
Acceleration of Statistical Timing Analysis Algorithm on

Graphical Processing Units

A Project Report

submitted by

SUDHARSHAN. V

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

(ELECTRICAL ENGINEERING)

AND

MASTER OF TECHNOLOGY

(MICROELECTRONICS AND VLSI DESIGN)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2013

THESIS CERTIFICATE

This is to certify that the thesis titled Acceleration of Statistical Timing Analysis

Algorithm on Graphical Processing Units, submitted by Sudharshan.V, to the Indian

Institute of Technology, Madras, for the award of the degree of Bachelor of Technology

and Master of Technology, is a bona fide record of the research work done by him

under my supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Prof. Nitin Chandrachoodan
Research Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 28th May 2013

ACKNOWLEDGEMENTS

I would like to thank Dr. Nitin Chandrachoodan for giving me this opportunity of

working in a very exciting topic that meets my interests and strengths. I would also like

to thank Dr. Shankar Balachandran for giving us his guidance during our work towards

the TAU Contest 2013 which was to form the base of the work that I had carried forward

and extended towards GPUs.

I would also like to thank Jobin Jacob Kavalam for being the ever enthusiastic chap

whose persistence and drive was a constant source of motivation and marvel for not

only me but everyone in the lab doing our projects. Thanks are in order for Ramprasath

who was the guru of SSTA and for providing different inputs and feedback on the work

that I was doing. Both of them showed the value and necessity of sharing and learning

from peers without which this project would be nowhere near what it is right now.

I have to thank and acknowledge the awesome year spent along with the following

group - Abishek, Bharath, Bhargava, Numaan, Prasad, Siddharth and Vignesh who

provided support during moments of uncertainity and provided much needed distraction

outside the project activities and course work. I would also like to thank all my friends

whom I met in class and outside who have made my stay at campus so memorable.

None of this would have been possible without my parents who have been a pillar

of support and constant source of encouragement - a huge thanks to them.

i

ABSTRACT

KEYWORDS: Statistical Timing Analysis; GP-GPU; CUDA

Statistical Static Timing Analysis has been an active area of reasearch in the past decade

because of its importance towards accounting various variations that affect timing anal-

ysis. The traditional STA algorithm while having grown increasingly sophisticated

when accounting for so many variations is inherently pessimistic and has other dis-

advantages such as inability to model within die variations. Simultaneously, the field of

high performance computing has changed with the advent of General Purpose Graph-

ics Procesing Units(GP-GPU) where the emphasis is more on SIMD(Single Instruction

Multiple Data) and higher computational power over caching and extensive pipelining

that have powered CPUs. The block-based SSTA algorithm is used in this work because

its level based approach lends itself into parallel computation of arrival time distribu-

tions in each level. It should be noted that the algorithm neither fits the embarrasingly

parallel nor is a completely serial algorithm that can be converted into a scan-reduce

problem that has been solved for the GPU previously.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work . 2

1.2.1 Numerical Integration and Monte Carlo Simulation for SSTA 2

1.2.2 Path Based Approach . 3

1.2.3 Block Based Approach . 3

1.2.4 Accelerating Monte Carlo SSTA using GPU 3

1.3 Contribution of this work . 4

1.4 Structure of the thesis . 4

2 An Overview of CUDA architecture 6

2.1 Why GPUs?
Performance comparison with CPUs 6

2.2 Graphics Processing Units - Features 7

2.2.1 SIMD Execution . 7

2.2.2 Occupancy . 8

2.2.3 Latency Hiding . 8

2.2.4 Memory Considerations 9

iii

2.2.5 Drawbacks . 10

2.3 CUDA Programming Model . 10

2.3.1 Kernels . 10

2.3.2 Memory Hierarchy . 11

3 Statistical Static Timing Analysis 14

3.1 Variations in SSTA . 14

3.2 Challenges in SSTA . 16

3.2.1 Impact of correlation on Delay 16

3.2.2 Topological Correlation in SSTA 17

3.2.3 Spatial Correlation . 18

3.2.4 Nonlinear Dependencies and Non-Gaussian distributions . . 18

3.2.5 Skewness of Max Operation 19

3.3 Block-Based SSTA . 19

3.3.1 Distribution Propagation Approach 20

3.3.2 Dependence Propagation Approach 20

3.4 Specifics of the Problem Statement in this work 23

4 GPU Accelerated SSTA 26

4.1 Circuit Traversal . 26

4.2 pthread parallel implementation 30

4.3 GPU Accelerated SSTA . 33

4.3.1 Results - v1.0 . 34

4.3.2 GPU Accelerated SSTA v1.1
Enabling Memory Coalescing and Constant Memory for Read-
only use . 37

4.3.3 GPU Accelerated SSTA v2.0 39

5 Conclusion and scope for Future work 44

5.1 Contribution of this work . 44

5.2 Future Work . 46

References 48

LIST OF TABLES

4.1 Runtime and Levelization results for the SSTA serial code 29

4.2 Speed up of 2-4-7 thread vs serial code comparison with number of
instances and number of levels . 32

4.3 Device Features for NVidia GeForce GTX 560 Ti 33

4.4 Comparison of code between CPU and CUDA 35

4.5 Comparison of v1.0 with 256-512 threads and serial runtime 36

4.6 Primary C Data Structures used and their memory sizes 39

4.7 Comparison of runtime - the optimized and unoptimized 40

4.8 Runtimes of the GPU Accelerated SSTA v2.0 for all benchmarks re-
ported in µs . 42

v

LIST OF FIGURES

2.1 More die area allocated to compute units instead of cache (CUDA,
2012) . 6

2.2 Comparison of computational power of GPU vs CPU (CUDA, 2012) 7

2.3 Examples of Global Memory Accesses in different architectures (CUDA,
2012) . 9

2.4 CUDA Programming Model (CUDA, 2012) 11

2.5 Automatic Scalability of Blocks which is architecture agnostic (CUDA,
2012) . 12

2.6 Memory Hierarchy correspondence to the programming model (CUDA,
2012) . 13

3.1 Maximum operation of RVs - nonlinearity and dependence on correla-
tion . 17

3.2 Non Gaussian distribution of gate length due to optical effects (Blaauw
et al., 2008) . 19

3.3 Spatial correlation using Quad-tree structure (Blaauw et al., 2008) . 21

4.1 Sample circuit - Levelization . 27

4.2 Linear runtime of traversal algorithm 30

4.3 Parallel pthread implementation of SSTA 31

4.4 pthread runtime vs benchmarks and their size on the other axis . . . 32

4.5 GPU runtime vs number of threads 36

4.6 Comparison of different implementations of the algorithm 43

5.1 Ratio of runtime of GPU to pthread implementation vs Number of
gates/level . 45

vi

ABBREVIATIONS

STA Static Timing Analysis

SSTA Statistical Static Timing Analysis

CPU Central Processing Unit

GPU Graphical Processing Unit

AT Arrival Time

RAT Required Arrival Time

pthread POSIX Threads

CUDA Compute Unified Device Architecture

PDF Probability Density Function

CDF Cumulative Desity Function

SIMD Single Instruction Multiple Data

RV Random Variable

PCA Prinicipal Component Analysis

BFS Breadth First Search

ALAP As Late As Possible Scheduling Algorithm

ASAP As Soon As Possible Scheduling Algorithm

SM Streaming Multiprocessors

vii

NOTATION

φ Gaussian pdf

Φ Gaussian cdf

ρ Correlation Ceoefficient

TA Tightness probability

aX Corner point based coefficients

∆V Voltage Variation

∆L Gate Length Variation

∆W Width Variation

∆H Threshold Variation

∆M Metal Variation

de Elmore Delay

βe Second order moment of impulse response

ŝo Nominal Output slew of the impulse response

viii

CHAPTER 1

Introduction

1.1 Motivation

Timing Analysis over the past 2 decades has been mainly dominated by static-timing

analysis(STA) - with STA playing a very important role in the optimization stage of

digital design. The advantages of STA have been

• Linear Runtime with circuit size allowing fast computation of results even for

designs with the order of 108 gates

• Conservative estimate in terms of the delay being computed and hence providing

sufficient timing constraints during design

• STA algorithms have evolved over time to tackle issues such as false paths, multi-

cycle paths and lastly

• Delay characterization for cell libraries with the help of foudries which are easily

available.

Nevertheless, as the Silicon industry is approaching dimensions in the 10s of nm this

decade - the impact in the circuit due to process variations or variations due to change

in environmental conditions have driven designers to verify their designs at different

extremeties referred as corner points. The STA analysis is now performed at the dif-

ferent corner points to ensure that the design does not fail at these points. The obvious

disadvantage of such a scheme of verifying the design results in very pessimistic timing

constraints leading to the chips being over-engineered. Other reason as to why STA

does not really work well with variation is that while global variations can be taken

into account by running STA for different corner points, within-die variations cannot be

taken into account when performing the timing analysis. The variations both global as

well as intra-die have motivated the introduction of Statistical Timing Analysis.

Simultaneously in the past decade, there has been tremendous emphasis on parallel

computing on Graphical Processing Units(GPU) - mostly due to the lack of increase

in computation power anymore in CPUs, as was the case in the previous decades due

to constant scaling and increase in clock frequency. The new era of high performance

computing is being constantly referenced to the tremendous compute power that the

GPU offers in trading more die area for compute units instead of memory units such as

huge caches that dominate the present state of the art CPUs.

1.2 Previous Work

In the traditional STA algorithm, the combinational circuit is abstracted as a timing

graph with the pins of gates forming the vertices of the graph and the gate delays as

well as the interconnect delays serving as the edges of the timing graph. The subse-

quent algorithms of SSTA retains the basic timing graph while specifying the problem

structure and it will be used in the following subsections.

1.2.1 Numerical Integration and Monte Carlo Simulation for SSTA

The earliest work in accounting for variations of different parameters and generating a

distribution in order to produce a statistical account of the timing were obviously that

of numerical-integration based on known equations and distributions available from

foundries and Monte-Carlo simulations where the PDFs of varying RVs are sampled

and based on which the delay computation is now performed using the traditional STA

algorithm. The advantage of both the algorithms are that they are agnostic to the type

of distributions that are propagated while they are heavily expensive in terms of the

computation involved. (Jess et al., 2006) and (Jaffari and Anis, 2008) each suggest

efficient methods for numerical integration and Monte Carlo simulation respectively.

2

1.2.2 Path Based Approach

Path Based approach was among the initial algorithms of SSTA where in the timing

graph probabilistic analysis was used in order to find out the critical paths as found in

(Gattiker et al., 2001) and (Agarwal et al., 2003). In Path based algorithm the delay is

found for all paths starting from the input to the output and finally a statistical MAX

operations is performed on all the delay values obtained. This obviously retains the

accuracy in computation because the addition of random variables happens without any

loss of information unlike the MAX operation - there have been methods by which

the order in which the calculation is performed minimizes the error obtained due to

the MAX operation. Nevertheless, enumerating the delay for all path is not efficient

because the runtime taken in order to traverse through all possible paths doesn’t scale

linearly with the number of gates.

1.2.3 Block Based Approach

The Block Based approach resembles the traditional STA algorithm in terms of the

traversal of the gates in a topological manner. The computation of the delay values

are either of the two steps - a) Adding delay value to the arrival time variable to cal-

culate the arrival time at the gate output and b) Statistical MAX operation of all such

values. (Visweswariah et al., 2006) and (Chang and Sapatnekar, 2005) have established

a canonical way of representing the arrival time as well as using (Clark, 1961) formu-

lation of calculating MAX of two normal random variables and approximating it as a

Normal random variable. The method followed in this work is also along same lines for

which the reasons would be explained in subsequent chapters.

1.2.4 Accelerating Monte Carlo SSTA using GPU

There has been previous work done on accelerating the SSTA where Monte Carlo sim-

ulations are performed In (Gulati and Khatri, 2009), where Texture Memory of the

GPU to act as a LUT for the cell library, and run the STA multiple times for gates in

each level. The advantage of such an adoption of the Monte Carlo on the GPU is that

3

the SSTA is agnostic of the distribution assumed and has no errors and gives order of

magnitude improvement in runtime when compared to the CPU implementation. The

disadvantage of this method is that the issues that prevailed with traditional STA such

as inability to model within-die variations still carry forward with this method.

1.3 Contribution of this work

The SSTA algorithm has evolved from the initial stages a decade ago - and has grown to

tackle different issues such as identification of False Paths as well as multi-cycle paths

introduced by level triggered latches. While additional complexities have been added,

the core idea of block-based SSTA of establishing a canonical form still continues.

This work focusses on the ability to split the work of computation of arrival times as

a statistical quantity into parallel computations. A pthread implementation of the

SSTA algorithm was first realized to convince that a speed up is possible and motivated

the idea of using a better equipped parallel infrastructure in running the algorithm. The

CUDA architecture has its own set of advantage as well as disadvantage - and the thesis

would give a brief introduction about the architecture to give a context. It should also be

noted here that the CUDA architecture rewards more computation intensive algorithm

where the need for load and store memory accesses are limited. The drawback is being

acknowledged here, but the basic framework provided here would extend well when

the same algorithm is extended to account for non-linearities in the dependence and

non-gaussian random variables.

1.4 Structure of the thesis

The thesis is organized as follows:

• Chapter 2: An overview of CUDA architecture

This chapter gives an overview of the CUDA architecture. The following topics

are given a brief outline to give a context and understanding of the work done

here and the results obtained - comparison b/w CPU and GPU, the programming

4

model, the memory hierarchy.

• Chapter 3: Statistical Timing Analysis - Formulation

The chapter deals with the various variations that we encounter in SSTA, and the

variables chosen for this work. The problem formulation of block based SSTA

and some basic results for error obtained due to the assumptions made during

formulation. Further the extensions that can be added to the above formulations

without considerable difficulty in order to tackle different problems are also ex-

plained.

• Chapter 4: GPU accelerated SSTA

The results obtained on implementing this algorithm using pthread and the

speed up so obtained are presented here as a motivation towards parallel imple-

mentation of the SSTA algorithm. The implementation of the problem formu-

lated in previous chapter on the GPU is then dealt in this chapter - in particular

the changes that were implemented so that it can be implemented on GPU. The

results obtained are also explained in terms of the architecture discussed earlier.

• Chapter 5: Conclusion and Scope for Future Work

The work done is summarized and the improvements that can be built upon the

existing engine are suggested.

5

CHAPTER 2

An Overview of CUDA architecture

2.1 Why GPUs?
Performance comparison with CPUs

CPUs have been developed over the past decades to increase their performance and they

have been able to do that with different techniques such as

• Heavy Pipelining of the units - prone to different types of hazards while trying

to mask the latency of the instructions.

• Superscalar architecture - where more functional units are used and data gets

processed while always keeping in mind to reduce idle functional units.

• Out-of-order execution, Branch Prediction, Eager Execution

The compiler as well as the architecture try to leverage “Instruction Level Paral-

lelism” in order to mask the latencies due to different operations and try to achieve

more than 1 instruction being executed per cycle. All these changes with architecture

along with increasing clock-speeds have been able to make sure that the hardware was

delivering the promised speed up with each node. But, the way the CPUs are designed

to handle the latency in accessing data structures available in the main memory - which

might be in the order of 100s of clock cycles - is by using enormous caches and control

Figure 2.1: More die area allocated to compute units instead of cache (CUDA, 2012)

Figure 2.2: Comparison of computational power of GPU vs CPU (CUDA, 2012)

hardware which take the majority of the die space in comparison to the computational

units ALU.

In comparison to the CPUs the GPUs were designed to maximize arithmetic per-

formance. In Figure 2.1 and 2.2 it can be seen the difference in the power of GPUs in

terms of computational power that it offers while in an equal way having huge memory

bandwidth to actually feed the computations. The GPUs in order to reduce on complex

control hardware employ two features - SIMD Execution and Latency Hiding.

2.2 Graphics Processing Units - Features

2.2.1 SIMD Execution

The GPUs are made of “Streaming Multiprocessors (SM)” which are independent ex-

ecution units - with each SM having upto 48 scalar processors each capable of doing

fused multiply-and-add per cycle. A kernel launches a grid of thread blocks which can

cooperate between each other. The threads within a block are divided into 32 thread

warp which run simultaneously on the scalar processors.

7

2.2.2 Occupancy

The Fermi architecture(2.x) supports upto 1536 active threads (or 48 active warps) per

SM. The ratio of the number of threads running on the SM to the maximum number of

threads possible gives us the occupancy of the SM.

2.2.3 Latency Hiding

In CPUs, there is little benefit in running more threads than the number of cores avail-

able. Because, if there is a stall in the current thread then for the CPU to change its

current working state to another thread must require that a thread scheduler select a

new thread to wake, remove the contents of the old execution from the registers and

load the state of the new thread into the registers. Hence, coarse-grained parallelism is

used for driving multi-core.

Coarse-grained parallelism is also used in GPUs - where the newly free SM is al-

located to the next block for computation. Fine-grained parallelism is the additional

feature that GPUs provide in comparison to the CPU. The SM scheduler is capable

of switching warps quickly when a hazard is encountered in the current warp - thus

ensuring that there are no stall cycles and enables maximum throughput.

This feature of Latency Hiding makes sure that the GPUs deliver as much instruc-

tion throughput which can go upto 32 instructions per cycle when in comparison to

modern CPUs which have around six execution pipelines which can deliver maximum

throughput only at 6 instructions per cycle.

Synchronization between blocks is too costly and mostly not attempted. But, syn-

chronization within a block can be done using __syncthreads(). While Intra-warp

is automatically synchronized, inter-warp synchronization implies whenever a barrier

is reached within a warp - that is removed by the scheduler and marked as inactive until

all other threads reach the barrier. As the number of active threads decrease, the latency

hiding ability of the SM decreases simply due to lack of active warps. As an obvious

conclusion from the above discussion, it must be noted that in order to make maximum

use of the latency hiding the kernel must be written so that there arithmetic operations

8

Figure 2.3: Examples of Global Memory Accesses in different architectures (CUDA,
2012)

and memory operations are interleaved so that hazards are minimized and also there are

sufficient number of active warps alive for each SM to ensure efficient latency hiding.

2.2.4 Memory Considerations

Threads in an active warp issue their global load and store operations simultaneously

- and can wait while the scheduler brings another warp to do its computation. But

when such synchronous calls are made to the memory controller - each transaction

addressing a 128 byte wide global memory line, it should be made sure that the requests

9

are coalesced as in Figure 2.3 so that the entire load operation can be serviced by a

single transaction whereas in the worst case there can be 32 different serial accesses by

the controller to the global memory.

2.2.5 Drawbacks

While the GPU offers the advantages of extremely high computational power as well as

memory bandwidth, it comes at the exchange of some oft-used traditional programming

routines. The drawbacks are as follows:

• No dynamic memory allocation

• Very less shared memory

• Bank conflicts for poor use of shared memory

• Branch divergence penalties

• Serialization of memory transactions for non memory-coalesced access - breaks

the idea of wrapping data within structures

• Costly Synchronization across Blocks.

2.3 CUDA Programming Model

This section would give a brief outline about the programming abstraction presented to

the programmer in order to use the GPU as represented in Figure 2.4

2.3.1 Kernels

CUDA C extends C in order to define functions called kernels. Kernel is defined using

__global__ declaration and the number of blocks used in the grid and the number

of threads per block is then specified within «<...»>. The parameters that are passed

on to specify the dimension of the kernel can be integers or can take 2-D or 3-D di-

mension values. The block and thread of each particular execution can be identified by

10

Figure 2.4: CUDA Programming Model (CUDA, 2012)

blockIdx and threadIdx variables. The maximum number of threads that can be

initialized in a block is 1024 threads.

Thread blocks are same as the “Blocks” described in the previous section and have

no simple way of synchronizing across them. Though, synchronization is hard across

blocks - this models helps in easily scaling the code for more number of processors as

shown in Figure 2.5.

2.3.2 Memory Hierarchy

CUDA threads may access data from multiple memory spaces. Each thread has a private

local memory comprising of registers. Thread blocks have the ability to use the shared

memory space available to them through L1 caches. All threads have access to the same

global memory. While the registers are accessible with one clock cycle delay, the shared

memory is usually around 3 clock delays away whereas the global memory is typically

takes around 400 cycles to do operations. Additionally there are read-only memories

provided by the constant memory and texture memory spaces. The shared memory is

available only as long as the block is under execution whereas the constant, texture

11

Figure 2.5: Automatic Scalability of Blocks which is architecture agnostic (CUDA,
2012)

and global memories are available throughout the lifetime of the kernel. The different

memory spaces available to different programming constructs are shown in Figure 2.6.

The texture memory space has not been used much in this work and hence the details

of the texture memory and its API is omitted.

Note: Optimizing CUDA code can lead to different paths which might or might not

lead to better results if just the CUDA Programming Model is taken into account with

just the limited knowledge about the latencies that different memory spaces offer. The

CUDA C Programming Guide has a section on Performance Guidelines - subsection

Multiprocessor Level which combines all the ideas from SIMD, Latency Hiding to the

bounds in memory created by the limited shared memory and register usage and serves

as the best possible guide when it comes to optimization instead of searching online for

CUDA optimization techniques.

12

Figure 2.6: Memory Hierarchy correspondence to the programming model (CUDA,
2012)

13

CHAPTER 3

Statistical Static Timing Analysis

This chapter is divided into 4 sections. The first section would give details about the

variations present that need to be accounted for in SSTA in more detail than that was

covered in the Introduction chapter. The second section would explain the challenges

that face SSTA and how they have been dealt with. The third section would explore the

topic of Block-Based SSTA and venture into the problem statement. The final section

would talk about the exact equations used which map the physical quantities in silicon

and the timing quantities such as arrival time and slew and establish the relations used

in this work. The work by (Blaauw et al., 2008) gives a good survey of the work done

so far in SSTA.

3.1 Variations in SSTA

In the Introduction chapter there was some explanation about STA being used for dif-

ferent corner points which was leading to highly pessimistic results. The variations that

were mentioned there mainly stem out of the following causes.

• Manufacturing Variations - uncertainty that arises in parameters due to manu-

facturing processes becoming more complex with the latest nodes. These varia-

tions occur from die to die as well as within die.

• Operating Variations - the variability that comes with a range of operating con-

ditions that the circuit is expected to work during its lifetime such as temperature,

Vdd, and wearing out of the circuit.

• Analysis Errors - inaccuracy in device modelling which might affect the param-

eters used in timing-analysis algorithm.

Since variations in environmental conditions as well as modelling errors are given

worst-case treatment because of the huge range in which it is expected to work, SSTA

mainly encompasses of dealing with process-variations. The variations due to other

components have been treated over and above the framework developed for the process

variation case.

Process Variations

The manufacturing process has become complex with shrinking size of the transistors.

There have been variations due to CMP(chemical mechanical polishing) used to pla-

narize metal lines and insulating oxides, optical proximity effects due to usage of light

whose wavelength exceeds the dimensions being realized and lens imperfections. The

variations in physical parameters cause the device parameters to change which in turn

affect the electrical parameters and hence the delay. A point in case is the width of

the interconnects which on increasing leads to lesser resistance but higher capacitance

leading to a negative correlation between them. The worst case model of the product

RC would definitely lead to a highly pessimistic value given the way the electrical pa-

rameters change. The number of variations from all possible variations that arise are

too high - and an analysis including all of them would be too complex. Hence, analyses

have taken physical variations as basic RVs.

The variations can be classified as either systematic variations or random variations.

Systematic variations are well documented and understood variations and arise mainly

due to optical proximity effect. The effect of such variations can be modelled by study-

ing the layout. Since the layout is not available at initial stages of design even these

variations are given a statistical treatment. For the random variations only the statistical

quantities are known during design stages. Even with the variations there might be vari-

ations from one die to another due to differences caused during alignment of the mask,

as well as within-die variations caused because of the way dies are exposed in smaller

blocks called reticles - leading to variations across different reticles within a same die.

15

3.2 Challenges in SSTA

The choice of bringing in RVs to model variations in order to predict arrival times bring

in their own set of challenges. First given the context of different variations possible and

how they are inter-dependent, the impact of correlation on delay calculation is discussed

here.

3.2.1 Impact of correlation on Delay

This study of correlation impact is important here because it largely determines the

sources of error in the analysis. In this analysis it would be seen how correlation affects

the results of the two fundamental operations that are used here.

Addition of RVs

Assume there are n RVs, which are identical in their distribution. (x1, x2, x3, . . . , xn) ∼

N (µ, σ2). Let sn = x1 + x2 + · · ·+ xn.

If the n RVs are independent RVs then the σ/µ ratio would be as follows

(
σ

µ

)
sn

=
1√
n

(
σ

µ

)
x

But, if the RVs are such that there is a correlation ρ between two random variables then

(
σ

µ

)
sn

=

√
1 + ρ(n− 1)

n

(
σ

µ

)
x

In the above equation when the random variables are completely correlated then the

σ/µ ratio remains the same as the original ratio. So from the above two equations it

can be inferred that the variance(spread) of the sum of independent random variables is

lesser than that of the completely correlated case.

16

6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Comparison of MAX operation on 2 identical RVs with different correlation

x

y

z

clarks

Figure 3.1: Maximum operation of RVs - nonlinearity and dependence on correlation

Statistical Maximum of RVs

The max operation is used in order to find the arrival time value at the output of any

gate and is the other important fundamental operation that is performed. In the Figure

3.1 independent normal random variables and completely correlated random variables

are considered. In the case of completely correlated random variables it can be seen

that the random variable s = max(x1;x2) is same as x1. While in the case of the

independent random variable the pdf of the curve is shifted towards the right leading to

higher estimates.

Hence from the above two paragraphs it can be seen that independent RVs while

giving lesser spread in the case of addition give a higher-estimate of values with respect

to the Max operation, while the completely correlated case gives higher spread while

adding RVs but gives the same distribution as the RVs themselves in the Max operation

in the identical distribution case.

Hence, in a given circuit if the random variables are assumed to be correlated then

it over-estimates the variation while adding path delays whereas in case of the indepen-

dent assumption the same happens with the Max operation.

3.2.2 Topological Correlation in SSTA

From the previous section, it must be clear that the SSTA analysis must choose RVs

such that the correlation between them does not affect the estimates made. Hence, all

timing quantities are made up of a known set of RVs whose distribution is known and

17

the timing quantity/delay dependence on these variables is also known. Apart from

these variables, there is an extra random variable which accounts for variations not

taken care by these variables and is independent of them. Such a way of modelling the

analysis reduces the problem to known variables and completely independent random

variables - both can be given good analytical treatment, thus avoiding problems where

there are RVs with partial correlation

The topological correlation problem stems out in the case of re-convergent fan-out.

When two paths that diverged out from the same fan-out again come together as inputs

then the independent random variables at the inputs are not independent anymore which

leads to over estimation in the case of the Max operation.

3.2.3 Spatial Correlation

There has been a discussion about within-die variation in the section of process varia-

tions. Such within-die variations often lead to partial correlation with variables across

the die. Within-die variations can also bring correlations to not only edges that are there

within a gate but also edges across two gates that are located closely. With spatial corre-

lation, both the operations - addition as well as Max do not operate easily each leading

to different pessimistic results depending upon the extent of correlation.

3.2.4 Nonlinear Dependencies and Non-Gaussian distributions

In the analysis, the assumption made is that the variations affect timing quantities in a

linear manner, and the variability is only as Gaussian random variables. Example of

non-normal variable is gate length(Figure 3.2 which appears due to variability in manu-

facturing. Even if the physical parameters vary in a normal manner, the dependence on

electrical parameters doesn’t necessarily need to be linear which result again in using

corner analysis.

18

Figure 3.2: Non Gaussian distribution of gate length due to optical effects (Blaauw
et al., 2008)

3.2.5 Skewness of Max Operation

The Max operation plays a very essential role in the SSTA computation - but inherently

the operation is a non-linear operation. Moreover, maximum of normal quantities re-

sults in positive skew of the resulting distribution which is a non-normal quantity. An

approximation here is made, assuming that the output of the Max operation is also gives

a Gaussian RV. The error due to the Max operation approximation is maximum when

the random variables have similar means and different variances, and also when the

variables are scaled versions of each other.

3.3 Block-Based SSTA

Previous work on other approaches to SSTA were covered in the Introduction chapter.

Since the work done in the thesis can be extended to different analyses that are block-

based, a short background on the earlier block-based techniques are presented. The

method used in this work is described in the section after that.

19

3.3.1 Distribution Propagation Approach

In earlier approaches towards block-based SSTA, the idea was to propagate the entire

distribution of the delay. The basic assumption over here is that the distributions are

independent in which case both the Add as well as the Max operation computation

is simple. But, in case of topological correlation due to re-convergence there will be

errors - alternatively the correlations between different delay variables which have some

dependence needs to be propagated along with the delay values - where the sum and

max operation cease to remain trivial.

Other approach to block-based SSTA is to discretize the distribution and propagate

the PMF(Probability Mass Function) as in (?). In case of the PMF, there is a slight

difference in the way calculations need to be done. Assuming independence, in case of

addition of 2 RVs the resulting PMF calculation is a convolution - while for the Max

operation the calculation involves the sum of product of the PMF of each with the CMF

of the rest. This method also has the issue of topological correlation - which is solved

by defining cones of gates falling within the re-convergence spot and finding the PMF

at the output using Bayes Theorem. The runtime complexity of the same is worst case

exponential. As an extension of the above work, (Agarwal et al., 2003) showed that

ignoring topological correlation results in a pessimistic upper bound which can still be

propagated while having a linear runtime.

3.3.2 Dependence Propagation Approach

In distribution propagation approach the whole information is contained within the dis-

tribution - this method had been used in earlier works and subsequently this line of work

had been useful in tackling the issue of Topological Correlation. But, it isn’t possible to

handle within-die variations effectively in the distribution approach. It follows that the

basic device parameters should be modelled as RVs. The spatial variation across the die

has been handled in 2 ways

• Correlation based variable order reduction - divide the die into small grids

and establish the correlation between the RVs of any 2 grids and reduce the RVs

20

Figure 3.3: Spatial correlation using Quad-tree structure (Blaauw et al., 2008)

into lesser number of independent unit variance normal RVs using methods such

as PCA.

• Quad-Tree model - in Figure 3.3 reduce the grid recursively into quads and as-

sign a RV for each of the quad - thus giving effectively accounting for global

variations by variables in the top levels as well as local variations given by vari-

ables in the lowest level of the quad tree.

Once the correlation within die is taken care of, now it should be all be expressed

in a way which can be useful to do the SSTA operations. The timing quantities are

expressed in a canonical form which is as follows

a = a0 +
n∑
1

ai∆Xi + an+1∆Ra (3.1)

where the RVs ∆Xi ∼ N (0, 1)∀i

Now it is to be seen as to how the variables are handled with the basic operations of

Addition and Max operations. When delays get added as C = A + B the variables of

C expressed in canonical form is quite straight-forward.

µc = µa + µb (3.2)

ci = ai + bi ∀i = 1, 2, . . . , n (3.3)

cn+1 =
√
a2
n+1 + b2

n+1 (3.4)

It is to be noted here that the random coefficients are treated as independent RVs.

21

The next operation is the Max operation which is a nonlinear operation and the

output of the operation cannot be expressed in the canonical form. The result of the

Max operation is hence approximated to a Gaussian distribution. The following is the

procedure in (Visweswariah et al., 2006) which has been adopted in this work.

Consider 2 RVs A and B where A and B are represented in their canonical form.

C = max(A,B). The procedure to compute the coefficients of C to express in its

canonical form is as follows.

1. Compute the variances of A and B and the covariance.

σ2
a =

n+1∑
i=1

a2
i , σ2

b =
n+1∑
i=1

b2
i , r =

n∑
i=1

aibi (3.5)

2. Compute the tightness probability TA defined as the Pr(A > B).

TA = Φ

(
a0 − b0

θ

)
(3.6)

θ =
√
σ2
a + σ2

b − 2r

where Φ is the CDF(cumulative density function) of the Gaussian distribution.

3. Compute mean and variance of C = max(A,B) given by (Clark, 1961)

c0 = a0TA + b0(1− TA) + θφ

(
a0 − b0

θ

)
(3.7)

σ2
c = (a2

0 + σ2
a)TA + (b2

0 + σ2
b)(1− TA)

+ (a0 + b0)θφ

(
a0 − b0

θ

)
− c2

0 (3.8)

4. Compute sensitivity coefficient for C to be expressed in the canonical form.

ci = aiTA + bi(1− TA) ∀i = 1, 2, . . . , n (3.9)

5. The calculation of c0 and σ2
c are exact as well as the above equation. The error in

the above calculation stems from the assumption that the result from these Max

22

operation is Gaussian, while it is not because of the non-linearity of the operation.

So, in order to match the variance of C to σ2
c the residue of variance from σ2

c from

the variance offered by the remaining variables i.e.
∑n

i=0 c
2
i is assigned to cn+1.

cn+1 =

√√√√σ2
c −

n∑
i=1

c2
i (3.10)

It has been shown in (Sinha et al., 2005) that the argument to the sqrt operator is

always positive.

The above subsection reduced the problem into that of a computation one where

the canonical form plays an important role. Subsequent works which have included

non-normal behaviour as well as non-linear behaviour into the canonical form - where

the sum operation remains the same while the Max operation still keeps the idea of

finding Tightness probability and moment matching with variations on methods to do

the computation of the tightness vary depending on the case.

3.4 Specifics of the Problem Statement in this work

The problem taken in this work has taken the specifics given by the (Sinha et al., 2013).

The variations chosen in the problem statement were the following

• environmental : voltage (V), temperature (T)

• process : channel length(L), device width(W), voltage threshold(H), metal(M)

• random variation (R)

And hence the canonical form would be expressed as

A = a0 + aV ∆V + aT∆T + aL∆L+ aW∆W + aH∆H + aM∆M + aR∆R

The coefficients are found by corner analysis as

aX =
A|∆X=+3σ − A|∆X=−3σ

6σ

23

In the case for metal variations alone for which ∆M doesn’t take negative values the

coefficient calculation is carried out as

aM =
A|∆M=+3σ − A|∆M=0

3σ

Interconnect Model

The RC-Tree is given for the interconnects between cell outputs and the connecting

inputs. The delay values through the RC Tree is given by the Elmore Delay formula.

The delay due to RC-Tree doesn’t vary with only the metal parameter. Hence, the

variation due to the metal is computed as given by the corner analysis equation above

and using the Elmore delay. The Elmore delay is computed as

de =
∑
k

RkeCk (3.11)

In order to calculate the impact of how metal variations affect the slew propagation

through the interconnects, the calculation involves finding the second order moment β

of the impulse response at the port of the interconnect.

βe =
∑
k

RkeCkdk (3.12)

using which the nominal output slew of the impulse response is calculated using β

which is used to calculate the output slew through the interconnect, note the non-linear

relationship between the input slew and the output slew.

ŝo =
√

2βo − d2
o (3.13)

so =
√
s2
i + ŝ2

o (3.14)

The metal dependence on slew for ŝo is calculated using the above equation and the

corner analysis and with the variable expressed as Ŝo = ŝo+α
ŝo
m∆M . This expression is

used for calculating ŝo at any given metal point. The corner point treatment is extended

for finding coefficients across interconnects (refer (Sinha et al., 2013) equation (22) for

details).

24

Combinational Cells

The delay and the slew at the output of a combinational cell from the input is calculated

in the following way

D = a(1 + kd,v∆V + kd,t∆T + kd,l∆L+ kd,w∆W + kd,h∆W + kd,r∆R) + bCL + cSi

(3.15)

So = x(1 + ks,v∆V + ks,t∆T + ks,l∆L+ ks,w∆W + ks,h∆W + ks,r∆R) + yCL + zSi

(3.16)

In the above equation it should be noted that the canonical form of Si brings more vari-

ation than just the product a ∗ kd, x and should be a ∗ kd, x + c ∗ sx with the random

part being the root of sum of squares
√

(a ∗ kd,r)2 + (c ∗ sr)2. The capacitive load is

the capacitance of the entire interconnect as well as the input capacitance at the in-

puts of the taps that the interconnect drives. Care needs to be taken to calculate the

metal dependence of CL to include just the interconnect capacitance and not the input

capacitances.

25

CHAPTER 4

GPU Accelerated SSTA

In this chapter the first section would be a presentation of the work done for the TAU

Contest - a parallel implementation of the above algorithm and the results for the bench-

marks provided by the TAU Contest committee. The parallel implementation is com-

pared against the serial implementation. In the next section the work done and the

results with the SSTA algorithm in GPUs are presented

4.1 Circuit Traversal

Levelization

The circuit traversal and parsing is done in a serial manner using a Breadth-First-

Search(BFS) approach. The steps are as follows

1. Add all the primary inputs to a virtual source instance and add it to the BFS data

structure which is a queue.

2. Pop the first instance from the queue and for each output in the instance find all

the ports connected via the interconnect.

3. Increment the number of visited input counter for all connected instances - if the

number is equal to the number of inputs as given in the cell library, then add this

instance to the queue

4. Goto 2) if queue is not empty otherwise exit.

The above is a scheduling algorithm and the scheduling can be done in two ways

- As-soon-as-possible(ASAP) and As-Late-as-possible(ALAP). The above steps pro-

ceed using the ASAP procedure. The timing graph is being treated as Directed Acyclic

AT0

AT1

AT2

AT3

G0

ATout

G1

G2

G3

R0

C0

R1

C1

R2

C2
R3 C3

R4 C4

R5

C5 C6

R6

Level 0 Level 1 Level 2

Figure 4.1: Sample circuit - Levelization

Graph(DAG) which will not be the case if the circuit contains Level-triggered latches.

The scheduling gives a sense of level ordering based on the way the circuit is traversed.

In ASAP scheduling all elements of a particular level consists of inputs driven by out-

puts from previous level but each instance should contain atleast one input being pow-

ered by the previous level output - which follows from the ASAP definition.

Also in the above enumeration, there has been no mention of clocked-circuits. The

only clocked circuits considered for this work was flip-flops. In case of edge triggered

flip flops the signal for being “computationally ready” is when the clock arrival time is

computed. Hence for a clocked instance, the instance is pushed into the queue when

the clock pin is reached and not when the number of visited inputs and actual inputs are

equal as in the normal case.

Arrival Time computation

In the arrival time computation, the instances are assumed for computation in the order

of levels they are in. This is straight forward given that once all outputs at level i are

27

ready implies the calculations pending at level i+ 1 can be started and hence giving the

order of computation. This is similar to the traditional topological sorting.

For each instance I the arrival time computation does the following

Algorithm 1 Algorithm for calculating arrival times in each instance
for all output pins op of instance I do

if I contains a clock pin then
ATop ← ATclk + TCK→Q

else
for all input pins ip of instance I do
AT ipop ← timingsense(ATip) + Tip→op
ATop ←MAX(ATop, AT

ip
op)

end for
end if
for all ports p connected to op through interconnect w do
ATp ← ATop + Tw:op→p

end for
end for

The above code has arrival timeAT just as a symbol. Internally, the arrival time data

structure consists of both time and slew at each node for combinations of rise/fall and

early/late mode. TheMAX operation would suitably change toMIN depending on the

case. timingsense() function takes in an AT structure and converts into corresponding

timing sense equivalent depending on whether the input to output is defined as one

among UNATE, NEGATIVE-UNATE and NON-UNATE.

Serial Code Results

The traversal algorithm is expected to work as O(n) where n is the number of instances

based on the BFS algorithm chosen here. In Table 4.1 and Figure 4.2 this can be seen

establishing a linear relationship with the number of instances. The runtime as reported

in the table were from running the code on Intel(R) Core(TM) i7-2700K CPU @

3.50GHz with cache of 8192 kB.

28

Benchmark Number of Gates Number of Levels Runtime(µs)
c17.net 8 3 73
s27.net 20 7 106
s344.net 131 14 445
c432.net 136 22 598
s349.net 143 14 477
s400.net 152 13 577
s386.net 158 14 554
c499.net 178 14 789
c1355.net 182 14 814
c880.net 223 22 908
c1908.net 224 20 1006
s526.net 235 11 743
s510.net 272 12 860
c2670.net 346 15 1580
s1196.net 586 20 1897
c3540.net 693 30 2884
s1494.net 785 17 2417
c5315.net 920 23 3798
c7552.net 1149 20 4568
c6288.net 1669 81 5600
wb_dma.net 2654 15 11241
systemcdes.net 2854 31 9703
tv80.net 4213 45 18051
systemcaes.net 4519 48 21071
mem_ctrl.net 7468 38 30816
ac97_ctrl.net 7865 17 27719
pci_bridge32.net 9212 37 38494
usb_funct.net 10627 36 43297
aes_core.net 21374 34 70904
des_perf.net 79028 25 296585
vga_lcd.net 88405 30 313359

Table 4.1: Runtime and Levelization results for the SSTA serial code

29

100 101 102 103 104 105

Number of Gates

101

102

103

104

105

106

S
e
ri

a
l
C

o
d
e
 R

u
n
ti

m
e

Serial Code Runtime vs Number of gates (log-log axes)

serial runtime

Figure 4.2: Linear runtime of traversal algorithm

4.2 pthread parallel implementation

In this section, the results obtained for the pthread implementation are discussed

and compared along with the serial code results. The ASAP scheduling gives a level

ordering which even though is scheduled one level after another - the order in which

the instances are computed within one level really doesn’t change the result. This can

be used in order to speed up the runtime of the serial code - where the work load of

computation within a level is divided between the threads.

Algorithm 2 pthread implementation of SSTA
for i < numlevels do

for tid < maxthreads do
for all instance I ∈ work(tid, i) do

computeinstance(I)
end for

end for
barrier synchronization for threads

end for

The work(tid, i) is to ensure that the work in terms of computation is split across

equally to all threads and in this work is a very simple way of splitting the work based

on the number of instances at level i divided by maxthreads.

30

AT0

AT1

AT2

AT3

G0

ATout

G1

G2

G3

R0

C0

R1

C1

R2

C2
R3 C3

R4 C4

R5

C5 C6

R6

Level 0 Level 1 Level 2

tid 0

tid 1

Figure 4.3: Parallel pthread implementation of SSTA

Results for pthread implementation

The algorithm was implemented on 8 Core Intel(R) Core(TM) i7-2700K CPU @ 3.50GHz

and shown in Figure 4.4 are the results for the bigger benchmarks. There was almost

a 2x speed up with 2 threads but it doesn’t scale linearly with the number of threads.

There is around 4x speedup with 7 threads.

From the Table 4.2 it can be seen that the benchmarks with lesser number of levels

seem to benefit more from the parallelization - especially when comparing “des_perf.net”

and “vga_lcd.net” both of which are circuits who size is of the same magnitude but the

speed up realized by the former is better than the latter because of lesser number of

levels indicating more parallelism. This is again fairly straightforward because lesser

levels with same number of instances imply more number of elements / level and hence

more parallelism.

Other features

Apart from the arrival time computation and slew computation - the code written for the

TAU Contest 2013 also had Reverse Arrival Time(RAT) and slack(difference between

31

Benchmark no. instances no. levels 2 threads 4 thread 7 thread
wb_dma 2654 15 1.35 2.88 3.45
systemcdes 2854 31 1.79 2.73 2.97
tv80 4213 45 1.79 2.42 3.39
systemcaes 4519 48 1.78 2.38 3.33
mem_ctrl 7468 38 1.82 2.81 3.95
ac97_ctrl 7865 17 1.53 2.51 2.38
pci_bridge32 9212 37 1.82 2.49 2.99
usb_funct 10627 36 1.88 2.90 4.25
aes_core 21374 34 1.90 2.69 3.75
des_perf 79028 25 1.97 3.03 4.64
vga_lcd 88405 30 1.93 2.74 4.43

Table 4.2: Speed up of 2-4-7 thread vs serial code comparison with number of instances
and number of levels

w
b
_d

m
a

sy
st

e
m

cd
e
s

tv
8
0

sy
st

e
m

ca
e
s

m
e
m

_c
tr

l

a
c9

7
_c

tr
l

p
ci

_b
ri

d
g
e
3
2

u
sb

_f
u
n
ct

a
e
s_

co
re

d
e
s_

p
e
rf

v
g
a
_l

cd

Benchmarks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Runtime of big benchmarks on 1-2-4-7 threads

Serial

2 Thread

4 Thread

7 Thread

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

in
st

a
n
ce

s(
in

 t
h
o
u
sa

n
d
s)

Figure 4.4: pthread runtime vs benchmarks and their size on the other axis

AT and RAT) computation. The computation followed to do the same is similar to one

that has been explained in this chapter. The slack computation hasn’t been included in

the GPU version because of the fact that it can be extended easily hence keeping the

current version simple.

32

CUDA Driver Version / Runtime Version 4.2 / 4.2
CUDA Capability Major/Minor version number 2.1 (Fermi Architecture)
Total amount of global memory 1024 MBytes
(8) Multiprocessors x (48) CUDA Cores/MP 384 CUDA Cores
GPU Clock rate 1660 MHz (1.66 GHz)
Memory Clock rate 2004 Mhz
Memory Bus Width 256-bit
L2 Cache Size 524288 bytes
Total amount of constant memory 65536 bytes
Total amount of shared memory per block 49152 bytes
Total number of registers available per block 32768
Warp size 32
Maximum number of threads per multiprocessor 1536
Maximum number of threads per block 1024

Table 4.3: Device Features for NVidia GeForce GTX 560 Ti

4.3 GPU Accelerated SSTA

In the SSTA implementation discussed in the previous section, it can be seen that the

pthread implementation gives a 4x speed up when used with 7 threads. Neverthe-

less, the scope for improvement in runtime provides a motivation towards exploring the

speedup possible with the GPU. The device used in obtaining results in this work was

“NVidia GeForce GTX 560 Ti”. The device constraints and features are as in

Table 4.3

Structure Difference in Code

The way CUDA accepts an input from the host(CPU) is through an API call cudaMemcpy

which copies an array of structures from the host to the device. This brings in an issue

of not using pointers in the host code - because any such usage of pointer would be

pointing to memory in the host which would be copied from the host to device. This

constraint restricts the data structures to be filled with indices instead of pointers or

change the pointers to the device pointers after doing a cudaMalloc and reassigning

the values in the host before copying. The second way of doing this essentially means

a duplicate set of the entire data must be made - because once reassigning of a pointer

to the device equivalent is done, its connection is lost in the host which means the lev-

33

elization algorithm will cease to work. To avoid duplication the first approach is chosen.

Furthermore, the same applies to 2D pointers which were used in the earlier version and

had made programming easier - any realization containing 2D pointers should now be

broken into 2 arrays with one for the basic array and the second one containing the in-

dices to the first array and its size, essentially book keeping a lot more details in order

to stick to the linear array structure that is imposed on the programmer. Some examples

are shown in Table 4.4. In the code comparison as shown, the structure definitions as

seen in the C headings were defined by Jobin Jacob Kavalam.

4.3.1 Results - v1.0

The version 1.0 of parallel GPU code that was implemented carried forward the idea

of the pthread implementation directly to a thread based equivalent in the GPU. A

single block is launched with different number of threads and the results are reported.

The kernel launch call for the GPU was as follows

dim3 DimGrid(1, 1, 1), DimBlock(NUM_THREADS, 1, 1);

forwardTimingAnalysis_GPU<<<DimGrid, DimBlock>>>(devicePCell, deviceIArray,

deviceWArray, devicePArray, deviceTArray, deviceLArray, deviceLStart, numLevels);

while the kernel function itself is written in the following way

int tx = threadIdx.x;

for(int presentLevel = 0; presentLevel < levels; presentLevel++)

{

int startid = lStart[presentLevel] + tx;

int endid = lStart[presentLevel + 1];

for(int instanceid = startid; instanceid < endid; instanceid+= NUM_THREADS)

forwardTiming(lArray[instanceid], dpcell, diarray, dwarray, dparray, dtarray);

__syncthreads();

}

In the above case it can be seen that this is a plain case of porting code and the resulting

execution would not have any optimizations. The results can be seen as in Figure 4.5

and compared with the serial results obtained in previous sections in 4.5.

34

C CUDA C

struct instance
{

int numIPins, numVisIn;
int numOPins, numVisOut, numFanOut;

struct _instanceIPin **ipin;
struct _instanceOPin **opin;
struct _instanceIPin *cpin;

int celltype;
};

struct instance
{

int cellid;
int ipinid[MAX_IPINS];
int opinid[MAX_OPINS];
int clkpinid;

int numVisIn, numVisOut;
};

struct wire
{

int numTaps;

struct _wirePort *port;
struct _wireTap **tap;

WIRE_TIMING_DATA iotiming[MAX_TAPS];
};

struct wire
{

unsigned int portid;
unsigned int tapzeroid;
unsigned int numtaps;
float risecap[2], fallcap[2];

};

struct tap
{

unsigned int tapid;
float falldelay[2], risedelay[2];
float fallslew[2], riseslew[2];

};

struct pin {

char nodename[65];
int pinid;
int isclock;
NODE_TIMING_DATA tData;

struct instance *instance;

// Links
struct pin *iop;
struct tap *wt;

};

struct pin
{

pintype type;
unsigned int instanceid, wireid;
unsigned int pinid;
pintiming pintime;

};

Table 4.4: Comparison of code between CPU and CUDA

35

0 100 200 300 400 500 600
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u
n
ti

m
e
(s

e
co

n
d
s)

Runtime (unoptimized) vs number of threads

usb_funct.net

aes_core.net

des_perf.net

vga_lcd.net

Figure 4.5: GPU runtime vs number of threads

Benchmarks 256 thread runtime(µs) 512 thread runtime(µs) Serial Runtime(µs)
systemcdes.net 37717 37703 9703
wb_dma.net 35276 32937 11241
tv80.net 67995 66162 18051
systemcaes.net 75279 73738 21071
ac97_ctrl.net 73611 59512 27719
mem_ctrl.net 104127 91024 30816
pci_bridge32.net 114638 104056 38494
usb_funct.net 105665 90664 43297
aes_core.net 131124 101601 70904
des_perf.net 411406 284740 296585
vga_lcd.net 550720 398059 313359

Table 4.5: Comparison of v1.0 with 256-512 threads and serial runtime

It can be clearly seen that even the 512 thread runtime of this version is lesser when

compared to the serial runtime of the code. Nevertheless the speed up that is seen

as the number of threads are increased from 32 to 256 threads might seem to give an

impression of more number of cores crunching data - while the actual speedup is due to

latency hiding which has more flexibility in scheduling warps with increasing number

of threads. Also when the kernel is compiled with nvcc -ptxas-options=-v the

number of registers used in the kernel per thread is visible and in this case the number

of registers is 63 which in turn bounds the number of threads to 32k/64 ≈ 512 threads

theoretically limiting the occupancy to 33%. The features that are not there in this

implementation are

36

• No memory coalescing present in the way data is accessed.

• Usage of the read-only memory blocks available to us.

• Very poor occupancy - at any point in time utmost only 512/1536 threads are

active

• Branch divergence issues arising out of code if/else conditions

• Poor utilizations of SMs as only 1 Block is launched leaving other SMs idle

In this work a multiple combination of the above has been implemented with various

success. The results for these are presented here.

4.3.2 GPU Accelerated SSTA v1.1

Enabling Memory Coalescing and Constant Memory for Read-

only use

Memory coalescing is a very important aspect of implementing an algorithm in CUDA.

In general the memory hierarchy is to be kept in mind and must be used so as to solve

the problem in the best possible way. Constant memory is a specially cached read-only

memory that is available to the entire global scope. Shared memory is likewise low

latency memory but available only to a block of threads.

Memory Coalescing In order to achieve memory coalescing the different structure

objects that are fetched during must be in consecutive memory locations so that when

a global memory call is made from different threads the number of calls made can be

minimal. In this algorithm if memory coalescing must be used, then the data structures

must be in such a way that all the accesses made by different threads are from consec-

utive locations. This implies that the blocks should be ordered in the following way

given that each thread works on its instance at a time.

• Instances - ordered in the topological order so that when each thread accesses

its instance, they would fit the coalescing order while reading the value from

memory

37

• Input Pins - ordered such that successive pins of each instance are adjacent to

each other.

• Output Pins & Wires & Taps - all output pins of successive instances placed

next to each other to enable write coalescing and wires of output pins next to

each other to enable read coalescing.

• Taps - Input Pins - the taps of the interconnect from one output port can lead to

input pins of different levels and hence the write due to this would not be memory

coalesced.

Constant & Shared Memory The cell library gives a lot of information in terms of

coefficients that map RVs/load capacitance and slew to the delay through the cell as

well as the output slew. It also gives information about the names of the pins - and in

case of clocked circuits the TCLK→Q delays as well as the Tsetup and Thold are held in

this structure. Though it is a data structure containing different parameters, they are

all read-only during the computation of arrival time as well as the reverse. Hence, the

choice of constant memory is obvious. But with the complete data structure holding all

information the size blows to a 2kB and with 100 cells that is greater than the amount

of constant memory available which is 64kB. So in order to fit the constraints, the cell

library data structure is broken down into just the coefficients pertaining to one input-

output couple of a particular cell. This approach enables the usage of constant memory

in storing the cell library information. Similarly, shared memory is used as a cache by

storing all instances in a particular level being processed by the thread onto the shared

memory.

Results

The results of using the above discussed optimizations for the big benchmarks are pre-

sented in Table 4.7. The maximum gain due to the rearrangement of memory coalescing

is 6.58% and minimum is 2.89%. The performance benefit due to constant memory is

actually negligible. The reasons for which the benefit gained is low are

38

Data Structure Size (Bytes)
Instance 48
Pin 404
Wire 28
Tap 36

Table 4.6: Primary C Data Structures used and their memory sizes

• Big Data Structures - The sizes of data structures are shown in Table 4.6. The

way memory coalescing works is that when threads in a warp(32) issue memory

requests if all of them are in a chunk of 128 bytes, then in one request the entire

memory request can be serviced while in the worst case it can go upto 32 separate

requests. To achieve best performance the size of the data structure must be 4

bytes - int or a float.

• Memory Requests and Caching - The global memory accesses are cached at

L2 cache and can be addressed using 32 byte requests in case of scattered access.

But, this is again assuming that each thread in a warp requires only 4 bytes - when

the size of each request is greater than 4 bytes, the memory requests are combined

into 128 byte requests and then serviced accordingly. Eg. 8 bytes per thread is

treated as 2 half warp calls of 128 bytes each and 16 bytes per thread is treated as

four quarter warp calls. In the data structure that is used here, since the sizes are

at minimum 32 bytes the servicing would be broken down into eight 1/8th warp

issuing their requests.

• Constant Memory - Constant memory caches work in the form of banks - and

if a half warp entirely requests a particular element in the constant memory, it

is serviced as a half warp broadcast, otherwise the access is serialized. No such

guarantee about half warps accessing the constant memory can be given here.

4.3.3 GPU Accelerated SSTA v2.0

In the above versions, the drawbacks and improvements were pointed out. Nevertheless,

in version 1.1 there was not anything that had been done to improve the occupancy.

The obvious point of reference with respect to occupancy is that the number of blocks

39

Benchmarks 256 thread 256 thread % impr. 512 thread 512 thread % impr.
w/o opt (s) with opt (s) w/o opt (s) with opt (s)

ac97_ctrl.net 0.074 0.071 3.739 0.060 0.057 3.503
aes_core.net 0.131 0.127 3.525 0.102 0.099 2.734
des_perf.net 0.412 0.396 3.706 0.285 0.277 2.885
mem_ctrl.net 0.104 0.098 5.735 0.091 0.085 6.583
pci_bridge32.net 0.115 0.110 4.336 0.104 0.100 4.192
systemcaes.net 0.075 0.072 3.995 0.074 0.071 4.131
systemcdes.net 0.038 0.036 4.291 0.038 0.036 4.513
tv80.net 0.068 0.065 4.198 0.066 0.063 4.391
usb_funct.net 0.106 0.101 4.302 0.091 0.087 4.436
vga_lcd.net 0.551 0.529 3.963 0.398 0.384 3.707
wb_dma.net 0.035 0.034 4.542 0.033 0.031 4.731

Table 4.7: Comparison of runtime - the optimized and unoptimized

used in the grid is just 1 which implies the rest of the SMs are always on idle. This

can be improved by splitting the work in each levels into blocks of calculation for

each level instead of splitting the work into threads alone. Though this might seem

obvious it should be kept in mind that syncthreads() doesn’t provide a barrier

synchronization across blocks and hence v1.0 was the first careful approach where such

issues lead to the above usage. This way of splitting the work in each level across blocks

yields results same as the one produced by the serial code.

In making the parallelization of levels across blocks instead of threads the kernel

call is changed in the following way

for(i = 0; i< numLevels; i++)

{

int startid = levelStart[i], endid = levelStart[i+1];

dim3 DimGrid((endid- startid- 1)/num_threads + 1, 1, 1);

dim3 DimBlock(num_threads, 1, 1);

forwardTimingAnalysis_GPU<<<DimGrid, DimBlock>>>(deviceIArray,

deviceWArray, devicePArray, deviceTArray, startid, endid);

}

while the kernel function itself gets modified to just run the timing analysis gets modi-

fied into a simple call

int tx = threadIdx.x;

int bx = blockIdx.x;

40

int indx = sid + bx*NUM_THREADS + tx;

if(indx < eid)

forwardTiming(&diarray[indx], dwarray, dparray, dtarray);

__syncthreads();

Result

The results for the above implementation so as to improve occupancy is presented in

Table 4.8 and for the bigger benchmarks the results are compared with the all the im-

plementations so far. The v2.0 shown here implements the changes included in v1.1.

The Table 4.8 gives the runtime in µs for all the benchmarks while running it for

different number of threads. Some immediate observations are that with increasing

number of threads the runtime increases not by much. This is due to the changed struc-

ture of the calls that are made to the kernel. With increasing number of threads the

number of threads that remain idle increases when the levels are shallow which leads to

lesser number of active warps and hence lesser latency hiding potential. The maximum

activity happens when the number of threads is 32 with a lot of blocks scheduled min-

imizing both branch divergent threads as well as having maximum occupancy leading

to better latency hiding.

Comparison In Figure 4.6 the runtime performances of the different implementations

that have been discussed are represented for the 4 big benchmarks with the “aes_core.net”

and “usb_funct.net” in excess of 10k gates while the other 2 benchmarks having around

80k gates. It can be seen that the v2.0 implementation is clearly better in comparison to

v1.1

The comparison with the serial code as well it can be seen that while v1.1 was

slower than the serial implementation, v2.0 is better than the serial implementation.

When compared with the pthread implementations, the runtime for the 2 thread, 4

thread and 7 thread implementations are shown here. The 7 thread implementation is

41

Benchmark No.of Gates 32 thread 128 thread 256 thread 512 thread
c17.net 8 394 362 363 364
s27.net 20 940 902 904 911
s344.net 131 5302 5262 5265 5262
c432.net 136 5956 5898 5898 5898
s349.net 143 5428 5391 5389 5390
s400.net 152 6047 6015 6013 6014
s386.net 158 5842 5796 5793 5796
c499.net 178 5047 5014 5016 5016
c1355.net 182 5216 5184 5184 5183
c880.net 223 8056 8013 8014 8014
c1908.net 224 8585 8541 8541 8540
s526.net 235 7712 7683 7684 7683
s510.net 272 8140 8131 8130 8130
c2670.net 346 10008 10024 10025 10026
s1196.net 586 13582 13642 13645 13643
c3540.net 693 17757 17849 17856 17854
s1494.net 785 15066 15262 15264 15258
c5315.net 920 14933 15082 15151 15149
c7552.net 1149 18658 18917 18946 18923
c6288.net 1669 39698 39660 39821 39827
wb_dma.net 2654 26799 27874 28630 29120
systemcdes.net 2854 33051 33813 34238 34237
tv80.net 4213 60923 62827 63308 63404
systemcaes.net 4519 65281 66357 67207 68094
mem_ctrl.net 7468 67218 69237 71122 73704
ac97_ctrl.net 7865 40509 40785 42038 46563
pci_bridge32.net 9212 83811 85928 87332 89074
usb_funct.net 10627 58908 59996 62185 67271
aes_core.net 21374 47660 47699 50075 58128
des_perf.net 79028 92908 97452 98716 107669
vga_lcd.net 88405 187412 201763 202661 209074

Table 4.8: Runtimes of the GPU Accelerated SSTA v2.0 for all benchmarks reported in
µs

42

better than the v2.0 implementation in all cases. The v2.0 implementation is almost on

par with 4 thread implementation in “des_perf.net” benchmark while it performs only

as good as the 2 thread implementation in the “vga_lcd.net” benchmark. The particular

reason might be the amount of parallelism in each level being more in “des_perf.net”

than “vga_lcd.net” as pointed out earlier in 4.2.

usb_funct.net aes_core.net des_perf.net vga_lcd.net
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Comparison of runtimes across different methods attempted

Serial

2 thread

4 thread

7 thread

gpu1.1(512)

gpu2.0(32)

Figure 4.6: Comparison of different implementations of the algorithm

43

CHAPTER 5

Conclusion and scope for Future work

5.1 Contribution of this work

This work has presented a brief introduction on the need for SSTA along with the vari-

ous challenges that the algorithm brings along with itself. The algorithm involved in the

block based SSTA and the computations involved in addition and MAX are explained

along with a qualitative idea of the errors associated with it. A brief introduction to

CUDA is also presented to provide context. This work has a first order SSTA imple-

mentation on the GPU which could act as a framework for other extensions to built over

this. Specifically, the areas covered in this work are

1. pthread implementation - A pthread implementation of the algorithm is im-

plemented and the speed up associated with the pthread gives us a motivation for

running the SSTA algorithm on the GPU

2. CUDA implementation v1 - A simple translation of the idea involved in the pre-

vious case followed by optimization in memory coalescing and usage of constant

memory for library look up.

3. CUDA implementation v2 - Extension of previous implementation and to ex-

ploit parallelism across blocks instead of just a single block and multiple threads

The GPU v2.0 implementation does provide a speed up in comparison to the serial

implementation, when compared to the pthread implementations the runtime while

significantly slower than the 7 thread implementation it performs almost on par with

the 2 thread implementation in a particular benchmarks and sometimes better than that

depending upon the case. An indicator of parallelism no of Gates
no of Levels

though seem to point

out that in cases with higher “parallelism” as indicated above, the GPU implementation

does provide considerable speed up improving with respect to the pthread implementa-

tions.

Though it can be seen that for bigger benchmarks the GPU implementation performs

considerably better in comparison to the pthread implementations, it is tough to predict

the amount of gates before the GPU implementation performs better than the pthread

versions. This is because of the very “non-linear” notion of context-switching that is in

the GPU. The results for the ratio of runtime of GPU over the pthread implementation

is plotted against no of Gates
no of Levels

and is shown in Figure 5.1

0 500 1000 1500 2000 2500 3000 3500
Number of Gates/ Number of Levels

0

2

4

6

8

10

12

ru
n
ti

m
e
 G

P
U

 2
.0

 /
 p

th
re

a
d

Ratio of runtime vs Number of gates/ levels

gpu/serial

gpu/2 thread

gpu/4 thread

gpu/7 thread

Figure 5.1: Ratio of runtime of GPU to pthread implementation vs Number of
gates/level

Challenges while implementing the GPU version is that while memory coalescing

takes a very important role, it automatically implies that array of structures doesn’t

translate necessarily as memory coalesced because of each thread accessing a member

of its object which cannot be next to each other in memory. This in effect propagates

the structure of arrays where a structure comprises of arrays of different objects. The

implementation of array of structures of 2D array members breaks down the ease of

programming and makes it a heavy task of book keeping but necessary for coalesced

access. Moreover, the nature of the problem demands the data structures used here, and

hence the huge data structures (egṗin [> 0.4kB]) which needs to be loaded from the

memory. This again reduces the performance of the GPU implementation because of

serializing of memory requests in the above case.

45

In comparison to (Gulati and Khatri, 2009) which takes more than 1s to complete the

computations for a small benchmark such as c7552.net with just 1000 gates the GPU

implementation here takes in the order of ms mainly because of the algorithm used. The

error in the present SSTA algorithm can be reduced by using different techniques and

accounting for the known errors now.

All computations done in different platform were made sure that the output of these

tools matched the serial code output. The computations done in the pthread implemen-

tation on Intel(R) Core(TM) i7-2700K CPU @ 3.50GHz while the GPU implemen-

tation was on NVidia GeForce GTX 560 Ti with clock frequency @ 1.66GHz

5.2 Future Work

1. Slack computation - Slack computation is reverse traversal of the graph and

computation of the required arrival time(RAT) is similar to what has already been

done in this work.

2. CUDA Implementation - The choice of texture memory for read-only memory

instead of constant-memory. This can help in setting up the Look Up Table used

for finding out the delay/slew calculation across gates w.r.t load capacitance and

input slew. Further it offers linear interpolation for points in between which is

again a helpful and useful in this case. Also, cudaMemcpy takes time that is not

negligible but this can be dealt by using cuda streams and/or page locked memory

as the case might be.

3. Block Based SSTA - The GPU implementation is heavily memory bandwidth

constrained. Further improvements such as the ones in (Zhan et al., 2005) which

involve a quadratic Canonical function and moment-matching through numerical

integration as well as including non-linear dependencies and (Sinha et al., 2007)

which looks up the error in the MAX computation and combines path based and

block based to achieve lesser error are good fits to make the problem more adapt-

able to the GPU framework.

46

REFERENCES

1. Agarwal, A., D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and
R. Panda, Statistical delay computation considering spatial correlations. In Proceed-
ings of the 2003 Asia and South Pacific Design Automation Conference. ACM, 2003.

2. Blaauw, D., K. Chopra, A. Srivastava, and L. Scheffer (2008). Statistical timing
analysis: From basic principles to state of the art. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 27(4), 589–607.

3. Chang, H. and S. S. Sapatnekar (2005). Statistical timing analysis under spatial corre-
lations. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 24(9), 1467–1482.

4. Clark, C. E. (1961). The greatest of a finite set of random variables. Operations
Research, 9(2), 145–162.

5. CUDA, C. (2012). Programming guide. NVIDIA Corporation, July.

6. Gattiker, A., S. Nassif, R. Dinakar, and C. Long, Timing yield estimation from static
timing analysis. In Quality Electronic Design, 2001 International Symposium on. IEEE,
2001.

7. Gulati, K. and S. P. Khatri, Accelerating statistical static timing analysis using graph-
ics processing units. In Proceedings of the 2009 Asia and South Pacific Design Automa-
tion Conference. IEEE Press, 2009.

8. Jaffari, J. and M. Anis, On efficient monte carlo-based statistical static timing analysis
of digital circuits. In Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2008.

9. Jess, J. A., K. Kalafala, S. R. Naidu, R. H. Otten, and C. Visweswariah (2006). Sta-
tistical timing for parametric yield prediction of digital integrated circuits. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 25(11), 2376–
2392.

10. Sinha, D., L. Guerra e Silva, J. Wang, S. Raghunathan, D. Netrabile, and A. She-
baita, Tau 2013 variation aware timing analysis contest. In Proceedings of the 2013
ACM international symposium on International symposium on physical design. ACM,
2013.

11. Sinha, D., N. V. Shenoy, and H. Zhou, Statistical gate sizing for timing yield opti-
mization. In Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International
Conference on. IEEE, 2005.

12. Sinha, D., H. Zhou, and N. V. Shenoy (2007). Advances in computation of the max-
imum of a set of gaussian random variables. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 26(8), 1522–1533.

47

13. Visweswariah, C., K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan, D. K.
Beece, J. Piaget, N. Venkateswaran, and J. G. Hemmett (2006). First-order incre-
mental block-based statistical timing analysis. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 25(10), 2170–2180.

14. Zhan, Y., A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma,
Correlation-aware statistical timing analysis with non-gaussian delay distributions. In
Design Automation Conference, 2005. Proceedings. 42nd. IEEE, 2005.

48

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Motivation
	Previous Work
	Numerical Integration and Monte Carlo Simulation for SSTA
	Path Based Approach
	Block Based Approach
	Accelerating Monte Carlo SSTA using GPU

	Contribution of this work
	Structure of the thesis

	An Overview of CUDA architecture
	Why GPUs? Performance comparison with CPUs
	Graphics Processing Units - Features
	SIMD Execution
	Occupancy
	Latency Hiding
	Memory Considerations
	Drawbacks

	CUDA Programming Model
	Kernels
	Memory Hierarchy

	Statistical Static Timing Analysis
	Variations in SSTA
	Challenges in SSTA
	Impact of correlation on Delay
	Topological Correlation in SSTA
	Spatial Correlation
	Nonlinear Dependencies and Non-Gaussian distributions
	Skewness of Max Operation

	Block-Based SSTA
	Distribution Propagation Approach
	Dependence Propagation Approach

	Specifics of the Problem Statement in this work

	GPU Accelerated SSTA
	Circuit Traversal
	pthread parallel implementation
	GPU Accelerated SSTA
	Results - v1.0
	GPU Accelerated SSTA v1.1 Enabling Memory Coalescing and Constant Memory for Read-only use
	GPU Accelerated SSTA v2.0

	Conclusion and scope for Future work
	Contribution of this work
	Future Work

	References

