
A Novel Approach towards Sound Source Localization

A Project Report

submitted by

SIDDHARTH SHEKAR

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

(ELECTRICAL ENGINEERING)

AND

MASTER OF TECHNOLOGY

(MICROELECTRONICS AND VLSI DESIGN)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2013

THESIS CERTIFICATE

This is to certify that the thesis titled A Novel Approach towards Sound Source Local-

ization, submitted by Siddharth Shekar, to the Indian Institute of Technology, Madras,

for the award of the degree of Bachelor of Technology and Master of Technology, is

a bona fide record of the research work done by him under my supervision. The con-

tents of this thesis, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Prof. Nitin Chandrachoodan
Research Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 28th May 2013

ACKNOWLEDGEMENTS

I would like to thank Dr. Nitin Chandrachoodan for giving me the freedom to pursue

my ideas while still ensuring that I was on the right track. Indeed, if he hadn’t let me

“fly by the seat of my pants”, the project would have turned out very differently.

I am deeply grateful towards my lab-mates Abishek, Bharath, Bhargava, Numaan,

Prasad, Sudharshan and Vignesh for hearing out all (and there were many of those)

my cribs during the course of the project. Bouncing my ideas off them led to many

revelations which I certainly wouldn’t have found on my own.

Thanks are due to my wing-mates Midhun, Aditya, Advaith, Harsha, Kaushik,

Vishruth and Lohit without whom my stay at IITM wouldn’t have been half as en-

joyable an experience as it was. Late-night discussions on things relevant and irrelevant

are something that I will cherish for the rest of my life.

Finally, none of this would have been possible without the support and encourage-

ment that my parents and sister have given me. Their unwavering faith in me has been

a source of great motivation and continues to remain so.

i

ABSTRACT

KEYWORDS: Source Localization; Hard-limiting; Time difference of arrival; De-

lay and sum beamforming; FPGA; Time to digital converter.

Source localization has been a topic of active research interest for several decades now.

Microphone arrays form a core component of the hardware involved. Regular as well

as non-regular arrangements of microphones have been explored in great depth. Most

localization algorithms rely on estimating the time delay of arrival of the input signal

between pairs of microphones. A commonly used technique for doing so is the Gen-

eralized Cross-Correlation (GCC) method. The issue with cross-correlation, however,

is the high computational complexity, which is a function of the frame length under

consideration.

In this thesis, a novel approach towards estimating the time delay of the signal re-

ceived at pairs of microphones is presented. Since the time delay is the information to

be extracted, we threshold the signal so that only information about the sign bit is re-

tained. The delay between corresponding edges of these binary signals is then estimated

using a Time to Digital Converter (TDC).

Two methods for source localization are explored - the Time Difference of Arrival

(TDOA) method, which is a hard assignment and the Delay and Sum BeamForming

(DSBF) method, which is a soft assignment. We also propose a simplified computation

scheme for the DSBF approach which enables us to achieve high-resolution real-time

source localization.

Simulation results for up to 9 sensors and actual implementation results using 4

sensors show that the new approach matches the old approach with reasonable accuracy.

Real-time visualization is achieved with both TDOA and DSBF approaches.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

NOTATION ix

1 Introduction 1

1.1 Microphone arrays and related applications 1

1.2 Existing approaches . 2

1.3 Time to Digital Converters . 3

1.4 Contribution of this work . 4

1.5 Structure of the thesis . 5

2 Hardware Details 6

2.1 Description of the front-end . 6

2.2 Time delay estimation using FPGA 7

2.3 Verilog Implementation . 9

2.3.1 delayTDC . 10

3 TDOA 12

3.1 Implementation Details . 13

3.1.1 Spatial aliasing . 13

3.1.2 Reduction in sampling rate 13

3.1.3 Conversion to spherical coordinates 14

iii

3.2 Verilog implementation . 15

3.2.1 Top . 15

3.2.2 TDOALocalizer . 16

3.2.3 DCM . 16

3.2.4 tdoaSpherical . 16

3.2.5 vgaHSVS . 16

3.2.6 generateRGB . 17

4 DSBF 18

4.1 Implementation Details . 19

4.2 Verilog Implementation . 21

4.2.1 dsbfCalculator . 22

4.2.2 coordinateGenerator . 23

4.2.3 CORDIC . 23

4.2.4 intensityCalculator . 23

4.2.5 similarityCalculator . 24

4.2.6 generateRGB . 24

5 Results and Discussion 25

5.1 TDOA . 25

5.1.1 Simulation Results . 25

5.1.2 Implementation Results 26

5.2 DSBF . 27

5.2.1 Simulation Results . 27

5.2.2 Implementation Results 29

6 Conclusions and Scope for Future Work 31

6.1 Contribution of the thesis . 31

6.2 Scope for Future Work . 32

A Derivation of source coordinates using delay values 33

B Efficiently computing the sum of 4 numbers 35

iv

C Noise Analysis 37

C.1 Random noise . 37

C.2 Quantization Noise . 38

D Sensor position calibration 40

References 44

LIST OF TABLES

5.1 Resource utilization for the TDOA algorithm 26

5.2 Resource utilization for the DSBF algorithm 30

vi

LIST OF FIGURES

1.1 Discarding amplitude information 4

2.1 Receiver Front-end . 7

2.2 Photograph of the circuit on a breadboard 8

2.3 Time delay estimation . 8

2.4 4-phase shifted clock signal scheme to increase TDC resolution . . . 9

2.5 Delay TDC Architecture . 10

3.1 Sensor array . 12

3.2 Architecture level design . 15

4.1 DSBF Principle . 18

4.2 Typical received signals . 20

4.3 Example of summing 4 signals . 21

4.4 Architecture for implementing the DSBF algorithm 22

5.1 Simulation results for the spherical TDOA approach 26

5.2 TDOA output as seen on a VGA display 27

5.3 Simulation results for DSBF using 4 receivers and 1 transmitter . . . 28

5.4 Simulation results for DSBF using 9 receivers and 1 transmitter . . . 28

5.5 Simulation results for DSBF using 4 receivers and 2 transmitters . . 29

5.6 Simulation results for DSBF using 9 receivers and 2 transmitters . . 29

5.7 DSBF result as seen on a VGA display 30

C.1 Quantization error at z = 2m . 39

C.2 Quantization error at z = 2m assuming spherical localization 39

D.1 Unknown sensor locations . 40

vii

ABBREVIATIONS

TDOA Time Delay/Difference of Arrival

GCC Generalized Cross-Correlation

WSS Wide Sense Stationary

MUSIC MUltiple SIgnal Classification

ML Maximum Likelihood

Tx Transmitter

Rx Receiver

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Circuit

ADC Analog to Digital Converter

DCM Digital Clock Manager

IP Intellectual Property

MSB Most Significant Bit(s)

LSB Least Significant Bit(s)

TDC Time to Digital Converter

LED Light Emitting Diode

VGA Video Graphics Array

DSBF Delay and Sum BeamForming

CORDIC Co-Ordinate Rotation DIgital Computer

LUT Look-Up Table

DSP Digital Signal Processing

viii

NOTATION

φ Phase lag/Azimuthal angle

A Amplitude of received signal

Nmic Number of microphones

α Inter-sensor distance along a side of the array

∆ij Arrival time difference for the signal at sensors i and j

τ Time for the signal to reach sensor at origin

c Speed of sound in air

fsignal Frequency of signal incident on the array

∆c,i(P) Calculated ∆i0 assuming a source at P

∆o,i(P) Observed ∆i0 assuming a source at P

si[k] Samples of received signal at sensor i at index k

I(P) Intensity of the DSBF signal assuming a source at P

δi(P) Difference between ∆c,i and ∆o,i

σ2
i Standard deviation of the jitter in the signal at sensor i

SNRi Signal-to-noise ratio at sensor i

ix

CHAPTER 1

Introduction

1.1 Microphone arrays and related applications

Microphone arrays have been used for sound source localization since the early 90’s

(Brandstein and Silverman, 1997). Possibly the greatest advantage that these systems

have is the ability to “steer”(Kellermann, 1991) so that a particular point in space is

focused. Sound emanating from that point is consequently enhanced whereas that from

other sources is relatively attenuated. Further, it is a known fact that having several

copies of the same signal can be used to improve the SNR of the signal. An array of

microphones can thus be used to obtain performance levels at par with directed, high-

performance microphones with the added benefit of electronically being able to control

the directionality. Several commercial products have also been launched based on the

idea.

Several applications for the microphone array have already been explored(Brandstein

and Silverman, 1997). These include:

• Teleconferencing (Khalil et al., 1994; Kellermann, 1991; Addeo et al., 1994)

• Speech recognition (Moore and McCowan, 2003; Kiyohara et al., 1997)

• Speaker identification (Lin et al., 1994; Busso et al., 2005)

• Speech acquisition in noisy environments (Fischer and Simmer, 1996)

• Underwater sensing (Yan et al., 2012)

• Robotics (Kwon et al., 2008)

An important requirement of several of these applications is the accurate localization

of the source. For audio-based applications, knowledge of the presence of coherent

noise sources may be necessary. Microphone arrays can help in locating a particular

source and tracking its movement. The source location information can be extended to

be used by cameras as well in order to track the source movement without any human

involvement.

Reliable tracking of sources, however, places emphasis on real-time or near real-

time performance of the algorithms being used. Thus, the algorithm needs to be robust

as well as computationally light so that the source is tracked accurately and continu-

ously.

1.2 Existing approaches

Source localization strategies can be classified into three broad categories

Subspace based techniques

This class of techniques relies on localizing source(s) based on the particular na-

ture of the eigenvalues of the correlation matrix. Since the correlation matrix is

rarely known a priori, in most cases, this is computed assuming that the received

signals and the corrupting noise are both Wide Sense Stationary (WSS). The pop-

ular MUltiple SIgnal Classification (MUSIC) (Schmidt, 1986) and all of its vari-

ants (Mosher and Leahy, 1999; Stoica et al., 1995) and others (Ziskind and Wax,

1988) belong to this class of algorithms. Although these methods can yield high

resolution localization, the computational complexity is extremely high. Further

the ensemble averaging that is required to obtain the data matrix makes tracking

difficult because it assumes physical stationarity of the source.

Beamforming based techniques

The optimal Maximum Likelihood (ML) estimator in this type of localization

amounts to finding the peak power for the received signal by scanning the en-

tire search space through electronic steering of the beam formed by the receivers

(Chen et al., 2002). Relatively simple beamforming schemes merely alter the de-

lay values, however several more robust and complicated schemes exist, which

consider change in amplitude values as well (Lorenz and Boyd, 2005). The sec-

2

ond step usually involves iteratively finding the peak of the output power, which is

hard, in general, since beamforming techniques generally produce local maximas

as well (Brandstein and Silverman, 1997). These techniques too suffer from high

computational complexity requirements and consequently do not offer optimal

real-time results.

TDOA based techniques

This class of techniques consist of 2 stages - first, to find the relative delays be-

tween the received signals at different sensors and second, to use this information

to find the location of the source. In other words, the delay values and the rel-

ative sensor positions are used to generate possible loci for the source and the

intersection of these loci is optimized in some sense (Valin et al., 2003). How-

ever, techniques have also been developed to try and combine these 2 steps into

a single one (Rui and Florencio, 2003). These techniques are possibly the least

computationally expensive. However, they suffer from a major disadvantage. The

intrinsic assumption in these techniques is that there is a single source to be lo-

calized. Presence of multiple coherent sources results in unreliable results.

Of late, there has been active interest in trying to implement these techniques on

FPGAs (Zimmermann and Studer, 2010; Lédeczi et al., 2005; Nguyen et al., 2003;

Jin et al., 2008). The amount and flexibility of the resources available on FPGAs make

them ideal candidates for achieving real-time performance, as is demonstrated by (Zim-

mermann and Studer, 2010).

1.3 Time to Digital Converters

As the name suggests, TDCs convert a time interval into a corresponding digital value.

They are used in a variety of areas but are possibly best known for their use in high

energy physics experiments where extremely fine time resolution is necessary. Indeed,

sub-nanosecond resolution has been reported (Jansson et al., 2006; Dudek et al., 2000;

Kalisz et al., 1997). Tapped delay lines, Vernier delay lines and interpolators are gen-

erally employed in order to achieve this level of resolution (Kalisz, 2004).

3

FPGAs are used extensively in this area because of their ability to create long de-

lay lines, which allow for fast prototyping even though Application Specific Integrated

Circuits (ASICs) might offer better performance.

1.4 Contribution of this work

In this work, we use a TDC to estimate delays and consequently use this data in the

localization scheme. We note that for closely spaced sensors, the amplitude of the

received signal will be approximately the same if only one source is present. Hence, the

information pertaining to the delay is captured more by the phase difference between the

received signals. Thus, it should be safe to discard the amplitude information altogether

and consider merely the sign of the received signal as shown in Figure 1.1. This is

achieved by the use of a comparator directly at the output of each receiver. Comparing

the received signal to the ground level directly gives us the sign bit in the form of a

binary signal.

Figure 1.1: Discarding amplitude information

The delay information is then extracted for each pair of microphones from these

binary signals and fed to the processing scheme. We implement 2 schemes - a hard-

assignment scheme based directly on the delay values and a soft-assignment scheme

that is based on the beamforming technique described previously. We show how this

approach significantly reduces computational complexity at the expense of a little loss

in accuracy. Simulation results are presented for a square array of 9 sensors and agree-

ment between simulation and implementation results are shown for a square array of 4

sensors.

4

1.5 Structure of the thesis

The rest of the thesis is organized as follows:

• Chapter 2: Hardware Details

This chapter deals with the details of the hardware being used for prototyping the

ideas proposed in the thesis. Modifications to traditional microphone array front-

end architectures are discussed. The TDC scheme used for finding the delay is

also described in this chapter.

• Chapter 3: TDOA and Chapter 4: DSBF

These chapters deal with introducing the TDOA and DSBF algorithms. Details

specific to our prototype implementation as well as suggested modifications are

listed. The Verilog-based hardware architecture for implementing both the algo-

rithms on the FPGA is described.

• Chapter 5: Results and Discussion

Simulation and implementation results for both the algorithms are presented. The

DSBF algorithm performance is compared against existing work in the area.

• Chapter 6: Conclusions and Scope for Future Work

The contributions of this work are described in this chapter. Further directions of

work are suggested.

5

CHAPTER 2

Hardware Details

2.1 Description of the front-end

For the purpose of this project, we use transmitters and receivers that are tuned to

25kHz. The FPGA being used is the Xilinx Zynq 7Z020 that comes as part of the

Zedboard kit. This FPGA is clocked at 100MHz. The circuit operates from a sup-

ply voltage of 3.3V. We consider a square microphone array using 4 sensors with the

side-length of the square being 25mm.

Since the premise of our idea is based on deriving the delay information from the

sign bit, the only hardware preprocessing that needs to be done is to hard-limit the

received signal appropriately. Consider the architecture for the receiver front-end shown

in Figure 2.1. While this figure only shows the components for a single receiver, the

same circuit is used for each of the 4 receivers so that a square wave is obtained at the

output of each of these.

We note here that the front-end is simpler compared to traditional front-ends used

in microphone arrays. A typical front-end consists of a receiver followed by a Variable

Gain Amplifier (VGA) to boost the amplitude so that the final amplitude covers the

dynamic range of the Analog to Digital Converter (ADC) that follows. The output of the

ADC is then the quantized amplitude value at that instant. In large arrays with several

microphones, transferring all this data onto the processing platform also becomes a

challenge. Time multiplexing is often involved in these cases (Zimmermann and Studer,

2010). On the other hand, in the proposed architecture, the output of each copy of

the front-end circuit is a single wire containing the binary signal we desire. Modern

FPGAs typically have several I/O pins and there is no need of any intermediate interface

circuitry since the output of the binary front-end is at the same voltage level as that used

by the FPGA.

Vdd

Rx

−

+

Vdd

To FPGA

R1

R1

RR

Figure 2.1: Receiver Front-end

Since the receiver is tuned to 25kHz, the voltage that is developed across the ter-

minals of the receiver will be Asin(2π25000t + φ) where A is the amplitude of the

received signal and φ is its phase. Clearly, the voltage across the receiver varies from

-A to A. On the other hand, the FPGA operates from a supply voltage of 3.3V and hence

requires its inputs to be between 0 and 3.3V. Hence, we need to level-shift the received

signal.

The resistors R1 help in achieving this DC level shift. The two R1’s form a simple

resistor divider, so that the potential at the node in between them becomes
Vdd
2

. Since

one end of the receiver is held constant at this potential, the positive input to the com-

parator becomes
Vdd
2

+ Asin(2π25000t + φ). This, along with the fact that the other

input of the comparator is fixed at
Vdd
2

gives that the output of the comparator will be
Vdd
2

+
Vdd
2
× sign(sin(2π25000t+φ)), so that it varies from 0 to Vdd. Setting Vdd to be

3.3V (the supply voltage of the FPGA) then completes the interfacing circuitry. Figure

2.2 shows such a circuit wired on a breadboard.

The problem of estimating the time difference between the two received signals

thus transforms into the problem of finding the time difference between the edges of

two signals as shown in Figure 2.3.

2.2 Time delay estimation using FPGA

The problem of time delay estimation between edges of the received signals is solved by

using a TDC. Since this is merely a prototype to show that our idea works in principle,

7

Figure 2.2: Photograph of the circuit on a breadboard

∆

Figure 2.3: Time delay estimation

we employ a simple Nutt interpolation scheme (Balla et al., 2012). Consider the signals

shown in Figure 2.3. If we encounter a rising edge of the first signal first, the value

of a counter is incremented every clock cycle until a rising edge is seen on the second

signal. Conversely, if a rising edge on the second signal arrives first, the counter value

is decremented until a rising edge arrives on the first signal. The counter value is reset

to 0 once the delay value has been recorded.

For reasons motivated in Section C.2, we need to run the TDC at as high a clock

frequency as possible. In other words, the time delay must be quantized such that the

resolution of the TDC is minimized. The FPGA runs on a global clock of 100MHz.

However, the module associated with the delay estimation can be run at a higher fre-

quency. Implementation results show that a frequency of 400MHz can be realized on

hardware. We further employ a phase-shift technique to increase the resolution by a

8

factor of 4. In this technique, 4 signals are generated at 400MHz (using the DCM IP

Core), with relative phase shifts of 0◦, 90◦, 180◦ and 270◦.

With each of these 4 clocks, we run a TDC module using the same input signal.

Thus, we obtain four delta values for the same signal generated by each of the 4 counters

run using the 4 clocks generated as above. We note that the value generated by these 4

counters can always be expressed as belonging to the set (k, k + 1). To illustrate this

point, consider the situation shown in Figure 2.4 again. In this case, we can see that the

counter driven by the first clock will count a value that will be less than that generated

by the other 3 counters by 1. Thus, if the count value of the TDC driven by the first

clock is k, that of the TDCs driven by the other 3 values can be written as k + 1. This

observation helps us reduce the hardware requirements. Thus, the TDC enables a time

resolution of 625ps corresponding to a frequency of 1600MHz.

The Verilog implementation of this scheme is described in the following section.

φ = 0◦

φ = 90◦

φ = 180◦

φ = 270◦

x(t)

Figure 2.4: 4-phase shifted clock signal scheme to increase TDC resolution

2.3 Verilog Implementation

Since estimating the time delay forms just the first step of the localization scheme,

we create a module that implements the 4-phase Nutt interpolation method described

9

previously in Verilog. Assuming an array of Nmic microphones, we need to estimate at

least Nmic − 1 such delay values.

We note that it is inefficient to run separate counters for each instantiation of the

module since they essentially become copies of each other. A better way of imple-

menting this could be having 4 common global counters that each instance accesses

for their latest values. The corresponding output of each module can then be expressed

as a difference assuming that the global counter’s overflow is taken care of. However,

this has not been implemented in this work. A small simplification has been performed

which does allow for minimizing the hardware required for adding the 4 delay values

generated from each of the 4 phase-shifted clocks. The theory behind this is explained

in Appendix B. Instead of using 4 16-bit counters, it allows us to obtain the result using

1 16-bit counter and 3 2-bit counters.

2.3.1 delayTDC

This module is instantiated for every delay value needed. For the 4 sensor example

being considered, there are 3 copies of this module that are created. It operates at

100MHz although it receives the 4 phase-shifted 400MHz clocks from the DCM as

well. It returns a 20-bit delay count value such that the LSB offers a time resolution of

625 ps. This module itself has several submodules as can be seen in Figure 2.5.

delayTDC

quantizeDelaysuppQuantizeDelay efficientAdder

d
el

ay
C

ou
n
t[

1:
0]

cl
k
40

0M
[1

]

si
gn

al
A

si
gn

al
B

si
gn

al
A

si
gn

al
B

cl
k
40

0M
[0

]

d
el

ay
C

ou
n
t[

17
:0

]

L
S
B

s[
7:

0]

m
in

tw
oL

S
B

[1
:0

]

Figure 2.5: Delay TDC Architecture

10

quantizeDelay

This module operates at 400MHz and counts the number of clock cycles between

the edges of the two signals. Although a 16-bit counter should theoretically suf-

fice for our case, we implement an 18-bit counter to account for possible design

changes later. This module returns the complete 18 bit value.

suppQuantizeDelay

This module is based on the quantizeDelay module, but it operates with one of

the phase shifted versions of the 400MHz clock. However, instead of using a

18-bit counter like the quantizeDelay module, it counts only a 2-bit value and

returns the same. Essentially, this module tracks only the 2 LSB bits of the count

value. 3 of these modules are instantiated per delayTDC module - 1 for each of

the phase-shifted clocks.

efficientAdder

This module receives the 2 LSB values of each of the 4 counters and then returns

2 values - a min value and the last 2 LSBs of the sum. The min value is used to

indicate whether the output of the quantizeDelay module was of the form k or k+

1. Based on the min value that is given here, the delayTDC module appends the

appropriate 2 LSB bits to the output of the quantizeDelay module. This module

is purely combinatorial.

11

CHAPTER 3

TDOA

The Time Difference Of Arrival (TDOA) method relies on reliably estimating the dif-

ference in arrival times between different sensors. Consider the sensor setup shown in

Figure 3.1.

(0, 0, 0) (α, 0, 0)

(α, α, 0)(0, α, 0)

T
(x, y, z)

R0 R1

R2R3

∆30

Figure 3.1: Sensor array

We thus have the following equations:

x2 + y2 + z2 = c2τ 2

(x− α)2 + y2 + z2 = c2(τ + ∆10)2

x2 + (y − α)2 + z2 = c2(τ + ∆30)2

(x− α)2 + (y − α)2 + z2 = c2(τ + ∆20)2

where c is the speed of sound in air, α is the inter-sensor distance along a side of the

square and each ∆ij is the time difference between the arrival of the received signals at

sensors i and j.

Solving these equations gives us the following expressions for τ , x and y. The

complete derivation is presented in Appendix A.

τ =
∆2

20 −∆2
10 −∆2

30

2(∆10 + ∆30 −∆20)
(3.1)

x =
α

2
− c2

2α

∆10(∆20 −∆30)(∆20 + ∆30 −∆10)

∆10 + ∆30 −∆20

(3.2)

y =
α

2
− c2

2α

∆30(∆20 −∆10)(∆20 + ∆10 −∆30)

∆10 + ∆30 −∆20

(3.3)

3.1 Implementation Details

3.1.1 Spatial aliasing

Since the signal that we expect to receive is a continuous 25kHz wave, given a frame, we

can only estimate relative delays in the range [−π, π]. However, if this is to be valid for

all possible transmitter locations, we would need the sensors to have a maximum inter-

sensor distance of
c

2fsignal
= 6.8mm. This cannot be achieved because the diameter

of the sensors is 16.2mm. The sensors are kept at a distance of 25mm from each other

because this leads to some computational simplifications. The downside of doing so

is a reduced scan-area which the transmitter must be restricted to lie in. Moving the

transmitter outside this area results in wrapping around of the output (a clear artifact of

aliasing).

3.1.2 Reduction in sampling rate

Since we hard-limit the received signal, the influence of noise is indirect. Near the zero-

crossings of the signal, noise tends to push the signal beyond the threshold sooner or

later randomly. This manifests itself as jitter in the edge. This is analyzed in greater

detail in Appendix C.1.

Upon testing with actual sensors, it was validated that the noise did, in fact, create

significant jitter at the signal edges. Therefore, a 21-tap Kaiser-Bessel low-pass filter

was implemented using the Xilinx IP Core to smooth out the delta values. Of the 20-

13

bit value that the delayTDC module was supposed to return (thereby realizing a time

resolution of 625ps), only the 13 MSB bits stayed constant. This implies an error 128

times larger than the expected error. In other words, the highest possible sampling rate

obtained was 12.5MHz, 128 times lesser than the expected sampling rate of 1600MHz.

As a result, the calculated coordinates for the source were found to be highly inaccurate.

Reexamining the equations for τ , x and y (3.1, 3.2, 3.3) explains why this is so. The

denominator in all 3 cases is ∆30 + ∆10 − ∆20 which can be rewritten as ∆10 − ∆23,

which is the difference of two values that are numerically very close to each other. Thus,

unless this value can be estimated accurately, the values derived using this expression

will continue to be inaccurate.

3.1.3 Conversion to spherical coordinates

Rewriting the equations in spherical coordinates, we have

r = cT

−2αrcosθcosφ+ α2 = 2c2τ∆10 + c2∆2
10

−2αrsinθcosφ+ α2 = 2c2τ∆30 + c2∆2
30

−2αrcosθcosφ− 2αrsinθcosφ+ 2α2 = 2c2τ∆20 + c2∆2
20

Since we have established that with the given sampling rate of 12.5MHz, it will be

hard to estimate τ accurately, we assume a constant value of τ so that r becomes equal

to 1m. What this implies is that the values generated using this assumption will be

projected onto a sphere of radius 1. In other words, by fixing the radius to a particular

value, we aim to estimate the direction accurately. Thus, since x = rcosθcosφ and

y = rsinθcosφ, we get accurate values for x and y given by the following equations:

x =
α

2
− 2c∆10 + c2∆2

10

2α
(3.4)

y =
α

2
− 2c∆30 + c2∆2

30

2α
(3.5)

The values of x and y thus obtained are then displayed on a VGA monitor.

14

3.2 Verilog implementation

In order to implement this method, the architecture is modularized and designed as

shown in Figure 3.2. The functions of each module are discussed in the following

sections.

Top

cl
k
10
0M

si
gn

al
s[
3:
0]

re
d
[3
:0
]

gr
ee
n
[3
:0
]

b
lu
e[
3:
0]

h
S
y
n
c

v
S
y
n
c

tdoaLocalizer

cl
k
10
0M

si
gn

a
ls
[3
:0
]

x
[1
5:
0]

y
[1
5:
0]

z[
15
:0
]

DCM

cl
k
10
0M

cl
k
40
0M

[3
:0
]

delayTDC

cl
k
10
0M

cl
k
40
0M

[3
:0
]

si
gn

al
A

si
gn

al
B

d
el
ay
C
ou

n
t[
19
:0
]

tdoaSpherical

cl
k
10
0M

d
el
ay
C
ou

n
tX

[1
5:
0]

d
el
ay
C
ou

n
tY

[1
5:
0]

d
el
ay
C
ou

n
tX

Y
[1
5:
0]

x
[1
5:
0]

y
[1
5:
0]

generateRGB

cl
k
10
0M

x
[9
:0
]

y
[9
:0
]

h
c[
9:
0]

vc
[9
:0
]

re
d
[3
:0
]

b
lu
e[
3:
0]

gr
ee
n
[3
:0
]

vgaHSVS

cl
k
10
0
M

h
c[
9
:0
]

vc
[9
:0
]

h
S
y
n
c

v
S
y
n
c

Figure 3.2: Architecture level design

3.2.1 Top

This module acts as an interface with the receiver front-end. It is responsible for ensur-

ing that all the other modules are synchronized correctly. It receives the signals from

the front-end and passes them on to the TDOALocalizer module. Further, it passes on

the calculated values of x and y from the TDOALocalizer module to the generateRGB

module. This module operates using the 100MHz global clock.

15

3.2.2 TDOALocalizer

This module performs several operations. Firstly, it passes on the 100MHz clock to

the DCM and receives the 4 phase-shifted versions of the 400MHz clock from it. All

of these clock signals, along with the 2 appropriate signals chosen from the 4 received

signals are then passed on to the delayTDC module. For example, the delayTDCX

module will receive signals 0 and 1 and the delayTDCY module will receive signals 0

and 3. It receives a 20-bit value from each of the delayTDC modules corresponding to

∆10, ∆20 and ∆30.

This module also passes on the received ∆ij values on to the tdoaSpherical module

and receives the x and y values in return. It operates at a frequency of 100MHz.

3.2.3 DCM

This module is an instantiation of the Xilinx Digital Clock Manager IP Core. It is

responsible for generating the 4 phase-shifted 400MHz clocks required for the delay

estimation.

3.2.4 tdoaSpherical

This module receives the different ∆ij’s and in turn, calculates the values of x and y

using equations 3.4 and 3.5. It operates at 100MHz.

3.2.5 vgaHSVS

This module is responsible for generating the signals “hSync” and “vSync” that are

used for synchronizing the horizontal and vertical beams of the VGA display. It also

generates the values “hc” and “vc” which keep track of which pixel information is being

displayed at that instant. In our implementation, we have chosen to display 640 × 480

pixels. This requires a pixel clock of 25MHz. In other words, the “hc” value increments

at a rate of 25MHz until it reaches its limit, at which point the “vc” value is incremented

16

and “hc” is reset to 0. This 25MHz clock is derived from the 100MHz clock provided

as an input to the module.

3.2.6 generateRGB

This module is responsible for visualizing the source location on the VGA display.

The received values of x and y are used so that when the pixel corresponding to the

coordinate (x, y) is about to be displayed, this module sets the value of green to 15. All

the other values are kept 0. Thus, the source location is marked by a green dot. In order

to make sure that the dot is visible, it is expanded to a square of size 4× 4 pixels. This

module also ensures that the X and Y axes are drawn in blue. It operates at a frequency

of 100MHz.

17

CHAPTER 4

DSBF

The Delay and Sum BeamForming (DSBF) approach is slightly different from the

TDOA approach in that it does not inherently depend on estimating the delays between

the received signals. An illustration of the approach can be seen in Figure 4.1.

δ1 δ2 δ3

∑

R1 R2 R3

P (x, y, z0)

Figure 4.1: DSBF Principle

In this approach, depth information cannot be retrieved. Hence, it is assumed that

a plane at a fixed depth is being scanned. This plane is then split into a grid along the

X and Y axes. For each pixel in this grid, the expected delay value at each sensor is

precalculated. This can be done since the coordinates of both the sensor and the pixel

are known. Mathematically, for each sensor Ri and each pixel P in the scan plane, we

calculate the path delay ∆c,i(P) =
fs
c
||P −Ri||.

The received signal at each sensor is then shifted by this calculated value of ∆c,i(P).

For pixel locations where the source is indeed present, shifting in this manner will make

the shifted received signals at all the sensors align in phase so that the energy of the sum

of these shifted signals will be maximum. Conversely, for pixel locations with no source

present, this shifting will ensure that the signals don’t align, so that the energy of the

sum of these shifted signals will not be as high. Mathematically, the sum of the delayed

signals can be expressed as

s(P)[k] =

Nmic∑

i=1

si[k −∆c,i(P)]

where si[k] is the signal received at sensor Ri. This can then be used to calculate the

energy of the signal as

I(P) = |s(P)[k]|2

Clearly, points with high values of I(P) are more likely to contain the source, and

those with low values are less likely to do so. I(P) can thus directly be displayed onto

a screen in order to visualize the plane being scanned.

4.1 Implementation Details

Considering the fact that we can only estimate time differences in our system, we alter

the definition of the calculated delay time. We express all such calculated delay times

with the sensor at the origin as the reference. Thus the definition of ∆c,i(P) is modi-

fied as ∆c,i(P) =
fs
c

(||P −Ri|| − ||P −R0||) =
fs
c

(||P −Ri|| − ||P ||) since R0 is

considered to be the origin. By definition, ∆c,0 =
fs
c

(||P −R0|| − ||P −R0||) = 0.

We have been using the notation ∆ij to denote the observed relative delay between

the signals received at sensors i and j. We note that the observed delay at sensor i is

∆o,i = ∆i0. Similar definitions are used in (Zimmermann and Studer, 2010) to reduce

memory requirements.

In our particular implementation, we know that the received signals si[k] are binary,

i.e. si[k]ε{−1,+1}. Thus the expression for the sum can be simplified further and

expressed in terms of the estimated time lag between the signals. Consider the situation

shown in Figure 4.2.

It is evident that a value of ∆c,i(P) that is equal to ∆o,i will give maximum overlap

and hence maximum energy for the sum of the delayed signals. However, in general,

19

∆o

1
fsignal

Figure 4.2: Typical received signals

the value of ∆c,i(P) will not be exactly equal to ∆o,i. Thus, for a general calculated

value of ∆c,i(P), if the second signal is shifted, the resultant delay between the two

signals will now be δi(P) = ∆o,i − ∆c,i(P). If the signals are now added up with the

delay between them being δi(P), we can show that the energy of the total overlap in

one period will be

Ii(P) = 4(1− 2fsignal|δi(P)|) (4.1)

With varying values of δi(P), this value will also vary, peaking for δi(P) = 0 implying

∆c,i(P) = ∆o,i as expected.

Given an array of sensors, we can calculate all the ∆c,i’s on the FPGA and estimate

the ∆o,i’s by reusing the delayTDC module. Thus, the δi(P)’s can be computed for

different pixel coordinates. Places where the value of δi(P) goes to zero indicates

maximal overlap of the signal at sensor i with the signal at the origin. We note that

δi(P) = δj(P) indicates maximal overlap between signals at sensors i and j irrespective

of the actual value of δi(P). For the absolute maximal overlap, all the δi(P)’s must go

to 0.

In the specific case of 4 receivers, the signal obtained by summing the delayed

version of the 4 received signals can have a maximum of 4 different amplitude levels

(refer Figure 4.3). Calculating the energy of such a signal would involve sorting the

delay values which is hard to implement on an FPGA and are generally not friendly to

scaling schemes.

Thus, instead of evaluating the intensity directly, we calculate the pairwise intensity

and then rewrite the total intensity in terms of these pairwise intensities. Recall that the

intensity of a pair of square waves can be expressed in terms of their relative delay as

20

Figure 4.3: Example of summing 4 signals

shown in Equation 4.1. The intensity of the sum of all the waves can be written as

I(P) =
1

T

T∫

0

(x1(t) + x2(t) + x3(t) + x4(t))2dt

∴ I(P) =
1

T

T∫

0

(
x2

1(t) + x2
2(t) + x2

3(t) + x2
4(t) + 2x1(t)x2(t) + 2x1(t)x3(t)+

2x1(t)x4(t) + 2x2(t)x3(t) + 2x2(t)x4(t) + 2x3(t)x4(t)) dt

∴ I(P) =
1

T




3∑

i=1

4∑

j=i+1

T∫

0

(xi(t) + xj(t))
2dt− 2

4∑

i=1

T∫

0

x2
i (t)dt




In general, with Nmic microphones

I(P) =
1

T




Nmic−1∑

i=1

Nmic∑

j=i+1

T∫

0

(xi(t) + xj(t))
2dt−Nmic(Nmic − 2)

Nmic∑

i=1

T∫

0

x2
i dt




We note that
∫ T

0
x2
i dt remains constant in our case since the signal will be a constant

25kHz wave.

4.2 Verilog Implementation

The implementation of this algorithm requires us to know the observed and calculated

delay values for each receiver, ∆o,i and ∆c,i respectively. The observed delta values

21

are obtained using the same module as in the TDOA method, so that once again, an

effective sampling rate of 12.5MHz is achieved. Choosing the scan plane to be at a

depth of z = 2m from the receiver array, we have a scan area of (-0.25m, 0.25m) in

both the X and the Y directions. The block diagram for the architecture is shown in

Figure 4.4. The functions of modules not discussed previously are discussed here:

Top

cl
k
10
0M

si
gn

al
s[
3:
0]

re
d
[3
:0
]

gr
ee
n
[3
:0
]

b
lu
e[
3:
0]

h
S
y
n
c

v
S
y
n
c

dsbfCalculator

cl
k
10
0M

si
gn

al
s[
3:
0]

h
c[
9:
0]

vc
[9
:0
]

in
te
n
si
ty
[2
3:
0]

DCM

cl
k
1
00
M

cl
k
40
0M

[3
:0
]

delayTDC

cl
k
10
0M

cl
k
40
0M

[3
:0
]

si
gn

al
A

si
gn

al
B

d
el
ay
C
ou

n
t[
19
:0
]

intensityCalculator

cl
k
10
0M

ca
lc
D
el
ay
[2
3:
0]

ob
sD

el
ay
[2
3:
0]

in
te
n
si
ty
[2
3:
0]

generateRGB

cl
k
10
0M

in
te
n
si
ty
[7
:0
]

h
c[
9:
0]

vc
[9
:0
]

re
d
[3
:0
]

b
lu
e[
3
:0
]

g
re
en
[3
:0
]

vgaHSVS

cl
k
1
00
M

h
c[
9:
0]

vc
[9
:0
]

h
S
y
n
c

v
S
y
n
c

coordinateGenerator

h
c[
9:
0]
,
vc
[9
:0
]

x
[1
5
:0
]

y
[1
5:
0]

z[
15
:0
]

cl
k
10
0M

similarityCalculator

d
el
ay
1
[1
5:
0]

d
el
ay
2
[1
5:
0]

si
m
il
ar
it
y
[1
5:
0]

C
O
R
D
IC x[23:0]

y[23:0]

d[23:0]

clk100M

Figure 4.4: Architecture for implementing the DSBF algorithm

4.2.1 dsbfCalculator

This module is similar to the module 3.2.2, but it differs from the TDOALocalizer mod-

ule in that it receives the coordinate values from the coordinateGenerator module and

22

passes these on to the CORDICs. The corresponding distance value is then passed on to

the intensityCalculator module from which it receives the intensity value in exchange.

This module operates at 100MHz.

4.2.2 coordinateGenerator

This module receives inputs from the vgaHSVS module through the dsbfCalculator

module and generates the coordinates of the pixel being scanned with respect to each of

the 4 receivers. Coordinates are generated in a 16-bit format with 5-bit integer and 11-

bit fractional part. The latency of calculation is accounted for in such a way that after

all the calculations are performed, the intensity value generated corresponds exactly to

the pixel being displayed at that moment (just-in-time approach). This is done to reduce

memory utilization.

This module operates at 100MHz but the coordinate values change only at 25MHz

since 4 cycles are needed to output the coordinates of the pixel wrt each of the 4 sensors.

4.2.3 CORDIC

These modules are instantiations of the Xilinx CORDIC IP Core used for calculating

the distance from the pixel being scanned to each of the receivers. Each instance, given

inputs x and y, calculates
√
x2 + y2. 2 instances of these are chained together to thereby

evaluate
√
x2 + y2 + z2.

This module runs at a clock speed of 100MHz and has a latency of 32 cycles with

a throughput of 1 value per cycle. The final result has 5 bits for the integer part and 19

bits for the decimal part.

4.2.4 intensityCalculator

This module aggregates the distance values for a pixel with respect to each of the 4

sensors, calculates the corresponding delay value by accounting for the
fs
c

scaling factor

and then passes these values on to instances of the similarityCalculator module. The

23

final intensity value is then computed and squared in order to increase the dynamic

range.

This module runs at 100MHz and has a latency of 7 cycles.

4.2.5 similarityCalculator

This combinatorial module performs the operations required for finding the intensity of

the sum of 2 square waves given the delay between them.

4.2.6 generateRGB

This module is modified so as to generate an RGB intensity map based on the 6-bit

value of the intensity that it receives. The colour gradually changes from red to green to

blue as the intensity decreases from its max value to its min value. Since the intensity

is calculated as 24-bit number, it is possible to control the 6-bits used for displaying the

output so that the dynamic range of the output is maximized.

24

CHAPTER 5

Results and Discussion

We discuss results obtained using both of the algorithms with the proposed approach in

this chapter. Simulation results are compared against those obtained from implementa-

tion on a Xilinx Zynq 7Z020 FPGA board. Verilog simulations are performed using the

free tool IVerilog.

5.1 TDOA

5.1.1 Simulation Results

We consider a single source to be present at (-0.15, 0.25, 2). In spherical coordinates,

this can be written as (2.02, -59.03◦, 8.29◦). We then generate the signals that the FPGA

should ideally receive by manually entering the delay values in the simulation with a

very high degree of accuracy. The waveforms marked “signals” in Figure 5.1 show the

signals after they have been hard-limited. The waveforms t10, t11 and t01 indicate the

value of ∆10, ∆20 and ∆30 respectively estimated using a TDC operating at 12.5MHz.

The module reports values of x and y that are scaled up by a factor of 512. Hence,

the actual value of x and y is (-0.068, 0.119). In fact, since we assume a value of 1

for r in our algorithm, and seek to estimate θ and φ accurately, comparing the esti-

mated values of these parameters is a good measure of the algorithm’s validity. Us-

ing r = 1 and (x, y) = (-0,068, 0.119), we get θ′ = tan−1
(y
x

)
= -60.15◦ and

φ′ = sin−1

(√
x2 + y2

r

)
= 7.89◦ which are very close to the expected values. An

analysis of the impact of quantization noise on the performance of the algorithm can be

seen in C.2.

0 10 us 20 us 30 us 40 us 50 us 60 us 70 us 80 us 90 us 100 us
0 8 C D F 7 3 2 0 8 C D F 7 3 2 0

XXX -110

XXX -49

XXX 61

XXX -35

XXX 61

Time
signals[3:0]=0

signals[3]=0

signals[2]=0

signals[1]=0

signals[0]=0

t01[15:0]=XXX

t11[15:0]=XXX

t10[15:0]=XXX

x[9:0]=XXX

y[9:0]=XXX

Figure 5.1: Simulation results for the spherical TDOA approach

Clock frequency 100MHz
Slices 465 (3%)

Slice flip-flops 1843 (1%)
LUTs occupied 1036 (1%)

DSP Units 23 (10%)

Table 5.1: Resource utilization for the TDOA algorithm

5.1.2 Implementation Results

The result is displayed on a VGA display with a resolution of 640×480 with a refresh

rate of 60Hz. This algorithm generates an updated value of the source location at a rate

equal to fsignal, which is 25kHz in our case. Since this is far greater than the refresh rate

of the display, there are no issues in achieving real-time performance. Table 5.1 gives

the resource utilization for the algorithm.

As the distance of the source from the array increases, since the SNR decreases,

the source location estimates start becoming increasingly noisy. The stationary source

location estimate observed when the source is close to the array starts moving randomly

about the actual location of the source.

Figure 5.2 shows a typical output as seen on a VGA display. The green dot marks

the location of the source.

26

Figure 5.2: TDOA output as seen on a VGA display

5.2 DSBF

In the TDOA method, the estimated time-delay values were used directly in the compu-

tation of the source location. Thus, hard-limiting made sense intuitively, because it was

the phase difference between the received signals rather than the amplitude difference

that captured the delay information.

Claiming such a thing for the DSBF method, on the other hand, is incorrect, since

it appears to use the amplitude information as well. Hence, it is important to check the

validity of the method once we hard-limit the received signal. Although the received

amplitude will be approximately the same at each receiver if there is only one source,

this is not true in the case of multiple transmitters. Indeed, even with 2 transmitters,

the amplitude is modulated by a factor of cos
(
ω

(
d2 − d1

2c

))
where d1 and d2 are

the distances of the two transmitters from the receiver under consideration. Simulation

results show that this term varies significantly even if the 2 sensors are placed close to

each other, so much so that it might even introduce an inversion in the received signal.

5.2.1 Simulation Results

Figures 5.3 and 5.4 show simulation results with 4 and 9 receivers respectively and a

single transmitter at (-0.2, 0.1, 2).

27

a b

Figure 5.3: Simulation results for DSBF using 4 receivers and 1 transmitter

a b

Figure 5.4: Simulation results for DSBF using 9 receivers and 1 transmitter

It is clear from Figures 5.3b and 5.4b and their similarity with Figures 5.3a and

5.4a respectively that hard-limiting does not take away all the information about the

location of the source. While the intensity plots lose their circular gradient about the

source location, the actual location of the source remains the same. Since this is the

information of primary interest, we conclude that hard-limiting can be used with the

DSBF technique as well.

Figure 5.5 shows the simulation results with 4 receivers whereas Figure 5.6 shows

the results for the source at the same location, but using an array of 9 receivers. In both

cases, 2 transmitters are present at (-0.15, 0.25, 2) and (0.15, -0.15, 2).

Figures 5.5b and 5.6b and their resemblance to Figures 5.5a and 5.6a respectively

indicate that the algorithm can be used in case of multiple sources as well. We must

28

a b

Figure 5.5: Simulation results for DSBF using 4 receivers and 2 transmitters

a b

Figure 5.6: Simulation results for DSBF using 9 receivers and 2 transmitters

note here, however, that the simulation output for 4 receivers gives the same output as

shown in Figure 5.5b for a large number of source locations. The reason behind this

behaviour is unclear.

5.2.2 Implementation Results

The system was designed for a refresh rate of 60Hz, thereby meeting the real-time

requirement. Table 5.2 gives the resource utilization for the algorithm. Figure 5.7 shows

a typical output as seen on a VGA display. The blue regions are where the intensity is

minimum. The transition of blue to green to red is in the order of increasing intensity

values at those coordinates.

29

Figure 5.7: DSBF result as seen on a VGA display

Clock frequency 100MHz
Slices 2124 (15%)

Slice flip-flops 7252 (6%)
LUTs occupied 6746 (12%)

DSP Units 34 (15%)

Table 5.2: Resource utilization for the DSBF algorithm

The only other comparable work in this category (Zimmermann and Studer, 2010)

implements the DSBF algorithm on an FPGA directly. Consequently, their implemen-

tation is of the order O(XYNmicL) where

X is the number of pixels along the X-axis,

Y is the number of pixels along the Y-axis,

Nmic is the number of microphones in the array,

L is the length of the frame (in samples) used for finding the intensity

Although our algorithm does not reproduce the exact output of the DSBF algorithm, it

does reduce the computational cost. Since we evaluate the intensity by considering the

received signals pairwise, the order is O(XYN2
mic). Thus, there is a net improvement

of the order of
L

Nmic

. Typically, L is an order of magnitude higher than Nmic. In

(Zimmermann and Studer, 2010), for example, L = 256 and Nmic = 32 implying an

8× improvement in performance.

30

CHAPTER 6

Conclusions and Scope for Future Work

6.1 Contribution of the thesis

We have presented a novel approach towards the problem of source localization. The

proposed technique was simulated as well as implemented in hardware using Verilog

and good agreement was observed.

The major contributions of the work can be listed as follows:

1. Simplification of front-end circuitry

Since our analysis depends only on the sign of the received signal and not the

actual amplitude value at any given instant, the variable gain amplifier is replaced

by a comparator thereby reducing the circuit complexity. Further, our system

does not require the use of ADCs as part of the front-end as the sign bit is only a

binary signal. Multiplexing in order to transmit data is avoided since the data for

each receiver is transmitted over just 1 wire.

2. Simplification of DSBF computation

Considering only square waves in our analysis allowed us to express the intensity

of the sum of a pair of such waves in terms of their relative delay and time-period.

Further, the intensity of the sum of multiple such signals can be expressed in terms

of such pairwise intensities, each of which can be computed easily.

3. Validation of proposed approach on hardware

The proposed modifications to both the front-end and the algorithm were imple-

mented on a Xilinx Zynq 7Z020 FPGA. Better than real-time performance were

achieved in both the TDOA and DSBF algorithms. The output was displayed on

a VGA monitor with a resolution of 640×480 at a refresh rate of 60Hz.

6.2 Scope for Future Work

1. Noise is a concern especially because of the non-trivial nature of the analysis

involved. Preliminary investigations into the impact of random noise on the per-

formance of the system are presented in Appendix C. However, a more thorough

analysis will provide better insights into effectively tackling noise. Modifying

the comparator so that it acts like a Schmitt trigger could possibly help reduce

the impact of low-amplitude noise near the zero-crossings of the signal thereby

improving performance.

2. We have only handled multiple point sources as test cases. Increasing the size of

the array can help in identifying the shape of the source as well (Zimmermann

and Studer, 2010). It is yet to be verified whether the shape of the source will be

maintained once amplitude information is lost.

3. The proposed techniques should ideally work even if the sound source is non-

sinusoidal. Reducing the frequency of the source may also help in removing the

effects of spatial aliasing at some expense to spatial resolution.

32

APPENDIX A

Derivation of source coordinates using delay values

We are required to find x, y and z given the equations

x2 + y2 + z2 = c2τ 2 (A.1)

(x− α)2 + y2 + z2 = c2(τ + ∆10)2 (A.2)

x2 + (y − α)2 + z2 = c2(τ + ∆30)2 (A.3)

(x− α)2 + (y − α)2 + z2 = c2(τ + ∆20)2 (A.4)

where c is the speed of sound in air and ∆ij is the time difference between the signals

received at sensors i and j.

Subtracting A.1 and A.2 from A.3 and A.4 respectively, we get

α2 − 2yα = c2(2τ∆30 + ∆2
30) = c2(∆20 −∆10)(2τ + ∆10 + ∆20) (A.5)

Solving for τ , we get

2τ(∆10 + ∆30 −∆20) = ∆2
20 −∆2

10 −∆2
30

∴ τ =
∆2

20 −∆2
10 −∆2

30

2 (∆10 + ∆30 −∆20)
(A.6)

Resubstituting this value of τ in A.5, we have

α2 − 2yα = c2 ∆30(∆20 −∆10)(∆20 + ∆10) + ∆2
30(∆10 −∆20)

(∆10 + ∆30 −∆20)

∴ α2 − 2yα = c2 ∆30(∆20 −∆10)(∆10 + ∆20 −∆30)

(∆10 + ∆30 −∆20)

∴ y =
α

2
− c2

2α

∆30(∆20 −∆10)(∆10 + ∆20 −∆30)

(∆10 + ∆30 −∆20)
(A.7)

The symmetry of the system with respect to x and y can now be used to directly

write the solution for x. The steps for the derivation remain the same.

∴ x =
α

2
− c2

2α

∆10(∆20 −∆30)(∆30 + ∆20 −∆10)

(∆10 + ∆30 −∆20)
(A.8)

Since the inter-sensor distance α is kept small, and since we expect the source coor-

dinates to be much greater than α, it is clear that the
α

2
term does not contribute much

to the actual answer and can be neglected for approximation.

We note here that the denominator term in all of the expressions A.6, A.8 and A.7

are differences of very similar physical quantities and hence need to be found with high

accuracy. Thus, correctly determining x, y and τ depends on correctly estimating the

denominator term. On conversion to spherical coordinates, however, we notice that

tan(θ) ≈ ∆30(∆20 −∆10)(∆10 + ∆20 −∆30)

∆10(∆20 −∆30)(∆20 + ∆30 −∆10)
(A.9)

can be calculated accurately. Thus, if we concede on estimating τ accurately, θ and φ

,i.e., the direction, can be determined accurately.

34

APPENDIX B

Efficiently computing the sum of 4 numbers

We know that the four numbers to be added all belong to the set {k, k + 1}. Further,

due to the cyclic nature of the system, we are guaranteed that the minimum number of

toggles in the LSBs of the 4 numbers will be at most 1. For example, let the 4 numbers

be denoted by a, b, c and d. Further, let the subscript i to any of these numbers denote

the corresponding LSB of that number so that a0 indicates the LSB of a and so on.

Due to the cyclic nature of the system, we are guaranteed that a0b0c0d0 can never be

of the form 1010. It can, however, take the form 1011 since, starting from 0 and moving

cyclically, there is only 1 toggle. In fact, the only disallowed combinations for a0b0c0d0

are 0101 and 1010.

Now, we also know that

a+ b+ c+ d = 4k +m

where m is the number of values of the form k + 1. We can determine which of a, b, c

and d are of the form k + 1 merely by looking at a1a0, b1b0, c1c0 and d1d0. Hence, the

sum can be found if only one of a, b, c and d is known exactly and the 2 LSBs of the

other 3 are known.

As an example to illustrate this claim, let a = d = 22 and b = c = 21. In 8-bit

binary, we have a = d = (00010110)2 and b = c = (00010101)2. Since the claim is

that the sum 4k + m can be obtained merely by having only 1 value known exactly,

without loss of generality, we can assume that we know a fully, and know b1b0, c1c0 and

d1d0.

The first step is to find out whether the number known fully is of the form k or k+1.

In our example, a1a0 = d1d0 = 10 and b1b0 = c1c0 = 01. Clearly, since b1b0 is less

than a1a0, it implies that a is of the form k + 1. Thus, 4a = 4k + 4 can be obtained by

merely appending 2 0’s to a. Alternatively, 4k can be obtained by appending 2 0’s to

a− 1.

The second step is to calculate m. This is trivial once we know the number of 1’s

present in a0b0c0d0. In our example, m = 2.

The sum a+b+c+d thus becomes 4k+m = 4×21+2 = 86 which is as expected.

Note that the sum has been computed using 8-bit information from a alone. Only the 2

LSB bits for the other numbers are known.

36

APPENDIX C

Noise Analysis

C.1 Random noise

Since the received signal is hard-limited in our system, any noise seen at the input is

treated in a similar manner. In other words, the AWGN that we expect at the input will

be converted to a binary signal, too. This will shape the noise so that the high frequency

components are enhanced and the low frequency components are suppressed. This

interpretation holds true only while we continue to work with voltages however. A

better approach, as proposed in (Sepke et al., 2009), is to interpret the voltage noise at

the input as jitter at the output.

This approach is suitable for our analysis because we have mainly focused on the

time-delay associated between signals received at different receivers. Therefore, it is

apt to convert voltage noise to these terms as well. The aforementioned paper gives us

the equation

σ2
∆i

= v2
n

∣∣∣∣
dvi
dt

∣∣∣∣
−2

vi=vCM

where,

σ∆i
represents the standard deviation of the jitter observed in ∆i,

v2
n represents the rms value of the voltage noise seen at the input of the compara-

tor,

vi is the input signal to the comparator, and

vCM is the common-mode voltage level at the input of the comparator

In our case, we know that vi = Asin(ωt) so that its differential then becomes
dvi
dt

= Aωcos(ωt). This, when evaluated at the instants where vi = vCM which are

essentially the times when the sine wave crosses zero, give us that

∣∣∣∣
dvi
dt

∣∣∣∣
2

vi=vCM

= A2ω2

so that we have

σ2
∆i

=
v2
n

A2ω2

∴ σ2
∆i

=
1

ω2SNRi

Assuming that the jitter at the output of different comparators is uncorrelated, we

have

σ2
∆ij

=
1

ω2

(
1

SNRi

+
1

SNRj

)

We note that increasing the frequency of the input signal reduces the jitter at the out-

put. This is agreeable because we expect that as the time spent near the zero-crossings

decreases, the influence of noise should reduce as well. In the limiting case where the

input signal itself is a binary signal with infinitely fast transitions, the influence of noise

should be negligible. The SNR term being inversely proportional to the output jitter is

also as expected because a better SNR is bound to give better performance.

C.2 Quantization Noise

As is true of any representation of analog values in a digital format, because of the

“digitization” that we introduce by using the TDC, quantization error is added to the

system as well. The quantization in this case depends on the sampling frequency used

by the FPGA system to measure the time interval between 2 received signals. Figure

C.1 shows the normalized quantization error for different sampling rates.

The figures are obtained as follows:

1. For each point on the plane z = 2m, we assume the presence of a single source

at that point (xo, yo).

38

X

−4 −3 −2 −1 0 1 2 3 4

Y

−4
−3

−2
−1

0
1

2
3

4

No
rm

al
iz

ed
 E

rro
r

0.1

0.2

0.3

0.4

0.5

0.6

Quantized at 100MHz

X

−4 −3 −2 −1 0 1 2 3 4

Y

−4
−3

−2
−1

0
1

2
3

4

No
rm

al
iz

ed
 E

rro
r

0.1

0.2

0.3

0.4

0.5

Quantized at 1600MHz

Figure C.1: Quantization error at z = 2m

2. The delay between the received signals is then estimated and quantized according

to the sampling frequency.

3. Using this value of the observed time delay, the source location is back-calculated

using the TDOA equations for x and y given by A.8 and A.7 to give (x′, y′).

4. The normalized error is then plotted as e =

√
(x′ − xo)2 + (y′ − yo)2

√
x2
o + y2

o + z2 |z=2

The figures clearly show that as the sampling rate is increased, the quantization error

reduces drastically. The error still remains high when either of the coordinates become

close to 0, but this indicates a theoretical limit governing the equations being used. This

motivates our need to increase the sampling rate from the 100MHz clock that the FPGA

uses to a rate as high as can be achieved.

X

4 3 2 1 0 1 2 3 4

Y

4
3

2
1

0
1

2
3

4

No
rm

al
iz

ed
 E

rr
or

0.0085

0.0090

0.0095

0.0100

Quantized at 100 MHz

X

4 3 2 1 0 1 2 3 4

Y

4
3

2
1

0
1

2
3

4

No
rm

al
iz

ed
 E

rr
or

0.0070
0.0075
0.0080
0.0085
0.0090
0.0095
0.0100
0.0105

Quantized at 12.5 MHz

Figure C.2: Quantization error at z = 2m assuming spherical localization

Upon using spherical coordinates, the effect of sampling frequency on performance

is greatly reduced, as can be seen from Figure C.2. The improvement in robustness can

be attributed to the fact that the previous method estimated all 3 parameters whereas

this method estimates only the 2 directional parameters.

39

APPENDIX D

Sensor position calibration

In this section, we consider the reverse problem of calibrating sensor locations in a

sensor array. (Qu and Xie, 2012) presents a similar work where they calibrate sensor

locations without assuming a known transmitter location. Assuming that knowledge of

the transmitter location is available allows us to use a deterministic approach. Consider

the situation shown in Figure D.1.

R0 R1

R2R3

(0,0,0) (x1,0,0)

(x2,y2,0)(x3,y3,0)

Figure D.1: Unknown sensor locations

Without loss of generality, we can assume sensor R0 to be the origin of the system

and further define the axes in such a way that sensor R1 has only X as its non-zero

coordinate. An implicit assumption being made is that all the sensors are on the same

plane and this is defined by z = 0. Our goal is to establish locations where transmitters

should be placed, so that the unknowns x1, x2, x3, y2, and y3 can be estimated by

measuring the time difference between the signals received at each of the sensors.

Because of the particular initial arrangement that we have chosen, there are further

implicit conditions on some of the xi’s and yi’s. These are x1 ≥ 0, y2 ≥ 0 and y3 ≥ 0.

Recall the equations that we used for TDOA source localization:

x2 + y2 + z2 = c2τ 2

(x− x1)2 + y2 + z2 = c2(τ + ∆10)2

(x− x2)2 + (y − y2)2 + z2 = c2(τ + ∆20)2

(x− x3)2 + (y − y3)2 + z2 = c2(τ + ∆30)2

Substituting the first transmitter location as (0, 0, z0) in these equations gives τ =

z0

c
. Thus, we have x1 = c

√
∆10,1

(
2z0

c
+ ∆10,1

)
and the following equations:

x2
2 + y2

2 + z2
0 = c2(

z0

c
+ ∆20,1)2

x2
3 + y2

3 + z2
0 = c2(

z0

c
+ ∆30,1)2

Substituting the second transmitter location as (x1, 0, z0) in these equations gives τ =
z0

c
−∆10,2 and

(x1 − x2)2 + y2
2 + z2

0 = c2(
z0

c
−∆10,2 + ∆20,2)2 = c2(

z0

c
+ ∆21,2)2

(x1 − x3)2 + y2
3 + z2

0 = c2(
z0

c
−∆10,2 + ∆30,2)2 = c2(

z0

c
+ ∆31,2)2

These equations upon elimination of the y terms give the expressions for x2 and x3

in terms of the known parameters and x1 (precomputed) as

x2 =
x1

2
+
c2

x1

[(z0

c
+ ∆20,1

)2

−
(z0

c
+ ∆21,2

)2
]

x3 =
x1

2
+
c2

x1

[(z0

c
+ ∆30,1

)2

−
(z0

c
+ ∆31,2

)2
]

The remaining unknowns y2 and y3 can then be easily expressed in terms of knowns

as

y2 =

√
c2
(z0

c
+ ∆20,1

)2

− z2
0 − x2

2

y3 =

√
c2
(z0

c
+ ∆30,1

)2

− z2
0 − x2

3

Thus, the coordinates can be determined using only 2 known locations of the source

- one directly above the sensor considered to be the origin, and one directly above the

sensor that helps define the X-axis.

41

REFERENCES

1. Addeo, E. J., J. D. Robbins, and G. Shtirmer (1994). Sound localization system for
teleconferencing using self-steering microphone arrays. US Patent 5,335,011.

2. Balla, A., M. Beretta, P. Ciambrone, M. Gatta, F. Gonnella, L. Iafolla, M. Mascolo,
R. Messi, D. Moricciani, and D. Riondino (2012). Low resource FPGA-based time to
digital converter. arXiv preprint arXiv:1206.0679.

3. Brandstein, M. S. and H. F. Silverman (1997). A practical methodology for speech
source localization with microphone arrays. Computer Speech & Language, 11(2), 91
– 126. URL http://www.sciencedirect.com/science/article/pii/
S0885230896900248.

4. Busso, C., S. Hernanz, C. Chu, S. Kwon, S. Lee, P. G. Georgiou, I. Cohen, and
S. Narayanan, Smart room: participant and speaker localization and identification.
In Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE
International Conference on, volume 2. IEEE, 2005.

5. Chen, J. C., K. Yao, and R. E. Hudson (2002). Source localization and beamforming.
Signal Processing Magazine, IEEE, 19(2), 30–39.

6. Dudek, P., S. Szczepanski, and J. V. Hatfield (2000). A high-resolution CMOS time-
to-digital converter utilizing a vernier delay line. Solid-State Circuits, IEEE Journal of ,
35(2), 240–247.

7. Fischer, S. and K. U. Simmer (1996). Beamforming microphone arrays for speech
acquisition in noisy environments. Speech communication, 20(3), 215–227.

8. Jansson, J.-P., A. Mantyniemi, and J. Kostamovaara (2006). A CMOS time-to-
digital converter with better than 10 ps single-shot precision. Solid-State Circuits, IEEE
Journal of , 41(6), 1286–1296.

9. Jin, S., D. Kim, H. S. Kim, C. H. Lee, J. S. Choi, and J. W. Jeon, Real-time sound
source localization system based on FPGA. In Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on. IEEE, 2008.

10. Kalisz, J. (2004). Review of methods for time interval measurements with picosecond
resolution. Metrologia, 41(1), 17.

11. Kalisz, J., R. Szplet, J. Pasierbinski, and A. Poniecki (1997). Field-programmable-
gate-array-based time-to-digital converter with 200-ps resolution. Instrumentation and
Measurement, IEEE Transactions on, 46(1), 51–55.

12. Kellermann, W., A self-steering digital microphone array. In Acoustics, Speech, and
Signal Processing, 1991. ICASSP-91., 1991 International Conference on. 1991. ISSN
1520-6149.

42

http://www.sciencedirect.com/science/article/pii/S0885230896900248
http://www.sciencedirect.com/science/article/pii/S0885230896900248

13. Khalil, F., J. P. Jullien, and A. Gilloire (1994). Microphone array for sound pickup in
teleconference systems. Journal of the Audio Engineering Society, 42(9), 691–700.

14. Kiyohara, K., Y. Kaneda, S. Takahashi, H. Nomura, and J. Kijima, A microphone
array system for speech recognition. In Acoustics, Speech, and Signal Processing, 1997.
ICASSP-97., 1997 IEEE International Conference on, volume 1. IEEE, 1997.

15. Kwon, B., Y. Park, and Y. sik Park, Sound source localization for robot auditory
system using the summed GCC method. In Control, Automation and Systems, 2008.
ICCAS 2008. International Conference on. 2008.

16. Lédeczi, Á., P. Volgyesi, M. Maróti, G. Simon, G. Balogh, A. Nádas, B. Kusy,
S. Dóra, and G. Pap, Multiple simultaneous acoustic source localization in urban ter-
rain. In Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth Interna-
tional Symposium on. IEEE, 2005.

17. Lin, Q., E. Jan, and J. Flanagan (1994). Microphone arrays and speaker identification.
Speech and Audio Processing, IEEE Transactions on, 2(4), 622–629.

18. Lorenz, R. G. and S. P. Boyd (2005). Robust minimum variance beamforming. Signal
Processing, IEEE Transactions on, 53(5), 1684–1696.

19. Moore, D. C. and I. A. McCowan, Microphone array speech recognition: Experiments
on overlapping speech in meetings. In Acoustics, Speech, and Signal Processing, 2003.
Proceedings.(ICASSP’03). 2003 IEEE International Conference on, volume 5. IEEE,
2003.

20. Mosher, J. and R. Leahy (1999). Source localization using recursively applied and
projected (RAP) MUSIC. Signal Processing, IEEE Transactions on, 47(2), 332–340.
ISSN 1053-587X.

21. Nguyen, D., P. Aarabi, and A. Sheikholeslami, Real-time sound localization using
field-programmable gate arrays. In Multimedia and Expo, 2003. ICME’03. Proceed-
ings. 2003 International Conference on, volume 2. IEEE, 2003.

22. Qu, X. and L. Xie, Source localization by TDOA with random sensor position errors
- Part I: Static sensors. In Information Fusion (FUSION), 2012 15th International
Conference on. 2012.

23. Rui, Y. and D. Florencio, New direct approaches to robust sound source localization.
In Multimedia and Expo, 2003. ICME’03. Proceedings. 2003 International Conference
on, volume 1. IEEE, 2003.

24. Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. Anten-
nas and Propagation, IEEE Transactions on, 34(3), 276–280. ISSN 0018-926X.

25. Sepke, T., P. Holloway, C. G. Sodini, and H.-S. Lee (2009). Noise analysis for
comparator-based circuits. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 56(3), 541–553.

26. Stoica, P., P. Handel, and A. Nehoral (1995). Improved sequential MUSIC. Aerospace
and Electronic Systems, IEEE Transactions on, 31(4), 1230–1239. ISSN 0018-9251.

43

27. Valin, J.-M., F. Michaud, J. Rouat, and D. Létourneau, Robust sound source local-
ization using a microphone array on a mobile robot. In Intelligent Robots and Sys-
tems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on,
volume 2. IEEE, 2003.

28. Yan, Y., H. Wang, X. Shen, F. Yang, and Z. Chen, Efficient convex optimization
method for underwater passive source localization based on RSS with WSN. In Sig-
nal Processing, Communication and Computing (ICSPCC), 2012 IEEE International
Conference on. IEEE, 2012.

29. Zimmermann, B. and C. Studer, FPGA-based real-time acoustic camera prototype.
In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on. IEEE, 2010.

30. Ziskind, I. and M. Wax (1988). Maximum likelihood localization of multiple sources
by alternating projection. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 36(10), 1553–1560. ISSN 0096-3518.

44

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Microphone arrays and related applications
	Existing approaches
	Time to Digital Converters
	Contribution of this work
	Structure of the thesis

	Hardware Details
	Description of the front-end
	Time delay estimation using FPGA
	Verilog Implementation
	delayTDC

	TDOA
	Implementation Details
	Spatial aliasing
	Reduction in sampling rate
	Conversion to spherical coordinates

	Verilog implementation
	Top
	TDOALocalizer
	DCM
	tdoaSpherical
	vgaHSVS
	generateRGB

	DSBF
	Implementation Details
	Verilog Implementation
	dsbfCalculator
	coordinateGenerator
	CORDIC
	intensityCalculator
	similarityCalculator
	generateRGB

	Results and Discussion
	TDOA
	Simulation Results
	Implementation Results

	DSBF
	Simulation Results
	Implementation Results

	Conclusions and Scope for Future Work
	Contribution of the thesis
	Scope for Future Work

	Derivation of source coordinates using delay values
	Efficiently computing the sum of 4 numbers
	Noise Analysis
	Random noise
	Quantization Noise

	Sensor position calibration
	References

