∆1 , αi1+2∆1 , and those of h44(x)

are αi2 , αi2+∆2 , αi2+2∆2 (note that one of the six roots is shared), and the sum of
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the roots of d̂(x) is S, and the product of the roots is P . From the equations in A,

we know that the following determinant must be 0 for a non-zero solution of d̂.



d̂1
d1

+ d̂2
d2

+ d̂3
d3

d̂2
d2

+ d̂3
d3

d̂3
d3

c1
d1

c2
d2

c3
d3

c2
d2

c3
d3

1



By definition of roots of h33(x) and h44(x), we have d3 = αi1(1+α∆1+α2∆1),

d2 = α2i1+∆1(1 + α∆1 + α2∆1) and d1 = α3i1+3∆1 . We also have c3 = αi2(1 +

α∆2 + α2∆2), c2 = α2i2+∆2(1 + α∆2 + α2∆2) and c1 = α3i2+3∆2 .

Then the determinant equation reduces to the following:

P (1 + α∆1 + α2∆1)(1 + α∆2 + α2∆2)+

Sαi1+2∆1(αi2−i1+∆2−∆1(1 + α∆1+∆2)(α∆1 + α∆2) + (1 + α∆2 + α2∆2))+

α2i1+3∆1+(i2−i1+∆2−∆1)((1+α∆1+∆2)(α∆1+α∆2)+αi2−i1+∆2−∆1(1+α∆2+α2∆2)) = 0

(A.4)

A simple search over all possible i1, i2,∆1,∆2 will show that this equation has

no solutions in GF (23). Therefore the only possible solution is d̂ = 01×7. This

would imply that the roots of h33(x) and h44(x) must have the same common

difference which gives us a contradiction.
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APPENDIX B

Sample non-MSR (7,4) code with rank(Mi)=4 for

1 ≤ i ≤ 8, and rank(M9)=9.

The parity check matrices for the same are as follows.

h11(x) = γ2 + γ2x+ γ3x2 + γx3 + x4

h22(x) = γ4 + x+ γ4x2 + γ5x3 + x4

h33(x) = γ6 + γ5x+ γ5x2 + γ4x3 + x4

h44(x) = γ + γ3x+ γ6x2 + γ6x3 + x4

h55(x) = γ3 + γx+ x2 + γ3x3 + x4

h66(x) = γ5 + γ6x+ γx2 + x3 + x4

h77(x) = 1 + γ4x+ γ2x2 + γ4x3 + x4

h88(x) = γ2 + γ2x+ γ3x2 + γx3 + x4

h99(x) = γ4 + γx+ γ4x2 + γ5x3 + x4

(B.1)



The regenerative vectors are given by

c1 = [γ2γ6γ2γ2γ6γγ4γ3γ3γ61γ3γγγ21γ21γ61γ3

γ5γ3γ60γ2γ5γ1γγγγ2γ010γ2γ2γ20γ

γγ60γ2γ6γ4γ4γ2γ4γ41γ6γ2γ4γ5γ4γ40γ501]

c2 = [γ31γ2γ3γ6γ2γ3γ2γ3γγ4γ4γγ5γ5γ6γ5γ3γ211

γ61γ0110γ3γ3γ3γ3γ5γ2γ3γ4γ0γ6γ6γ3γ4

1γ4γ4γ5γ1γ4γ5γ4γ5γ6γ2γ3γ10γ0γ3γ1]

c3 = [γ1γ3γ5γ2γ2γ5γ20γ51γ2γ4γ6γ301γ5γ6γ3γ

1γ6γγ2γ20γγγ3γ60γγ0γ61γ4γ200γ

γ6γ50γ6γ40γ51γγ5γ5γγ3γ3γ4γ1γγ61γ4]

c4 = [γ2γ4γ5γ3γ6γ2γγ5γ4γ3γ61γ5γ5γ2γγγ41γ41

γ40γ311γ5γγ3γ2γ3γ41γ5γγ4γ2γ6γγ2γ31

γ0γ2γ2γγ3γ2γ6γ6γ4γ6γ5γ2γ6γ3γ31γ61γ5γ6]

c5 = [γ2γγ3γ2γγγ20γ1γ6γ400γ2γγ61γ50γ

γ1γ1γγγ50γ50γ6γ4γ60γ5γγ3γ2γ2γ6γ5

γγ4γ2γ5γ6γ6γ31γ500γ6γ4γ3γ6γγ3γ6γ2γ2γ]

c6 = [γ6γ6γ5γ31γ4γγ5γγ2γ3γ400γ20γ3γ3γ20γ5

0γ2γ51γγ4γ41γ2γ5γ5γ2γ6111γ6γ4γ3γ20

γ4γ6γ30γ60γ4γ3γ6γ2100γ2γ310γ6γγ2γ5]

c7 = [γ61γ6γγγ5γ5γ20γγ5γ6γ2γ110γ6γ2γγ

γ3γ3γ40γ2γ4γ4γ4γ3γ4γ5γ5γ4γ4γ50γγ2γ5γ41

γ2011γ5γ6γ2γγ41γ20γ3γ1γ410γ4γ5γ5]

c8 = [γ510γ0γ40γ201γ2γγ3γ5γ5γ6γ6γ3γ6γ2γ2

γ41γ6γ5γ2γ2γ6γ01γγ61γ51γ6γ5γ21γ5γ2

γ6γ61γ50γ601γ5γ31γ20γγ2γ2γ3γ4γ31γ4]

c9 = [1γ4γ401γ2γ4γ2γ3γ5γ5γ50γ60γγ3γ5γ30γ5

0γ411γ4γ2γ5γ5γ5γ3γγγ3γ2001γγ2γ4γ2

γ5γ611γ4γγ3γγ5γ4γ311γ3γ6γ5γ2γ2γ4γ4γ5]

(B.2)
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APPENDIX C

Proof to Lemma 6

The size of the set Si is given to be n − k − 1. This means that there are exactly

n−k−1 matrices Mj, 1 ≤ j ≤ n−1 with the ith column being zero. This would

in turn mean that there are exactly n − k − 1 null-space vectors of M with the

first (i− 1)(n− k) elements being all zero, followed by n− k non-zero elements

belonging to columns of Hii. Since the minimum distance of Hii is n − k + 1, it

follows that all these n−k−1 null-space vectors are independent, and necessarily

in their first n − k non-zero elements itself. All the above statements are true for

all values of i from 1 to n− k. Now, since the number of zero-elements in the top

are different for each i, it is also true that all the (n − k)(n − k − 1) null-space

vectors we have now obtained from columns of our parity check matrix H are

independent. Also, since the dimension of the null-space ofM is (n−k)(n−k−1),

these set of null-space vectors form a basis for the null-space of M .

Let us considerMn. IfMn is not full-rank, then it is necessary that there exists

some combination of the jnth columns of H , 1 ≤ j ≤ n − k, which belongs to

the null-space of M . Let the smallest such index j be equal to p. This means there

exists a null-space vector ofM with the first (p−1)(n−k) elements being all zero,

and the next n− k elements being the last column of Hpp. It is also necessary that

this null-space vector can be expressed in terms of the basis defined above. Now,

since the first (p− 1)(n− k) are all-zero, the null-space vectors having non-zero

elements in the first (p − 1)(n − k) positions are not relevant. Also the relevant

null-space vectors whose first n − k non-zero elements are columns of Hpp are



only n− k − 1 in number, which is lesser than the minimum distance of the code

defined by Hpp, it is not possible to find such a basis vector representation for that

particular null-space vector. This implies that Mn must necessarily be full-rank,

thereby proving Lemma 6.
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