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ABSTRACT

Video compression is a process of e�ciently coding digital video to reduce

the number of bits required in representing video frames. Its purpose is to

reduce the storage space and transmission cost while maintaining good quality.

This project primarily deals with video compression based on a patch-wise,

SVD-like algorithm. Unlike the usual SVD method to compress data (using

low-rank approximations), we test a new method which uses sparse projections

and exemplar bases to code individual frames of a video. We have also discussed

about how changing various parameters a�ect the resulting video quality and

storage.
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Chapter 1

Introduction

1.1 Scope of the Project

There have been many techniques to compress images using Singular Value

Decomposition in the past, similarly for the case of video compression. In this

project we have tried to approach video compression in a new way. Instead of

using low-rank approximations of the SVD, the new method uses a �xed number

of full-rank orthonormal bases but with sparse projection matrices. This has

its own advantages over low-rank approximations. We have taken video data,

separated them into a set of images, and then tested them using the new method,

also observing the storage versus the quality.

1.2 Overview and Organization of the report

Chapter 2 summarizes the related previous work done in this area, explanation

of various terms in the project.

Chapter 3 explains in detail how the video data is processed, the di�erent
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parameters that are used, and how the new frames are tested.

Chapter 4 presents the results of the tests we have done, and the conclusions

based on the result.
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Chapter 2

Background and Related

Work

2.1 Singular Value Decomposition

2.1.1 What is SVD?

The singular value decomposition (SVD) is a popular matrix factorization that

has been used widely in applications ever since an e�cient algorithm for its

computation was developed in the 1970s. In recent years, the SVD has become

even more prominent due to a surge in applications and increased computational

memory and speed.

Nowadays, SVD is of great signi�cance, and is used in many applications

such as low rank approximation, image compression, estimation & inversion,

pseudo inverse, principal component analysis etc.
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The theory behind SVD is that a given matrix A of size m × n and rank r

can be written as,

A = U × S × V T (2.1)

where U is a m × m orthogonal matrix, S is an m × n rectangular diagonal

matrix with non-negative real numbers on the diagonal, and V T (the conjugate

transpose of V ) is an n× n orthogonal matrix

Matrix S is a diagonal matrix having only r nonzero entries, which makes

the e�ective dimensions of these three matricesm×r, r×r and r×n respectively.

U and V are two orthogonal matrices and S is a diagonal matrix, called the

singular matrix.

The diagonal entries si of S are known as the singular values of A and have

the following properties:

� si > 0

� s1 ≥ s2 ≥ s3 ≥ . . . ≥ sr

The m columns of U and the n columns of V are called the left-singular vectors

and right-singular vectors of A, respectively.

2.1.2 Low-rank matrix approximation.

SVD has an important property that makes it particularly interesting for our

application. SVD provides the best low-rank linear approximation of the origi-
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nal matrix A.

It is possible to retain only k << r singular values by discarding other en-

tries. We term this reduced matrix Sk. Since the entries in S are sorted i.e.,

s1 ≥ s2 ≥ s3 ≥ . . . ≥ sr, the reduction process is performed by retaining the

�rst k singular values.

The matrices U and V are also reduced to produce matrices Uk and Vk ,

respectively. The matrix Uk is produced by removing (r− k) columns from the

matrix U and matrix Vk is produced by removing (r−k) rows from the matrix V .

When we multiply these three reduced matrices, we obtain a matrix Ak.

The reconstructed matrix:

Ak = Uk × Sk × V T
k (2.2)

is a rank-k matrix that is the closest approximation to the original matrix A.

2.1.3 Application to Image Compression

An image can be de�ned as a two-dimension function f(x, y) (2D image), where

x and y are spatial coordinates, and the amplitude of f at any pair of (x, y) is

gray level of the image at that point. For example, a gray level image can be

represented as : fij where fij ≡ f(xi, yi)

We know that �the rank of matrix A is equal to the number of its non-zero

singular values�. In many applications, the singular values of a matrix decrease

quickly with increasing rank. This property allows us to reduce the noise or

compress the matrix data by eliminating the small singular values or the higher
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ranks.

When an image is SVD transformed, it is not compressed, but the data take

a form in which the �rst singular value has higher amount of the image infor-

mation. With this, we can use only a few singular values to represent the image

with little di�erences from the original.

To illustrate the SVD image compression process :

A = USV T =

r∑
i=1

σiuiv
T
i (2.3)

That is, A can be represented by the outer product expansion :

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r (2.4)

When compressing the image, the sum is not performed to the very last

singular values, the singular values with small enough values are dropped. (Re-

member that the singular values are ordered on the diagonal.) The closet matrix

of rank k is obtained by truncating those sums after the �rst k terms:

Ak = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σkukv

T
k (2.5)

The total storage for Ak will be k(m+ n+ 1).

The integer k can be chosen con�dently less than n, and the image corre-

sponding to Ak will still be very close the original image. However, choosing

6



di�erent k will have a di�erent corresponding image and storage for it.

2.2 Image Compression for Set of Images : Sparse

projections onto Orthonormal Exemplar bases

2.2.1 Introduction

In the paper [1] by Ajit Rajwade et al, they have presented a new technique

for compact image representation. This forms an integral part of our encoding

system.

If we consider the earlier techniques for matrix-based representation for a

set of images, a single pair of orthonormal bases (U, V ) is learned from a set of

some N images, and each image Ij , 1 < j < N is represented by means of a

projection Sj onto these bases, i.e. in the form Ij = USjV
T .

It is quite intuitive to observe that, as compared to an entire image, a small

image patch is a simpler, more local entity, and hence can be more accurately

represented by means of a smaller number of bases. Following this intuition,

regarding an image as a set of matrices (one per image patch) instead of using

a single matrix for the entire image is much accurate.

Furthermore, there usually exists a great deal of similarity between a large

number of patches in one image or across several images of a similar kind. We

can exploit this fact to learn a small number of full-sized orthonormal bases (as

opposed to a single set of low-rank bases) to reconstruct a set of patches from

a training set by means of sparse projections with least possible error.
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This change of focus from learning lower-rank bases to learning full-rank

bases but with sparse projection matrices, brings with itself several signi�cant

theoretical and practical advantages. This is because it is much easier to adjust

the sparsity of a projection matrix in order to meet a certain reconstruction

error threshold than to adjust for its rank.

2.2.2 Theory

Let P ∈ Rm1Öm2 be an image patch. Using singular value decomposition (SVD),

we can represent P as a combination of orthonormal bases U ∈ Rm1Öm1 and

V ∈ Rm2Öm2 in the form P = USV T , where S ∈ Rm1Öm2 is a diagonal matrix

of singular values.

However P can also be represented as a combination of any set of orthonor-

mal bases Ū and V̄ , di�erent from those obtained from the SVD of P . In

this case, we have P = ŪSV̄ T where S turns out to be a non-diagonal matrix.

Contemporary SVD-based compression methods leverage the fact that the SVD

provides the best low rank approximation to a matrix. We choose to depart

from this notion, and instead answer the following question:

What sparse matrix W ∈ Rm1Öm2 will reconstruct P from a pair of or-

thonormal bases Ū and V̄ with the least error
∥∥P − ŪWV̄ T

∥∥2? Sparsity is

quanti�ed by an upper bound T , i.e. the number of non-zero elements in W

(denoted as ‖W‖0). The optimal W with this sparsity constraint is obtained

by nullifying the least (in absolute value) m1m2 − T elements of the estimated

projection matrix P = ŪWV̄ T as proven in [1].

8



2.2.3 Learning the Bases

The essence of this method lies in a learning method to produce K exemplar

orthonormal bases {(Ua, Va)}, 1 ≤ a ≤ K, to encode a training set of N image

patches Pi ∈ Rm1×m2(1 ≤ i ≤ N) with least possible error (in the sense of

root mean square error between original and reconstructed patches). Note that

K � N . In addition, a sparsity constraint is imposed that every Sia (the matrix

used to reconstruct Pi from (Ua, Va)) has at most T non-zero elements. The

main objective function to be minimized is:

E({Ua, Va, Sia,Mia}) =

N∑
i=1

M∑
a=1

Mia

∥∥Pi − UaSiaV
T
a

∥∥2 (2.6)

subject to the constraints that UT
a Ua = V T

a Va = I, ∀a, ‖Sia‖0 ≤ T , ∀(i, a)

and
∑
a
Mia = 1, ∀i. Here Mia is a binary matrix of size N ×K which indicates

whether the ith patch belongs to the space de�ned by (Ua, Va).

2.2.4 Application

Our framework is geared towards compact but low error patch reconstruction.

We are not concerned with the discriminating assignment of a speci�c kind

of patches to a speci�c exemplar, quite unlike in a clustering or classi�cation

application. In our method, after the optimization, each training patch Pi

(1 ≤ i ≤ N) gets represented as a projection onto one out of the K exemplar

orthonormal bases, which produces the least reconstruction error, i.e. the kth

exemplar is chosen if
∥∥Pi − UkSikV

T
k

∥∥2 ≤ ∥∥Pi − UaSiaV
T
a

∥∥2, ∀a ∈ {1, 2, ...,K},
1 ≤ k ≤ K. For patch Pi, we denote the corresponding `optimal' projection

matrix as S∗
i = Sik, and the corresponding exemplar as (U∗

i , V
∗
i ) = (Uk, Vk).

Thus the entire training set is approximated by:

9



� The common set of basis-pairs {(Ua, V a)}, 1 ≤ a ≤ K (K � N), and

� The optimal sparse projection matrices S∗
i for each patch, with at most T

non-zero elements each.

The overall storage per image is thus greatly reduced . Furthermore, these bases

{(Ua, V a)} can now be used to encode patches from a new set of images that

are somewhat similar to the ones existing in the training set.

10



Chapter 3

Video Compression

3.1 Application to video compression

In the paper [1], they have used the method of exemplar bases and sparse pro-

jections to compress face databases successfully. The idea behind the method

is to use reference images to train the exemplar bases, and then use these bases

to represent new similar images.

Now, if we consider a the individual frames in a video, there is a lot of sim-

ilarity among the frames. Using this redundancy, we can use the �rst frame

as the reference image to train the orthonormal bases. Using these bases we

encode the rest of the frames (using the projections generated from the bases).

Our project is based on this idea to compress a video, by using the initial

frames as the reference, training the orthonormal bases and compressing the

rest of the frames using these bases.

11



The results for this part of the project are discussed in Chapter 4.

3.2 Working of the encoder

The following �owchart summarizes the working of our encoder :

12



Figure 3.1: Working of the encoder

3.2.1 Splitting the Video into frames.

The video to be coded is taken and the frames were generated by taking an

image at every tick. For each frame, we divide the entries by the maximum

pixel value such that the image intensity values range between [0,1].
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3.2.2 Training the bases

Next step is to train the exemplar bases using a training image. This was done

using the �rst frame of the video as the training image.

The training image is taken and is divided into N equal sized patches of size

m1 ×m2. All of these N patches are now sent to train K orthonormal bases,

where each patch can be matched to one of the K bases. The other parameter

to supply during training is T , the number of non-zero elements.

The di�erent parameters to set are:

� The patch size (m1×m2). If the size of the patch is too large, it becomes

more and more unlikely that a �xed number of bases will serve as to gen-

erate a low-error sparse representation for the rest of the testing frames.

Furthermore, if the patch size is too large, the algorithm will lose out on

the advantages of locality and simplicity. However, if the patch size is

too small, there is very little a compression algorithm can do in terms of

lowering the number of bits required to store these patches.

� The number of orthonormal bases (K). We have observed that the choice

of the value K did not matter much to accuracy of the results, since each

patch is matched to one of the K bases. The only downside of of a higher

K value is that the computation time increases.

� Number of non-zero elements in each patch (T ). A very high value of T

generates bases which over-�t the training frame, and a very low value of

T gives a larger error.
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The K bases are generated using the method given in [1], using equation (6).

Each base is pair of orthonormal matrix {Ua, Va},1 ≤ a ≤ K.

3.2.3 Testing the new frames

Once the bases are generated (using parameters K, T and m1 × m2), we can

now use them to test the rest of the frames.

Now we divide the frames into patches of size m1 ×m2. Let us denote each

test patch as Pi, using the exemplar bases {Ua, Va}, we generate the projection

matrices Sia.

Sia = UT
a PiVa (3.1)

The corresponding base{U∗
i , V

∗
i }for patch Pi is chosen such that it produces

the sparsest projection Si.

The sparsity of Si is further increased by nullifying the smallest elements,

such that maximum average per-pixel reconstruction error won't go over δ, giv-

ing us S∗
i .

Where δ is given by:

∥∥Pi − U∗
i S

∗
i V

∗T
i

∥∥2
m1m2

(3.2)

15



3.2.4 Storage

Once we have generated the optimal sparse projection, the next step is storage

of the information.

The following information must be stored for each test patch of a frame :

� The values of each non-zero element in the {S∗
i } matrices over the whole

patch. The integer part requires an average of some Q1 bits per entry.

The fractional part is quantized with Q2 bits per entry.

� The location of each non-zero element is encoded using a1 bits.

� The index of the matched base {U∗
i , V

∗
i } is encoded using a2 bits.

� The number of non-zero elements encoded using a3bits.

So the average storage(no. of bits) per-pixel for an image is given by:

RPP =
N(a2 + a3) +NTeff (a1 +Q1 +Q2)

M1M2
(3.3)

where N is the number of patches per image,

Teff is the average number of non-zero elements per patch,

and M1M2 is the total number of pixels in the image.

16



Chapter 4

Results and Conclusions

4.1 Results

4.1.1 Introduction

The quality of the output was measured using Peak signal-to-noise ratio of in-

dividual frames and the storage is given by the RPP.

PSNR is calculated using the following expression:

10 log10

Nm1m2∑N
i=1

∥∥Pi − U∗
i S

∗
i V

∗T
i

∥∥2 (4.1)

RPP is calculated using the expression given in (13).

We have tested our method on two gray scale videos:

� FOREMAN Sequence (4:3 | 300 frames | 176 Ö 144).

� MOTHER AND DAUGHTER Sequence (4:3 | 300 frames | 176 Ö 144).

We have tested both the videos on the basis of :

17



� PSNR vs RPP for di�erent patch sizes (m1 ×m2).

� PSNR vs RPP for the number of fractional bits (Q2).

Finally, we have tabulated the compression ratio (compared to original size)

compared with the video quality.

4.1.2 Patch Sizes and T values

The following graphs depicts the variation of PSNR vs RPP values for di�erent

patch sizes. We have tested for the following patch sizes:

� 8 x 8

� 12 x 12

� 15 x 15

� 20 x 20

The aim in this test is to determine the best patch-size for various videos. A

better PSNR for same bits per-pixel (RPP) generally points us towards the best

value for patch size.

4.1.2.1 FOREMAN : PSNR vs RPP, for di�erent patch sizes

Following are the plots for PSNR vs RPP for di�erent patch sizes for the FORE-

MAN video.

18



Figure 4.1: Foreman:PSNR vs RPP, Patchsize-8x8

Figure 4.2: Foreman:PSNR vs RPP, Patchsize-12x12
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Figure 4.3: Foreman:PSNR vs RPP, Patchsize-15x15

Figure 4.4: Foreman:PSNR vs RPP, Patchsize-20x20
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Figure 4.5: Foreman:PSNR vs RPP, di�erent patch sizes

4.1.2.2 MOTHER AND DAUGHTER : PSNR vs RPP, for di�erent

patch sizes

Figure 4.6: Mother:PSNR vs RPP, Patchsize-8x8

21



Figure 4.7: Mother:PSNR vs RPP, Patchsize-12x12

Figure 4.8: Mother:PSNR vs RPP, Patchsize-15x15
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Figure 4.9: Mother:PSNR vs RPP, Patchsize-20x20

Figure 4.10: Mother:PSNR vs RPP, Di�. Patch sizes

4.1.2.3 Conclusion

For the FOREMAN video we have observed that using a patch-size of 12x12 is

the optimum value. As we keep increasing the patch-size to 15x15 and 20x20

the e�ciency is dropping. The size of 8x8 is also less e�cient compared to

12x12. As with any algorithm, if the patch size is too small, there is very little a

compression algorithm can do in terms of lowering the number of bits required

to store these patches.
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For the MOTHER AND DAUGHTER video however we observed that 20x20

is the best value for the patch-size. The e�ciency keeps dropping for decreasing

patch sizes. Compared to the FOREMAN video, MOTHER AND DAUGHTER

has less detail in the background and the objects, so even a larger patch sizes

like 20x20 don't tend to distort the detail in the video.

4.1.3 No. of Fractional bits (Q2)

We have also examined the a�ect of the parameter Q2(no. of bits in the frac-

tional part) on the PSNR for both the videos.

4.1.3.1 FOREMAN : PSNR vs Q2

Figure 4.11: Foreman:PSNR vs Q2
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4.1.3.2 MOTHER AND DAUGHTER : PSNR vs Q2

Figure 4.12: Mother and Daughter:PSNR vs Q2

4.1.3.3 Conclusions

As expected the PSNR increases with increase in the no. of bits for the fractional

part (the error is less if the value is more accurately coded). But beyond a point

there is no signi�cant improvement of PSNR (�attening), this just means that

we have reached the limit of accuracy of the values.

4.1.4 Preview of reconstructed frames of using di�erent δ

4.1.5 Compression

The following table summarizes the result of the encoder. Compression ratio is

calculated by comparing the storage of the encoded video data to original video

size.

Compression Ratio Quality(PSNR)

3.06 39.77 dB
5.17 35.74 dB
8.66 31.61 dB

Table 4.1: Foreman (12x12) : Compression Ratio vs Quality
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Compression Ratio Quality(PSNR)

6.52 40.26 dB
12.25 35.89 dB
16.37 31.67 dB

Table 4.2: Mother and Daughter (20x20) : Compression Ratio vs Quality

4.2 Conclusion and Future Work

From the results of the above tests, one can observe that it is possible to encode

video data by the SVD-like compression algorithm, using pre-trained orthonor-

mal bases and sparse projections. We have achieved a considerable amount of

compression compared to the raw video data. But this level of compression is

much less than the compression achieved by the currently used video encoders.

The next extension to this project is to add Motion Estimation Algorithms like

Block-based matching. Among nearby frames, we can save storage of data of

similar patches, by storing only the the motion vectors instead of the whole

patch.
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