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ABSTRACT 

 

 
KEYWORDS: GARCH, ARCH, heteroskedasticity, VaR, CAPM. 

 

Abstract--- The variance of a portfolio can be forecasted using index models. Conditional 

variance of a portfolio helps us in evaluating the Value at Risk of a portfolio or an 

individual stock. Conditional volatility models estimate conditional variance of portfolio 

returns using multivariate or univariate volatility models. The evaluated variance and the 

Value at Risk for different heteroskedastic models are compared to best fit a model.  In 

this thesis we compare the performance of S&P index as a single index and as a portfolio. 

The S&P 500 is regarded as a gauge of the large cap U.S. equities market. The index 

incudes 500 leading companies in leading industries of the U.S. economy, which are 

publicly held on either the NYSE or NASDAQ, and covers 75% of U.S. equities. There 

are different methods of comparing the forecast performance of the various models. Here, 

we consider the deibold mariano test.  Engle (2000) proposed a Dynamic Conditional 

Correlation (DCC) multivariate GARCH model which models the conditional variances 

and correlations using a single step procedure and parameterizes the conditional 

correlations directly in a bivariate GARCH model. In this approach, a univariate GARCH 

model is fitted to a product of two return series. Parameters or model coefficients of 

GARCH model can be estimated by log likelihood estimation.  We evaluate the forecast 

performance of the various volatility models on the S&P 500 data from 1990 to recent 

times. We later build the theoretical background necessary for constructing the capital 

asset pricing model. The Capital Asset Pricing (CAPM) model is a factor model that 

helps in Portfolio Selection. CAPM relates expected return to a measure of risk. This 

measure, now known as beta, used the theoretical result that diversification allows 

investors to escape the company specific risk. Thus, they only get rewarded for their 

portfolio’s sensitivity to the level of economic activity.  We apply this model on the 

discussed S&P index to test for the mean-variance efficiency of the proxy for the market 

portfolio and the tangency portfolio. 
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rt           Return at time t. 

Pt         Price at time t. 

µ          Mean.  

σ          Variance. 

ut         Residuals at time t. 

δ          Adjusted residuals at time t. 

Zt            Risk free returns. 

Rf         Risk free rate. 

α          Intercept. 
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CHAPTER 1 

 

INTRODUCTION 

 

This thesis evaluates the performance of single index and portfolio models in forecasting 

value at risk (VaR) by using GARCH, Risk metric and rolling window-type models. The 

performances of each forecast model on data from S&P index of the U.S. stock exchange 

are compared using deboild mariano tests. Then, the theoretical background for the 

Capital Asset Pricing model is established to check the performance of portfolios that 

constitute the index. We check the hypothesis on monthly data from 1926 to 2011 and 

1963 to 2011 and also test for the tangency portfolio. 

1.1.STOCHASTIC PROCESS 
Economic data such as daily stock prices, foreign exchange, GDP etc. are examples 

of discrete stochastic processes.  

1.1.1.  STATIONARY TIME SERIES 

A time series {rt}  is strictly stationary if the joint distribution of (rt1, rt2 ,…, rtk ) is identical 

to that of (rt1+t, rt2+t,…, rtk+t ) for all t, where k is an arbitrary positive integer and (t1, t2,..., tk )  

is a collection of random integers. A time series is weakly stationary if: 

E(Pt ) = µ
Var(Pt ) = E(Pt −µ) =σ

2

Cov(Pt,Pt+k ) = E[(Pt −µ)(Pt+k −µ)]= γ k   

(1.	
  1)	
  

	
  

1.1.2. NON-STATIONARY TIME SERIES 

Any time series that does not follow the above properties is a non-stationary time series. 
A non-stationary process can have a varying mean and/or variance. Asset prices like the 
daily stock prices follow a Random walk, which is non-stationary. There are two types of 
these random walks, with and without drift. 
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• RANDOM WALK WITHOUT DRIFT 

Let rt  be white noise with zero mean and a variance of σ 2 . This series can be called a 
random walk if: 

Pt = Pt−1 + rt      (1.	
  2)	
  

In a random walk model the value at t is equal to the value at t-1 plus a random shock i.e. 
an AR(1) process. In general, if the process started at some time 0 with the value Y0 , we 
have 

Pt = P0 + rt
t=1

t

∑

E(Pt ) = E P0 + rt
t=1

t

∑
"

#
$

%

&
'= P0

V (Pt ) = tσ
2    

(1.	
  3)	
  

 

• RANDOM WALK WITH DRIFT 

Let  
                                                           Pt = µ +Pt−1 + rt      (1.	
  4)	
  

 
Where µ is known as the drift parameter. 
We can also write as: 

                                                           
Pt −Pt−1 = µ + rt
E(Pt ) = P0 + tµ
V (Pt ) = tσ

2
     

(1.	
  5)	
  

This is an AR(1) process too.	
  Random Walk Model with drift has its mean and variance 
increasing over time and so violates the weak stationary conditions. 

 

1.2. VALUE-AT-RISK (VaR) 
The Value at Risk gives an estimate of the probability with which a loss of not more than 
V is made in the next N days. Here, V is the VaR of the portfolio. It depends on the time 
duration N, the confidence level needed. It is the loss level over N days that the analyst is 
P% certain will not exceed. P here is he confidence level.  VaR gives an estimate of how 
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bad, things can get in the next N days. A conditional VaR is the expected loss during an 
N-day period that we are in the left tail of the distribution. In practice we shrink the N-day 
interval to 1 day, to get a comparative study. The assumption thus made is: 

N -­‐day	
  VaR=	
  1-­‐day	
  VaR( N )	
  

The formula is exact when change in the portfolio valuation on successive days follows 
an independent identical normal distribution with zero mean. In other cases it is an 
approximation. 

 

1.3. CONDITIONAL VOLATILITY MODELS 
The basic model to forecast variances and covariance (volatility and correlations) of a 
multivariate normal distribution is through the rolling window forecast. For a zero mean 
return rt  this means: 

σ t
2 =
1
q

r2t−s = (r
2
t−1 + r

2
t−2 +…+ r2t−q ) / q

s=1

q

∑
	
   	
  

(1.	
  6)	
  

Where the last q observations are used. Here σ 2  depends on lagged information and can 
be thought of as a prediction (made at t-1) of volatility in t. 

J.P Morgan Risk Metrics (1995) introduced an alternative to the rolling window forecast 
called the Exponentially Weighted Moving Average (EWMA). This estimator of 
volatility uses all data points since the beginning of the sample but with recent 
observations carrying larger weights. The weight for a lag s = (1−λ)λ s , where 0 < λ <1 , 
so 

σ 2
t = (1−λ) λ s−1rt−s = (1−λ)(rt−1 +λrt−2 +λ

2rt−3 +...)
s=1

∞

∑
	
  

(1.	
  7)	
  

For the EWMA model, the conditional variance or rt  is proportional to the time horizon 
k . EWMA is a special form of GARCH(1,1) without drift or zero intercept. Time series 
realization of returns often shows time-dependent volatility. Engle’s (1982) ARCH (Auto 
Regressive Conditional Heteroskedasticity) model was the first to include a time 
dependent volatility process. Volatility, thus computed, is a two-step regression on asset 
returns. GARH is an advanced form of ARCH. Other models include GJR, EGARCH, 
(G)ARCH-M, and etc.  
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1.4. FACTOR MODELS 
One of the cornerstones of investment science is the theory of Portfolio Selection. Many 
major hedge funds and investment banks offer different portfolios to their clients based 
on their outlook of the market with a considerable amount of money riding on the market. 
The capital asset pricing model is considered to check if the market portfolio is the 
tangency portfolio and various other tests to check the robustness of the model and other 
discrepancies. 

 Various aspects of the CAPM model are investigated in this thesis. The first aspect is the 
theoretical background of the model. Here, mean-variance analysis (MVA) is thoroughly 
examined. First, a mathematical argument from utility theory that can motivate the 
implementation of MVA is presented. Then, efficient portfolios are examined in a mean-
standard deviation space assuming there is no risk- free asset. We show the incentive to 
diversify ones portfolio and derive the efficient frontier consisting of the portfolios with 
the maximum expected return for a given variance. Using mathematical and economic 
arguments, it is shown that the market portfolio consisting of all risky assets is mean-
variance efficient. A riskless asset in then included in the analysis to get the Capital Asset 
Market Line (CML) in a mean-standard deviation space. We argue that this is the 
efficient frontier when a risk-free rate exists. Based on the CML, the Capital Asset 
Pricing Model (CAPM) is derived. The CAPM relates the expected return on any asset to 
its beta. As beta is based on the covariance of returns between an asset and the market 
portfolio, it follows that CAPM only rewards investors for their portfolios responsiveness 
to swings in the overall economic activity.  

With this theoretical background, the econometric methods for testing the CAPM are 
developed. First, the traditional model is rewritten in order to work with excess returns. 
Then, the market portfolio is tested for its mean-variance efficiency. Later, the 
assumption that returns are independent and identically distributed and jointly 
multivariate normal is introduced. Based on this assumption, the joint probability density 
function (pdf) of excess returns conditional on the market risk premium is derived. Using 
this pdf derive maximum likelihood estimators of the market model parameters. A 
number of different test statistics (for CAPM) are derived based on these estimators. The 
first is an asymptotic Wald type test, which is then transformed into an exact F test. 

 

1.5.METHODOLOGY 
Risk is often measured as a change in stock price. Most processes measure change in 
value of a portfolio in terms of log price changes. Continuously compounded returns are: 
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rt+1 = ln(Pt+1)− ln(Pt )     (1.	
  8)	
  

Where Pt+1  and Pt  are the known prices of an asset at time t+1 and t. We first check for 
the autocorrelation among the returns and later check for ARCH and other characteristics 
using the Ljung-Box-Perice and Engle’s ARCH Test applied on daily squared returns. 
After which we estimate the parameters of each of the given models. We then evaluate 
the forecast performance of these models using the Deibold Mariano test statistic. On the 
other hand, back testing on each model and confirm the number of VaR violations. 
Suppose that the financial position is a long position so that loss occurs when there is a 
big price drop. If the probability is set to 5%, then RiskMeterics uses 1.65σt+1 to 
measure the risk of the portfolio-that is, it uses the one sided 5% quantile of a normal 
distribution with mean and variance 0 and σt+1. The actual 5% quantile is -1.65σt+1, but 
the negative sign is ignored with the understanding that it signifies a loss. Consequently, 
if the standard deviation is measured in percentage, the daily VaR of the portfolio under 
RiskMeterics is: 

VaR = (Amount of Position) (1.65σt+1) 

 In addition, that of a k-day horizon is 

VaR = (Amount of Position) (1.65σt+1) 

Where the argument (k) of VaR is used to denote the time horizon. We have 

VaR =√ k x VaR  

This is referred to as the square root of time rule in VaR calculation under RiskMetrics. 

The capital asset pricing model is introduced with the necessary background assumptions. 
We later test these assumptions with the relevant test statistics developed. We discuss the 
choice of proxies, construction of dependent variables and various other aspects. Then, 
the tests are carried out on a 85 year sample of American stock. And for this period we 
conduct mean variance analysis and test to confirm the hypothesis using the F statistic. 

 

 

 



 6	
  

CHAPTER 2 

 

CONDITIONAL HETEROSCEDASTIC MODELS 

 

2.1. INTRODUCTION 
Time-variation in volatility, also known as heteroskedasticity is a common feature of 
macroeconomic and financial data.  

 

2.2. ASSUMPTIONS FOR OLS REGRESSION 
Ordinary least square (OLS) regression analysis relies on four assumptions to give the 
Best Unbiased Linear Estimate (BLUE). We also consider the assumption of 
homoscedasticity. We assume a linear relation between dependent and explanatory 
variables i.e. 

Y = β0 +β1X +u     (2.	
  1)	
  

Where β0 is the intercept,β1  the slope and u is the error term with factors that affect Y  
and are not the specified independent variable (linearity). Second, it is intuitively a 
necessity that the sample to be analyzed must consist of a random sample of the relevant 
population to yield an unbiased result (random sampling). Third, a zero conditional mean 
is assumed. This means that the average error term of the function should always be zero. 
This can be refined into the assumption that the average value of u does not depend on 
the value of X as for any value of X the average value of u will be equal to the average 
value of u in the entire population, which is zero (zero conditional mean). Increasingly 
however, econometricians are being asked to forecast and analyze the size of the errors of 
the model. In this case, the questions are about volatility, and the standard tools have 
become the ARCH/GARCH models be expressed as: 

E(u | x) = E(u) = 0     (2.	
  2)	
  

Fourth, a sample variation in the independent variables Xi. This means that X is not a 
constant and is fixed in repeated samples (sample variation). This is however is not an 
assumption that is likely to fail in statistical analysis, as a completely homogenous 
population is not the typical target for statistical analysis. These assumptions assure an 
unbiased result where the sample βn is equal to the population βn. 

Finally, homoscedasticity is assumed to obtain a consistent result. This assumption states 
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that the value of the variance of error term u conditional on the explanatory variable X is 
constant. In other words, the pattern of distribution of error terms at any given value of X 
will show the same distribution with a mean around the sample βnX. This is expressed as: 

Var(u | x) =σ 2
    (2.	
  3)	
  

 

2.3. HETEROSKEDASTICITY 

A time variation in volatility is termed as heteroskedasticity [1]. The effect of violation of 
homoscedasticity assumption in the BLUE model is that the test statistic (regression 
output) is no longer reliable. The distribution of the error term is no longer a constant 
variance distribution. It is often observed that there exists a relationship between 
volatilities from one period of volatility cluster to another.  

 

2.4. HETEROSKEDASTIC MODELS AND ITS SPECIFICATIONS 

The rolling window uses: 

σ =
1

N −1
(rt − r )

2

t=1

N

∑
    

(2.	
  4)	
  

The assumption that all past prices have equal relevance is a very crude one. A better way 
to estimate is to use q recent observations and ignore the previous (under the assumption 
that prices, several years ago do not affect current day prices. An even more sophisticated 
model would be the exponentially weighted volatility model (EWMA). 

Models typically estimate the conditional variance of a portfolio by modeling historic 
stock/ returns or by modeling conditional variance of each asset and the conditional 
correlation of each pair of assets. 

 

2.4.1. ARCH MODEL 

Variance as we know changes over time i.e. it is not homoscedastic but rather a 
heteroskedastic process. More over it is also not beneficial to apply equal weights. ARCH 
overcomes these assumptions by letting the weights of the parameters to be estimated 
thereby determining the most appropriate weights to forecast the variance. 
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Consider the regression:  

yt = x 't b+δt,  where E δt[ ] = 0 and Cov xit,δt( ) = 0   (2.	
  5)	
  

δt = εtσ t,  where εt ~ iid  with Et−1 εt[ ] = 0 and Et−1 εt
2"# $%=1  (2.	
  6)	
  

The ARCH(1) model states: 

σ 2
t =α0 +α1δ

2
t−1     (2.	
  7)	
  

By increasing the lags we capture more of the dependence on previous prices. The 
ARCH(p) model: 

σ 2
t =α0 +α1δ

2
t−1 +α2δ

2
t−2 +...+α pδ

2
t−p    (2.	
  8)	
  

 

2.4.2. GARCH MODEL 

Bollerslev (1986) introduced an extension calling it the Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) model. For a log return rt , let δt  be the 
residuals in the mean adjusted log returns. Under the assumption that δt  follows a 
GARCH model, we have: 

δt =σ tεt;      σ 2
t =α0 + αiδ

2
t−i

i=1

u

∑ + β jσ t− j
2

j=1

v

∑
   

(2.	
  9)	
  

Since, we know that rt  is log return of daily stock prices with mean µ and δt  is the mean 
corrected log return: 

δt = rt −µ      (2.	
  10)	
  

Where δt is a random variable with mean 0 and variance 1, and assumed to be normally 
distributed. If v = 0 , then the GARCH(u,v) reduces to an ARCH(u) process. The 
restrictions 0 ≤α,β ≤1,    α +β <1  are needed to ensure that σ 2

t > 0  and to make σ t
2  

stationary and therefore the unconditional variance finite. In period t, we can forecast the 
future conditional variance (σ t+s

2  )  as (since σ 2
t+1  is known in t) 
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Etσ
2
t+s =σ

2 + (α +β)s−1(σ 2
t+1 −σ

2 ),  with σ 2 =
α0

1−α −β   
(2.	
  11)	
  

where σ 2  is the unconditional variance. 

 

2.4.3. EGARCH MODEL 

an asymmetric GARCH model can be constructed as : 

σ 2
t =α0 +αr

2
t−1 +βσ

2
t−1 + LiG(rt−1 > 0)δ 2

t−1,  where G(q) =1 if q is true else G(q)=0  (2.	
  12)	
  

This means that the effect of shock r2t−1  is α  if the shock was negative and is (α +G)  if 
the shock is positive. With G<0, volatility increases to a negative rt−1 (bad news) than to a 
positive return. 

The exponential GARCH (EGARCH) sets: 

ln(σ t
2 ) =α0 + (βi lnσ

2
t−1)+ α j

δt− j
σ t− j

−E
δt− j
σ t− j

"

#
$$

%

&
''

(

)
*
*

+

,
-
-j=1

v

∑
i=1

u

∑ + Lj
δt− j
σ t− j

"

#
$$

%

&
''

j=1

u

∑
 

(2.	
  13)	
  

 Where δt =σ tεt , Being written in terms of log makes σ t
2 > 0  hold without any 

restrictions on the parameters. This being an asymmetric model both negative and 
positive return affects the volatility in the same way, the linear term makes the effect 
asymmetric. 

 

2.4.4. GJR MODEL 

GJR is an extension to GARCH model, it captures the asymmetries between effects of 
positive and negative shocks of similar magnitude. The model is given by: 

σ t =α0 + α jδ
2
t− j +γD(ψt−1)δ

2
t−1 + βiσ t−i

i=1

v

∑
j=1

u

∑
   

(2.	
  14)	
  

Where δt =σ tεt  and D(ψt )  is defined as: 
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D(ψt ) =
1   if δt ≤ 0
0   if δt > 0

"
#
$

%$
 

for u=1, α0 > 0,  α1 > 0,  α1 +γ1 > 0, β1 ≥ 0 , to ensure positive variance. The indicator 
variable D distinguishes between shocks of short run persistence ( (α1 +γ1) / 2 ) and long 
run persistence ( (α1 +β1 +γ1) / 2 )  

 

2.5. PARAMETER ESTIMATION 

Historical observations are used to estimate the parameters with the help of Maximum 
likelihood functions. With the assumption that the probability distribution of εi  
conditional on the variance is normal, we maximize: 

1
2πσ 2

ti=1

m

∏ e
−δ2i
2σ i

2

#

$
%%

&

'
((

    
(2.	
  15)	
  

Where m is the number of observations. On taking logarithm and ignoring constants, the 
equation boils down to maximizing: 

− lnσ 2
t −

δi
2

σ t
2

"

#
$

%

&
'

i=1

m

∑
    

2.	
  16)	
  

An iterative search helps estimate the parameters [1]. First we guess values of parameter 
b and α0 and α. The guess of b can be taken from the LS estimation of  (2.5), and guess, 
the guess of α0 and α from an LS estimation of δ̂t

2 =ω +αδ̂ 2t−1 +εt  where δ̂t are the fitted 
residuals from the LS estimation of (2.5). Now loop over the sample (for t=1, t=2,…) and 
calculate ût  from (2.5) and σ t

2  from (2.6). Plug these numbers in (2.15) to find the 
likelihood value. Third make better guesses of the parameters and do the second step 
again. Repeat until the likelihood value converges (at a maximum).	
  	
  

The Value at Risk thus evaluated, say at 0.95 confidence level is VaRα = −cdf
−1(1−α) , 

i.e. for a normal distribution we have VaR95% = −(µ −1.64σ ) . 
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CHAPTER 3 

 

DATA 
	
  

For this study, S&P 500 index data from dec 1998 to dec 2010 is considered. 

 

3.1. PRE-ESTIMATION ANALYSIS 

The presence of GARCH is tested using the Ljung-Box Pierce test and Engle’ ARCH 
test. The Ljung-Box Pierce Q-Test (LBQ Test) performs a lack-of-fit hypothesis test for 
model misspecification, which is based on the Q-statistic: 

Q = N(N + 2) r2k
(N − k)k=1

L

∑
    

(3.	
  1)	
  

    
	
  

Where N = sample size, L = number of autocorrelation lags included in the statistic, and 
r2k  is the squared sample autocorrelation at lag k. Once you fit a univariate model to an 
observed time series, you can use the Q-statistic as a lack-of-fit test for a departure from 
randomness [1]. The Q-test is most often used as a post estimation lack-of-fit test applied 
to the fitted innovations (i.e., residuals). In this case, however, you can also use it as part 
of the pre-fit analysis because the default model assumes that returns are just a simple 
constant plus a pure innovations process. Under the null hypothesis of no serial 
correlation, the Q-test statistic is asymptotically Chi-Square distributed. 

As for Engle's ARCH Test, the ARCH test also tests the presence of significant evidence 
in support of GARCH effects (i.e. heteroskedasticity). It tests the null hypothesis that a 
time series of sample residuals consists of independent identically distributed (i.i.d.) 
Gaussian disturbances, i.e., that no ARCH effects exist. Given sample residuals obtained 
from a curve fit (e.g., a regression model), this test tests for the presence of uth order 
ARCH effects by regressing the squared residuals on a constant and the lagged values of 
the previous M squared residuals. Under the null hypothesis, the asymptotic test statistic, 
T(R2 ) , where T is the number of squared residuals included in the regression and R2  

is 
the sample multiple correlation coefficients, is asymptotically chi square distributed with 
M degrees of freedom. When testing for ARCH effects, a GARCH(u,v) process is locally 
equivalent to an ARCH(u+v) process. 

All the analysis about pre estimation analysis were did in MATLAB 7.0, Q-statistics or 
Engle’s ARCH-statistics, p-value and critical values at 95% confidence level for 10, 15 
and 20 lags are generated in MATLAB. Both functions return identical outputs. The first 



 12	
  

output, H, is a Boolean decision flag. H = 0 implies that no significant correlation exists 
(i.e., do not reject the null hypothesis). H = 1 means that significant correlation exists 
(i.e., reject the null hypothesis). The remaining outputs are the P-value (p-Value), the test 
statistic (Stat), and the critical value of the Chi-Square distribution (Critical Value). 

 

Table 3.1: The results for the LBQ-test: 

Lags H P-Value Stat Critical Value 

10 1 0 48.47 18.31 

15 1 0 71.16 25.00 

20 1 0 98.33 31.41 

 

Table 3.2: The results for ARCH-test 

Lags H P-Value Stat Critical Value 

10 1 0 38.48 18.31         

15 1 0 39.03         25.00 

20 1 0 46.15 31.41 

 

Using LBQ-test, It is observed that no significant correlation is present in the raw returns 
when tested for up to 10, 15, and 20 lags of the ACF at 0.05 level of significance. Under 
the null hypothesis H0: No correlation and Ha: correlation is present. 

H is a Boolean decision flag, is equal to 1, which indicates that significant exist (i.e. 
rejects the null hypothesis that correlation is present). However, P-value at any lags of 10, 
15 and 20 are less than .05 and all Q- statistics exceeds its corresponding critical values, 
suggesting that correlation is present in log returns of S&P-500 at 5% level of 
significance. In the above output H=1, p-value less 0.05 and equal to zero, ARCH test 
statistics exceeds its critical value. Therefore, ARCH test strongly rejects the null 
hypothesis that there is no ARCH/GARCH effect in given return of S&P-500. Finally, 
log returns have an ARCH effect at significance level of 5% and given time series has no 
random sequence of Gaussian disturbance. 
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Figure 3.1:Autocorrelation of returns. 

Figure 3.2:Autocorrelation of squared returns. 
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3.2. APPLYING MODELS 

ESTIMATION OF PARAMETERS 

Using MATLAB, the estimates of the parameters of GARCH, EGARCH, GJR models 
are: 

GARCH:                   >> garchfit(spec,r) 

Mean: ARMAX(0,0,0); Variance: GARCH(1,1) 

Conditional Probability Distribution: Gaussian 

Number of Model Parameters Estimated: 4 

Standard          T 

Parameter       Value          Error       Statistic 

-----------   -----------   ------------   ----------- 

C    0.0012041      0.00054956       2.1909 

K    2.6269e-06     1.4529e-06       1.8081 

GARCH(1)    0.85767        0.031521        27.2094 

ARCH(1)    0.12624        0.033811         3.7336 

Log Likelihood Value: 863.123 

EGARCH:                   >> garchfit(spec1,r) 

Mean: ARMAX(0,0,0); Variance: EGARCH(1,1) 

Conditional Probability Distribution: Gaussian 

Number of Model Parameters Estimated: 5 

Standard          T 

Parameter       Value          Error       Statistic 

-----------   -----------   ------------   ----------- 

C    0.000368       0.00059546       0.6180 
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K    -0.81735       0.12281         -6.6554 

GARCH(1)    0.91197        0.014528        62.7746 

ARCH(1)    0.00032102     0.073434         0.0044 

Leverage(1)    -0.33169       0.058887        -5.6326 

Log Likelihood Value: 875.409 

GJR:                       >> garchfit(spec2,r) 

Boundary constraints active: standard errors may be inaccurate. 

Mean: ARMAX(0,0,0); Variance: GJR(1,1) 

Conditional Probability Distribution: Gaussian 

Number of Model Parameters Estimated: 5 

 

Standard          T 

Parameter       Value          Error       Statistic 

-----------   -----------   ------------   ----------- 

C    0.00074968     0.00055576       1.3489 

K    3.8638e-06     1.3381e-06       2.8875 

GARCH(1)    0.85825        0.039838        21.5434 

ARCH(1)    0              0.05589          0.0000 

Leverage(1)    0.21119        0.071504         2.9535 

Log Likelihood Value: 870.114 
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Based on the estimation the GARCH(1,1) conditional variance model that best fits the 
data: 

σ t
2 = 0.0000026269+ 0.12624δ 2

t−1 + 0. 85767σ 2
t−1       (3.	
  2)	
  

It follows that the long-run average variance per implied by this model is 0.00016326 
corresponding to a 0.00016326 = 0.01277 or 1.27% per day volatility. 

 

For the EGARCH(1,1) the conditional volatility model that best fits the data: 

ln(σ t
2 ) = -0.81735+ 0.91197lnσ 2

t−1 + 0.00032102
δt−1
σ t−1

"

#
$

%

&
'− 0.33169

δt−1
σ t−1

(

)
*

+

,
-

 
(3.	
  3)	
  

For the GJR(1,1) the conditional volatility model that best fits the data: 

σ t = 0.0000038638+ 0*δ
2
t−1 + 0.21119D(ψt−1)δ

2
t−1 + 0.85825σ t−i  (3.	
  4)	
  

The forecasts from the models are plotted below 

.

                         Figure 3.3: The above figure is a plot of volatility forecast of the rolling window             
                                forecast (green), risk metric (red), GARCH (blue). For Dec 1998 to Dec 2010. 
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CHAPTER 4 

 

TESTING MODELS 
	
  

There are different approaches to check which model better explains our stock exchange 
data. Each model can be applied with different parameters, i.e. u and v, but in limited 
way, each parameter cannot be greater than three for ARCH and simple GARCH models 
and two for EGARCH and GJR models. The evaluation of these forecasts is done using 
the Diebold Mariano test. 

Evaluation is done using a sample of forecast history and resulting forecast errors: 

                                                             et = yt − ŷt      (4.	
  1)	
  

ŷt =  forecast and yt =  actual outcome  Most statistic methods use the idea of minimizing 
the sum of squared forecast errors. The least squares method picks regression coefficients 
in yt = β0 +β1xt +εt  to minimize the sum of squared residuals. This will give a zero mean 
of fitted residuals and also a zero correlation between the fitted residuals and the 
regressor.  Evaluating forecast performance involves studying the following: 

1) The forecast error has zero mean. 
2) The forecast error is uncorrelated to the variables used (information) used in the 
construction of the forecast. 
3) To compare the sum (or mean) of the squared forecasting error of different forecast 
approaches. 
Zero mean implies bias, non zero correlation implies information not used efficiently (a 
forecast error should not be predictable) 

An efficient h-step ahead forecast error must have a zero correlation with the forecast 
error (h-1) and the periods earlier. 

The Diebold and Mariano test tests for forecasting superiority [5]: For instance to 
compare the MSE of two methods (a and b), we first define gt = (e

a
t )
2 − (ebt )

2 , for mean 

absolute errors, use gt = e
a
t − e

b
t   where eit  is the forecast error of model i . Treating this as 

a GMM problem, we test for Egt = 0 . By applying t-test on the same: 
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g
Std(g)

~ N(0,1), where d= dt
Tt=1

T

∑
   

(4.	
  2)	
  

  
Here the standard error is typically estimated using Newey-West approach. 

 

Std(g) = Cov(gt,gt−s )
Ts=−∞

∞

∑
$

%
&

'

(
)

1
2

    
(4.	
  3)	
  

Table 4.1: The Diebold Mariano test statistic for our forecasts is: 

 Rolling Window Risk Metric GARCH 

Rolling Window 0.071 2.31 1.97 

Risk Metric -2.34 0.065 0.52 

GARCH -1.96 -0.46 0.071 

 

The test statistic is constructed by considering the three-implemented models pairwise 
and it can be observed that GARCH is a better estimate for the data set considered, Risk 
Metric ranks second and rolling window forecasts give the largest error. The error 
function considered here is the MSE function, which is the most widely used unbiased 
loss function.  

The above tests are done on 3000 data points. The first 252 data points are used to 
estimate the parameters and the remaining are for the forecasts. The error in parameter 
estimation is considerably high as the ratio of data points used for estimation (r) far 
exceeds the data points used for the forecasts (t). Parameters are frequently updated to 
keep the ratio of (r/t) a constant. We notice here that the GARCH model out performs 
other forecast models even for crude data and with errors in parameter estimation. 
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CHAPTER 5 

 

CAPITAL ASSET PRICING MODEL 
 

 

One of the cornerstones of investment science is the theory of Portfolio Selection. The 
first foray into this field was in 1952 by Harry Markowitz, who made a historical 
contribution to financial mathematics with his classic article “Portfolio Selection”. In the 
article, he incorporated the quantification of risk in the portfolio choice problem. He 
developed a framework where investors who like wealth and dislike risk would hold 
mean-variance efficient portfolios. Building on his work, Sharpe (1964) and Lintner 
(1965 b) almost simultaneously developed a model to price capital assets. The equation 
they derived has later been christened as the Capital asset Pricing Model. 

In the following part of the thesis, the theoretical foundation for the capital asset pricing 
model will be formed and economic techniques will be applied to test the implications of 
CAPM. 

This chapter will first lay the foundation by introducing mean-variance analysis. Then the 
efficient frontier is derived with and without a riskless asset. With this we can derive the 
CAPM. Finally the security market line is defined and a more intuitive interpretation of 
the CAPM is given [1]. 

With the following assumptions: 

1) There exists a risk-free asset that investors may borrow or lend any amount of at 
the same rate. 

2) Investors assign the same probability distributions to end of period values of a 
given asset. i.e. investors have homogenous expectations regarding means, 
variances and covariances. 

It is also assumed that investors are wealth loving risk averters and that the market is 
purely competitive, frictionless (no transaction costs) and without taxes. The assumption 
that all assets are marketable and infinitely divisible is also assumed. 

5.1. MEAN-VARIANCE ANALYSIS 

Mean-Variance Analysis (MVA) is the process of selecting a portfolio that provides 
maximum expected return for a given variance and minimum variance for a given 
expected return [1]. It is based on the assumption that investors like wealth and dislike 
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risk. i.e. an investor prefers portfolio 1 over portfolio 2 if the following mean variance 
criterion are fulfilled. 

E[R1]> E[R2 ]      (5.	
  1)	
  

and  

σ 2 (R1) ≤σ
2 (R2 )     (5.	
  2)	
  

                                                                              

 

 

Consider a von Neumann-Morgenstern type utility function of an investor’s end of period 
wealth: 

u(W ) = u(n) (a)
n!

(W − a)n,
n=0

∞

∑
    

(5.	
  3)	
  

where u(W) is evaluated at a=E[W].  

u(W ) = u(E[W ])+u '(E[W ])(W −E[W ])+ 1
2
u"(E[W ])(W −E[W ])2 + R3,

 
(5.	
  4)	
  

where  

R3 =
1
n!
u(n) (E[W ]

n=3

∞

∑ )(W −E[W ])n.
   

(5.	
  5)	
  

E u(W )[ ] = u(E[W ])+ 1
2
u"(E[W ])σ 2 (W )+E R3[ ],

  
(5.	
  6)	
  

where 

E[R3]=
1
n!
u(n) (E[W ])mn (W )

n=3

∞

∑ ,
   

(5.	
  7)	
  

Note that mn (W ) is the n’th central moment of the end of period wealth. With the 
assumption that the investors prefer wealth and are variance aversive, it is assumed that 
investors have strict concave utility functions. With the assumptions of MVA, the 
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straightforward implication of the above is that the utility function is quadratic.  The 
problem with assuming a quadratic utility function is that the function involves a point of 
saturation (u '(W ) = 0 ) where investors begin having preference against more wealth. The 
implication of the concave nature is that E[u(W )] is a decreasing function. An alternate 
assumption is that wealth or equivalently returns are normally distributed. In normal 
distribution the moments of higher order than two can be expressed as functions of first 
and second moments. Thus in effect investors can only care about mean and variance 
under the normality assumption. The distribution assumptions will be dealt more 
thoroughly in chapter 6. From now on, it shall be assumed that investors’ utility functions 
are concave and strictly increasing with no point of saturation. Moreover, we also assume 
that wealth is multivariate normally distributed. 

 

5.2. MINIMUM VARIANCE FRONTIER 

Consider the above analysis to include every feasible portfolio. The ones that satisfy 
MVC when compared to every other are said to be efficient. Efficient meaning that you 
cannot find a better portfolio in the mean-variance space. The set of feasible portfolios 
that meet the MVC constitute the efficient frontier [12]. 

Consider combining two risky assets 1 and 2 in a portfolio, the expected return would be: 

Ep = X1E R1[ ]+ X2E R2[ ],     (5.	
  8)	
  

where X1 + X2 =1 . The variance for the same can be found as: 

σ p = X1
2σ1

2 + X2
2σ 2

2 + 2X1X2ρ1,2σ1σ 2,    (5.	
  9)	
  

where  −1≤ ρ1,2 ≤1 is the correlation coefficient or the covariance σ12  
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Figure 5.1:Risk-return frontiers in the two-asset case. 

The above figure demonstrates the various possible portfolios for the two-asset case. To 
understand the concept of efficient frontier, we consider the case with N risky assets. The 
boundary of the feasible region is called the investment opportunity line or the minimum 
variance frontier and it contains the portfolios with the lowest variance for every level of 
expected return. 

 
Figure 5.2:Risk return frontier                        Figure 5.3:Risk-return frontier 
         in the 3-asset case.                                             with N assets. 

The above figures depict the possible portfolios for three and multiple asset cases. The 
curves connecting points 1, 2 and 3 represent the available combinations when working 
with two assets at a time. Consider the combination of 2 and 3 marked by Y. When 
combined with portfolio 1 would give point Z. Continuing this, it is easy to see that the 
entire feasible region is covered. Figure 5.3 considers the case with multiple risky assets. 
It is the feasible region resulting from the infinite combinations available, and the blue 
line is the minimum variance frontier. 

The portfolios satisfying the mean variance criteria can be interpreted as the portfolios 
farthest to the northwest. With MVC it is clearly observed that the solid line on the upper 
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part of the minimum variance curve consists of the efficient portfolios. This line is the 
efficient frontier. Every other portfolio gives less return for the same levels of variance. 

In order to construct the line portfolio weights of individual assets are needed. These can 
be found by minimizing the variance for every level of expected return. This involves 
finding the optimal distribution of wealth between individual stocks with the following 
minimization problem: 

minσ p
2 = (Xi

2σ i
2 )+

i=1

N

∑ (XiX jσ ij )
j=1
j≠i

N

∑
i=1

N

∑ ,

   

(5.	
  10)	
  

Consider the matrix notation for the portfolio variance: 

σ p
2 =ω 'Ωω. 	
   	
   	
   	
   	
   (5.	
  11)	
  

Let Ω be the N×N variance-covariance matrix of the N assets in the portfolio. Let ω be 
the N×1-vector of portfolio weights on risky assets in P. 

min
ω

1
2
ω 'Ωω,

     
(5.	
  12)	
  

subject to 

ω 'µ = µp,  

and  

ω 'ι =1,  

here µ is the N×1-vector of expected returns of the risky assets and ι is the N×1-vector of 
ones. Applying the Lagrange multiplier: 

min
ω,δ1,δ2

L = 1
2
ω 'Ωω +δ1(µp −ω

1µ)+δ 2 (1−ω 'ι),
  

(5.	
  13)	
  

where δ1 and δ 2  are the Lagrange multiplier. The first order conditions can be formed as 
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∂L
∂ω

=Ωω +δ1(−µ)+δ 2 (−ι) = 0,

∂L
∂δ1

= µp −ω 'µ = 0,
	
   	
   	
  

(5.	
  14)	
  

and	
  

∂L
∂δ 2

=1−ω 'ι = 0
     

(5.	
  15)	
  

Ω must be positive definite as ω 'Ωω  is the variance of a risky portfolio. With L being 
convex, he first order conditions are both necessary and sufficient to find a global 
solution to the minimization problem. Solving for portfolio weights we have: 

ω p = −δ
1Ω−1(−µ)−δ 2Ω−1(−ι)

    = δ1(Ω−1µ)+δ 2 (Ω−1ι).     
(5.	
  16)	
  

                  µ 'ω p = δ
1(µ 'Ω−1µ)+δ 2 (µ 'Ω−1ι).

µp = δ
1(µ 'Ω−1µ)+δ 2 (µ 'Ω−1ι)      since µ 'ω p =ω 'µ

	
   	
  

(5.	
  17)	
  

multiplying by ι '   

 

1= δ1 ι 'Ω−1 −µ( )+δ 2 ι 'Ω−1ι( ).     
(5.	
  18)	
  

With two unknowns and two equations, we have, as shown in the appendix A.2 

δ1 =
Cµp − A

D

δ 2 =
B− Aµp

D
,
     

(5.	
  19)	
  

 
where A = ι 'Ω−1µ,  B = µ 'Ω−1µ,  C = ι 'Ω−1ι  and D = BC − A2.  Substituting in (5.16): 
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ω p = g+ hµp,

g = 1
D

B Ω−1ι( )− A Ω−1µ( )#
$

%
&

h = 1
D
C Ω−1µ( )− A Ω−1ι( )#
$

%
&.

   

(5.	
  20)	
  

The weights given by the vector ω p  result in a portfolio on the minimum variance 

frontier with expected return equal to µp.  Using the above equations we can find every 

frontier portfolio. In fact every frontier portfolio can be constructed using two random 
frontier portfolios with different level of expected return. Let q be any portfolio on the 
minimum variance frontier. Since these two random frontier portfolios have different 
levels of expected return, there exists a combination such that  

µp = Xµ1 + 1− X( )µ2,     (5.	
  21)	
  

Assigning these weights to the weight-vectors of portfolio 1 and 2, 

Xω1 + 1− X( )ω2 = X g+ hµ1[ ]+ 1− X( ) g+ hµ2[ ]
                         = g+ h Xµ1 + 1− X( )µ2

"# $%

                         = g+ hµq

                         =  ωq   

(5.	
  22)         	
  

5.3. CAPITAL MARKET LINE 

Now we consider an asset with a riskless rate also known as a pure interest rate. Let us 
consider a combination of any risky portfolio and the risk-free asset. The expected return 
on the combination would be [1]: 

E Rp
!" #$= 1− X( )Rf + XE RT[ ]

E Rp
!" #$= Rf + X E RT[ ]− Rf( ),

    

Here X=1 implies that the investor holds all his wealth in the risky portfolio. Conversely, 
X<1 means that the investor lends some of his money at the risk-free rate. Finally, X>1 
means a leveraged position where he borrows money at the risk-free rate and invests the 
proceeding from the loan plus his wealth in stocks and other risky assets. The variance of 
the above portfolio will be: 
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σ p
2 = X 2σ T

2

σ p = Xσ T ,      
(5.	
  23)	
  

We rewrite equation (5.1) as 

E Rp
!" #$= Rf +θσ p, 	
   	
   	
   	
  

(5.	
  24)	
  

where 

θ =
E RT[ ]− Rf( )

σ T

.  

The expression (5.2) says that the net expected rate of return on the total investment is 
linearly related to the risk of the net investment. This expression can be used for any 
portfolio of risky assets and is called the market opportunity line. In figure 5.4 this is the 
line RfA for some random risky portfolio. As opposed to the minimum variance frontier 
in figure 5.3, the market opportunity line expresses a constant trade off between risk and 
expected return. Therefore, the price of risk reduction is independent of the risk level of a 
given position. 

θ , the slope of this line is known as Sharpe ratio [16] or the price of risk for efficient 
portfolios. The intercept Rf  is referred to as the price of time.  

According to (5.24), no matter which risky portfolio an investor chooses to combine with 
the risk free asset, he can reach any desired net expected return of his total investment. 
He just has to leverage his investment in the risky asset enough by borrowing mon

 
Figure 5.4:The optimal portfolio choices in a mean-standard deviation space. 
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for risk. A more precise name, according to Sharpe (1970)
is a measure of how much net expected return you have to give up to reduce
Likewise, he argues that the intercept could be named the 

Figure 2.3 The optimal portfolio choice in a mean

Source: Lintner, 1965 

According to (2.29 b), no matter which risky portfolio an investor chooses to combine with the 
free asset, he can reach any desired net expected return of his total investment. He just has to 
leverage his investment in the risky asset enough by borrowing money. Yet, 
serious drawback to leveraging
proportionately with the magnitude of the leverage 

The investor has to deal with two questions:

1. Which risky portfolio (i.e. mix of risky assets) should he choose?
2. How intensively will he use it? (That is,

investments as measured by 
 

Regardless of his utility function 
the risky portfolio with the highest

total net return  ER as high as he may desire with 

with the maximum θ-value, he minimizes the standard deviation and variance of his position for any 
level of expected return. Intuitively, this way he gets more return per risk
on minimal risk in order to reach a certain level of expected return. 

Result 2.3 a: For each investor
the ratio of his total wealth invested in it
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for risk. A more precise name, according to Sharpe (1970), is therefore the price of risk reduction
is a measure of how much net expected return you have to give up to reduce

that the intercept could be named the price of immediate consumption

portfolio choice in a mean-standard deviation space.
 

 

 

 

 

 

 

 

 

 

 

 

 

tter which risky portfolio an investor chooses to combine with the 
asset, he can reach any desired net expected return of his total investment. He just has to 

leverage his investment in the risky asset enough by borrowing money. Yet, 
serious drawback to leveraging a random portfolio: the risk of the total investment increases 
proportionately with the magnitude of the leverage .  

The investor has to deal with two questions: 

Which risky portfolio (i.e. mix of risky assets) should he choose? 
intensively will he use it? (That is, how much of his wealth will he place in risky 

investments as measured by ?) 

utility function (subjective preferences), a risk averse investor will always choose 
the risky portfolio with the highest θ. To see why, recall from above that he can reach an expected 

as high as he may desire with all portfolios. By choosing the risky portfolio 

he minimizes the standard deviation and variance of his position for any 
level of expected return. Intuitively, this way he gets more return per risk-unit so he only has to take 

order to reach a certain level of expected return.  

For each investor, the optimal mix of risky assets is independent of 
the ratio of his total wealth invested in it. 
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the price of risk reduction. It 
is a measure of how much net expected return you have to give up to reduce the risk by one unit. 

price of immediate consumption.  

eviation space. 

tter which risky portfolio an investor chooses to combine with the risk-
asset, he can reach any desired net expected return of his total investment. He just has to 

leverage his investment in the risky asset enough by borrowing money. Yet, (2.30 b) reveals a 
of the total investment increases 

how much of his wealth will he place in risky 

risk averse investor will always choose 
. To see why, recall from above that he can reach an expected 

. By choosing the risky portfolio 

he minimizes the standard deviation and variance of his position for any 
unit so he only has to take 

the optimal mix of risky assets is independent of 
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Yet, (5.23) reveals a serious drawback to leveraging a random portfolio: the risk of the 
total investment increases proportionately with the magnitude of the leverage X. 
Regardless of his utility function (subjective preferences), a risk averse investor will 
always choose the risky portfolio with the highest θ. As illustrated in figure 5.4, the only 
difference between investors is the proportion of their wealth placed in the tangency 
portfolio of risky assets.  

Consider investor 1 with indifferences curves U11, U12, and U13. Investor 1 is relatively 
risk averse, so he maximizes his utility where U11 is tangent to the CML in point i1. As a 
consequence, investor 1 chooses to lend some of his money resulting in less risk and 
expected return than that of a pure risk asset portfolio. As another example, we have 
investor 2 with indifference curves U21, U22, and U23. He is a lot less risk averse than 
investor 1. Therefore, he borrows money in order to invest more than his wealth in the 
fixed mix of risk assets. As long as investors like wealth and dislike risk, some 
combination of the tangency portfolio and the risk-free asset will always maximize their 
utility. 

The implication of the separation theorem is important when we want to describe the 
tangency portfolio. Recall the assumptions set up in the beginning of the chapter. Two of 
them are of particular interest when we want to make conclusions about the tangency 
portfolio. The first is homogeneity of expectations, and the second is unlimited lending 
and borrowing at the risk-free rate. When everyone have the same distributional 
expectations, and everyone can use the same risk- free rate, every investor must face the 
same minimum variance frontier and opportunity market line as illustrated in figure 5.4. 
Thus, every investor faces the same tangency portfolio. Then, as the separation theorem 
suggests, the optimal portfolio is independent of individual preferences. When all 
investors assign the same weight in their risk portfolios to any given security, they must 
all hold the market portfolio (Sharpe, 1970). 

We have made the assumption that investors’ utility curves were strictly increasing. It can 
be seen in figure 5.4 that they consequently always choose efficient portfolios. As the 
market portfolio is a convex combination of every individual portfolio, the market 
portfolio must also be mean-variance efficient when involving a risk-free asset. 
Alternatively, one could argue that if the market portfolio is the tangency portfolio, it 
must lie on the CML and thus be efficient. Then, the slope in (5.24) can be written as: 

θ =
E Rm[ ]− Rf( )

σ m

.
     

(5.	
  25)	
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5.4. DERIVATION OF THE CAPM 

Sharpe, in 1964, and Lintner, in 1965, independently derived this model. 

5.4.1. SHARPE’S DERIVATION 

Consider a combination of the market portfolio and any other portfolio i. Let this be 
portfolio Z [16]. It follows that the expected return and the standard deviation on this 
combination will be  

E RZ[ ] = 1− X( )Rm + XE Ri[ ]

σ Z = 1− X( )2σ m
2 + X 2σ i

2 + 2X 1− X( )ρm,iσ mσ i
"
#

$
%

1
2

	
   	
  

(5.	
  26)	
  

At X = 1 only asset i is held while X = 0 implies that only the market portfolio is held. 
Points i and m in figure 5.5 illustrates the two cases. Note however, that at X = 0 some 
wealth is still placed in asset i as it is a part of the market. Thus, at X = 0 the weight 
placed on asset i corresponds to its values proportion of the total market wealth. M’ 
indicates the case where i is not held at all making X < 0 (Sharpe, 1964). It should be 
marked that this combination curve does not intersect the minimum variance frontier. By 
definition, when there is no riskless asset all efficient portfolios lie on the curved 
minimum variance frontier, so the combinations between m and i cannot dominate them	
  

	
  
Figure 5.5:Combining the market portfolio with some random risk asset 
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on the curved minimum variance frontier
them.  

Figure 2.4 Combining the market portfolio with some random risk asset.

Source: (Cuthbertson & Nitzsche, 2004) 

As indicated above, we want an expression for the expected value of
this we investigate the curve comprising
Note that  does not have to be efficient. 
respect to . As  is not in the expression for 

 

First we take the derivative of the total expected return on portfolio 
asset 8: 

 

Then we take the derivative of the standard deviation of 
asset  by using the chain rule: 

 

 ∂
∂ =

1
2


× [−2(

=
1



                                                 
8 We only need the derivative with respect to the weight on asset 
expressed in terms of the weight on asset 

Magnus Sander 

curved minimum variance frontier, so the combinations between  and 

Combining the market portfolio with some random risk asset. 

 

As indicated above, we want an expression for the expected value of any asset. 
comprising the combinations of  and the market portfolio at point M. 
be efficient. To find the slope of the curve we differentiate 

is not in the expression for R, we use the fact that  

∂R
∂
∂
∂

=
∂R
∂

. 

the total expected return on portfolio  with respect to the weight on 

∂R
∂ = −ER  ER. 

of the standard deviation of portfolio  with respect to the weight 

1 −  +  + 21 − 
−

(1 − )2  22  2(1 − 2)] 

−1 −  +  + 1 − 2. 

only need the derivative with respect to the weight on asset  as the weight on the market portfolio has been 
expressed in terms of the weight on asset .  

Bachelor thesis 

18 

and  cannot dominate 

asset. In order to obtain 
and the market portfolio at point M. 

To find the slope of the curve we differentiate R with 

(2.35) 

with respect to the weight on 

(2.36) 

with respect to the weight on 



 



 
 
 

(2.37) 

as the weight on the market portfolio has been 
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To find the slope of the curve we differentiate [Rf] with respect to σz  

∂ RZ[ ]
∂X
∂σ Z

∂X

=
∂ RZ[ ]
∂σ Z

.

∂σ Z

∂X
=

1
2

1− X( )2
σ m

2 + X 2σ i
2 + 2X 1− X( )ρmiσ mσ i

#
$

%
&

1
2

        × −2 1− X( )σ m
2 + 2Xσ i

2 + 2 1− 2X( )ρmiσ mσ i
#$ %&

       = 1
σ Z

− 1− X( )σ m
2 + Xσ i

2 + 1− 2X( )ρmiσ iσ m
#$ %&.

∂ RZ[ ]
∂X

= −E Rm[ ]+E Ri[ ].
  

(5.	
  27)	
  

At point M we have X=0. At this point σz = σm and σmi = ρmiσm σi. So: 

∂σ Z

∂X
=
1
σ m

−σ m
2 +σ mi

#$ %&.

∂ RZ[ ]
∂σ Z

=
E Ri[ ]−E Rm[ ]( )σ m

σ mi −σ m
2 = SZ .

	
   	
   	
  

(5.	
  28)	
  

In equilibrium the curve at point m must be a tangent to the CML. Equating slopes at 
X=0 we have: 

	
  	
   	
   	
  

E Ri[ ]−E Rm[ ]( )σ m

σ mi −σ m
2 = SZ =θ =

E Rm[ ]− Rf( )
σ m

  E Ri[ ] =
E Rm[ ]− Rf( ) σ mi −σ m

2( )
σ m

2 +E Rm[ ]

          =R f +βi E Rm[ ]− Rf( ),

                       βi =
σ mi

σ m
2

	
   	
  

(5.	
  29)	
  

This is the traditional CAPM model derived by Sharpe in 1964. It says that the expected 
return of asset i equals the risk-free rate plus a reward for bearing risk.  
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CHAPTER 6 

 

ECONOMETRIC TECHNIQUES FOR TESTING THE CAPM 
For the purpose of statistical testing it is convenient to express the Sharpe-Lintner model 
in terms of excess returns. That is, in terms of the risk premium you receive in addition to 
the risk-free rate. Let Zi and Zm denote the expected excess return of asset i and the 
market portfolio respectively. Then, the traditional CAPM model can be written as: 

E Zi[ ]=βimE Zm[ ], 	
   	
   	
   	
  
(6.	
  1)	
  

	
   	
   	
  
	
  

where 

Zi = Ri − Rf ,

βim =
Cov Zi,Zm[ ]
Var Zm[ ]

.
	
   	
   	
   	
  

(6.	
  2)	
  

	
   	
   	
   	
  

	
  

The empirical research that tests the CAPM primarily concentrates on three aspects of 
(6.1): 

1) There is no intercept. 
2) Beta can explain the variation in the cross-sections of expected excess returns. 
3) The risk premium in the market is positive. 

 

6.1. THE MARKET MODEL 

In the traditional Sharpe-Lintner version, as well as the excess return model in (6.1), there 
is no time dimension as the CAPM is a one-period model [1]. However, when conducting 
empirical tests of the model, we use panel data in order to apply the econometric 
methods. Thus, there is a time dimension in the sample data. Therefore, asset returns are 
assumed to be independently and identically distributed over time (IID) and jointly 
multivariate normal. Then, it makes sense to make single estimates of the model 
parameters using data collected over time. Intuitively, when the properties of the data do 
not change over time, the CAPM can theoretically hold period by period. The 
assumptions that returns are IID and jointly normal are strong, and there is vast empirical 
evidence indicating that they are too strong. Therefore, we will also derive a test robust to 
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this notion. This can serve as a check that the inferences are not biased by the 
distributional assumptions. In our analysis N will denote the number of assets or 
portfolios under consideration, and T will denote the number of periods under 
consideration. Consider the market model: 

Zt =α +βZmt +εt     (6.	
  3)	
  

where 

E εt[ ] = 0,
E εtεt '[ ] =∑,
Cov Zmt,εt[ ] = 0.

 

 Here Zt denotes the N ×1-vector of expected excess returns at time t, α is the N × 
1-vector of intercepts, β the N × 1-vector of betas, the scalar Zmt is the market risk 
premium at time t, and εt is the N × 1-vector of error terms. Note that the notion of 
temporal IID returns does not imply anything about the cross-sections of data. In fact, 
there should be some correlation between returns for the CAPM, and in particular beta, to 
make sense. Thus, (6.3) implies that there can be heteroskedasticity (different variances 
in the diagonal of the matrix) and cross-correlation (other terms in the matrix above zero) 
in the cross-sections of data. Accordingly, the N × N-matrix Σ contains the variances and 
covariances of the disturbances. From the above assumptions regarding the behavior of 
returns over time, we can say the following about the vector of error terms: 

εt ~ N 0,∑( ).  

When comparing (6.3) with (6.1) it is obvious that if the CAPM holds, the intercepts in 
the vector α should all be zero. Testing whether the elements in α equals zero can be seen 
as a test of the exact linear relationship expressed in the CAPM. If this relationship does 
not exist, the market portfolio is not efficient and the CAPM is rejected. Also, if the 
market portfolio is not mean variance efficient, it cannot be the tangency portfolio. 
Hence, testing whether the intercepts are zero can also be interpreted as testing whether 
the market portfolio is the tangency portfolio. When the intercepts are all zero, every 
asset must lie on the SML just as the CAPM predicts (Roll, 1977). This gives the 
following null hypothesis: 

H0 :α = 0  

against 

HA :α ≠ 0  
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Notice that this is a joint hypothesis as we simultaneously test if every intercept αi is 
zero. To test the H0 against the alternative, we will use several test statistics. To 
implement these tests, we first have to estimate the parameters of the model α, β and Σ. 
Here we will apply Maximum Likelihood Estimation (MLE). As the single independent 
variable Zmt is the same in all the equations expressed by the vectors of (6.3), the OLS-
estimators of α and β are identical to the ML-estimators (Cuthbertson and Nitzsche, 
2004). 

For the assumption that the results are IID and jointly multivariate normal, we have the 
following multivariate pdf for the jointly normal excess returns in time t conditional on 
the observed conditional market risk premium (Campbell et al.1997). 

f Zt | Zmt( ) = 1

2π( )
N
2 ∑

1
2

          × exp −
1
2
Zt − α +βZmt( )( ) '∑−1 Zt − α +βZmt( )( )

$

%&
'

()

         = 1
2π( )N /2

∑
1/2 × exp −

1
2
Zt −α −βZmt( ) '∑−1 Zt −α −βZmt( )

$

%&
'

()
.
 

(6.	
  4)	
  

 

Results are assumed to be IID through time. Hence the conditional pdf of the excess 
return vectors Z1, Z2, Z3, Z4,….,  ZT is: 

f Z1,Z2,…,ZT | Zm1,Zm2,…,ZmT( ) = 1

2π( )
N
2 ∑

1
2

× exp − 1
2
Zt −α −βZmt( ) '∑−1 Zt −α −βZmt( )

$

%&
'

()t=1

T

∏ .

	
  

The log-likelihood function thus formed: 

L α,β,∑( )

= −
NT
2
log(2π )− T

2
log ∑ −

1
2

Zt −α −βZmt( ) '∑−1 Zt −α −βZmt( )#$ %&
t=1

T

∑ .
	
  

(6.	
  5)	
  

Since ∑−1  is symmetric we have ∂ x − s( ) '∑−1 x − s( )$% &'= −2∑
−1 x − s( )∂s , so, 
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∂L
∂α

= −
1
2

−2∑−1 Zt −α −βZmt( )
t=1

T

∑

     =∑−1 Zt −α −βZmt( )
t=1

T

∑
$

%
&

'

(
).

 

Similarly for β, we have: 

∂L
∂β

= −
1
2

−2∑−1 Zt −α −βZmt( )Zmt
t=1

T

∑

     =∑−1 Zt −α −βZmt( )Zmt
t=1

T

∑
$

%
&

'

(
).

 

And for Σ, we have: 

∂L
∂∑

= −
T
2
∑−1−

1
2

−∑−1 Zt −α −βZmt( )
t=1

T

∑ Zt −α −βZmt( ) '∑−1

     = −T
2
∑−1+

1
2
∑−1 Zt −α −βZmt( )

t=1

T

∑ Zt −α −βZmt( ) '
$

%
&

'

(
)∑−1.

 

Since ∂ ln X( ) = X '( )−1∂X 	
  and ∂ ln a 'X−1b( ) = X '[ ]−1 ab ' X '[ ]−1∂X. 	
  	
  

 

Setting the above partial differentials to zero, and solving for α, we have: 

α̂ = µ̂ − β̂µ̂m, 	
   	
   	
   	
   	
   (6.	
  6)	
  

where 

µ̂ =mean excess return = 1
T

Zt( )
t=1

T

∑ 	
  

and 

µ̂m =
1
T

Zmt( )
t=1

T

∑ 	
  

Similarly 
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β̂ =
Zt − µ̂( ) Zmt − µ̂m( )

t=1

T

∑

Zmt − µ̂m( )2
t=1

T

∑
,

∑̂ =
1
T

Zt −α̂ − β̂Zmt( ) Zt −α̂ − β̂Zmt( ) '.
t=1

T

∑
  

(6.	
  7)	
  

The OLS estimators also give the same results as above. 

In order to construct a test statistic for testing our hypothesis, we need to know the 
distribution of the estimators. We have assumed that excess returns are jointly normal and 
temporally IID. The estimators’ distributions result from this supposition. Conditional on 
the market risk premium, α̂  and β̂  follow a normal distribution (Campbell et al., 1997). 
Their expected values equal the true parameter values, so they are unbiased. This follows 
from the specification of the market model, and in particular the exogeneity of the 
explanatory variable combined with the IID assumption. 

With Cov µ̂, β̂µ̂m( ) = 0  we have: 

Var α̂( ) =Var µ̂ − β̂µ̂m( ) =Var µ̂( )−Var β̂µ̂m( )

Var α̂( ) =Var 1
T

Zt( )
t=1

T

∑
#

$
%

&

'
(+Var

Zt − µ̂( ) Zmt − µ̂m( )
t=1

T

∑

Zmt − µ̂m( )2
t=1

T

∑
µ̂m

#

$

%
%
%
%

&

'

(
(
(
(

.

   

(6.	
  8)	
  

Consider each term independently: 

Var 1
T

Zt( )
t=1

T

∑
"

#
$

%

&
'=

1
T 2 Var Zt( )

t=1

T

∑

                       = 1
T 2 ∑

t=1

T

∑

                       = 1
T
∑.
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Zt − µ̂( )
t=1

T

∑ Zmt − µ̂m( )

              = Zt −
1
T
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∑
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∑
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 Substituting back in the second term we have: 

Var
Zt − µ̂( ) Zmt − µ̂m( )

t=1

T

∑

Zmt − µ̂m( )2
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Zmt − µ̂m( )2

t=1

T

∑
µ̂m

#

$

%
%
%
%

&

'

(
(
(
(t=1

T

∑

     = Var Zt[ ]
Zmt − µ̂m( )

Zmt − µ̂m( )2

t=1

T

∑
µ̂m

#

$

%
%
%
%

&

'

(
(
(
(

2

t=1

T

∑

     =∑
Zmt − µ̂m( )

t=1

T

∑

Zmt − µ̂m( )2

t=1

T

∑
µ̂m

#

$

%
%
%
%

&

'

(
(
(
(

2

=
1
T
∑
µ̂m

2

σ̂ m
2 ,

	
   	
   	
  

(6.	
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where 

σ̂ m
2 =

1
T

Zmt − µ̂m( )2
t=1

T

∑ . 	
  

hence: 

Var α̂( ) = 1
T
∑+

1
T
∑
µ̂m

2

σ̂ m
2

           = 1
T

1+ µ̂m
2

σ̂ m
2

"

#
$

%

&
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and 

Var β̂( ) = 1T
1
σ̂ m
2

!

"
#

$

%
&∑.

	
   	
   	
   	
  
(6.	
  11)	
  

Using the following theorem (Uhlig, 1994): 

Consider a random variable Yt ~ N 0,∑( )  for t=1,2,…,T where ∑  is an N × N positive 
definite matrix. Then, 

X = YtYt '
t=1

T

∑ ~WN T,∑( ).  

This means that X follows a Wishart distribution with T degrees of freedom and variance- 
covariance matrix Σ. The Wishart distribution is the chi-square distribution generalized to 
a multivariate case.  

Previously, we found out that εt~Ν(0,Σ). Let Yt = εt and recall from (6.3) that E[εt ε’t]= 
Σ. Then, it can be shown that T ∑̂  follows a Wishart distribution with T-2 degrees of 
freedom. And so to summarize, we have: 
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6.2. THE STANDARD TESTS 

Now we have built the necessary foundation to construct test statistics for testing the null 
hypothesis. We wish to test simultaneously whether all the intercepts are zero [18]. Thus, 
there are in fact multiple hypotheses. Here, the hypotheses can be seen as exclusion 
restrictions, as they practically exclude the intercepts from the market model. There are 
different ways of testing multiple restrictions. One possibility is the Wald test 

In a Wald test, we evaluate the difference between the estimate of the market model 
parameter and its value under the null hypothesis. Formally, the squared difference is 
benchmarked against the variance of the parameter. This result is then compared to the 
test statistic’s distribution under the null hypothesis to see whether the above difference is 
significant. Using result (6.3) we formed the null hypothesis α = 0. Thus, the Wald test 
statistic is 

J0 = α̂ Var α̂( )!" #$
−1
α̂ '

J0 = α̂
1
T
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Under the null hypothesis J0 has a chi-square distribution with N degrees of freedom. 
Here, N corresponds to the number of restrictions imposed, as there are N different 
intercepts. 

Using the above results, we can also construct a test statistic in a finite-sample setting. To 
do this, we employ the following theorem: 

Let x be a m × 1-vector and A be a m × m -matrix. Furthermore, let x and A be 
independent, x~N(0, Ω), and A ~WN (n, Ω), where m ≤ n. Then 

n−m+1( )
m

x'A−1x~Fm,n−m+1.
    

(6.	
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Using the above, the central F-test statistic is: 

T − N +1( )
TN

J0 ~FN ,T−N−1.
    

(6.	
  15) 
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CHAPTER 7 

 

DATA 
	
  

For the empherical tests, we use S&P 500 index data from Dec, 1926 to Dec, 2011 

We use monthly realizations of the excess return to the aggregate U.S. stock market and 
monthly returns to portfolios of U.S. stocks. Following the restrictions from sections on 
true size, power and portfolio construction the eligible stocks of the S&P are assigned to 
ten value-weighted portfolios based on their size. Specifically, at the end of each quarter, 
eligible companies in the U.S. exchange are sorted on market capitalization and then are 
divided into 10 deciles of equal populations. The companies with the largest 
capitalization in each decile serve as the breakpoints when assigning all the sampled 
companies. Portfolio 1 contains the largest companies, portfolio 2 the next largest, and so 
on. The returns recorded are total returns, so dividends are included as demanded by the 
CAPM. As indicated above, the returns are computed from a value-weighted portfolio of 
the securities in each decile. 

We also choose the theoretical consistent value-weighted proxy of the market portfolio. 
Specifically, we use the CRSP value weighted basket of American stocks with dividends. 
To check the robustness of the inference to the market portfolio proxy used, we also 
employ the equivalent CRSP equal weighted portfolio. For the proxy of the risk free rate, 
we use the 30-day US Treasury Bill as recommended above. All data is collected from 
the CRSP tapes of Wharton Research Data Services (WRDS, 2011). We use 85 years of 
monthly data from December 1926 to December 2011. This way we can also test the 
model’s performance on newer data, as the main part of the empirical literature deals 
with samples from before the 1990s. 

 

7.1. ESTIMATION AND ANALYSIS 

Using the aggregate U.S. stock market as the proxy for total wealth, we construct the 
individual statistics of the hypothesis that αi = 0 for the portfolios i =1,2,...,10. We do this 
over the full sample July 1926 through December 2011, then over the sample July 1963 
through December 2011. Note that the five percent critical value for this test is 3.852 for 
1024 degrees of freedom (the length of the full sample minus two)	
   and 3.858 for 580 
degrees of freedom (the length of the shorter sample minus two). The following are the 
test statistics: 
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CAPM results for 1963:12 through 2011:12 

           Portfolio     Full sample   Shorter sample 

                  (26-11)        (63-11) 

Port  1:         1.454           1.755 
Port  2:         0.493           0.897 
Port  3:         1.345           2.810 
Port  4:         1.924           2.575 
Port  5:         1.724           4.830 
Port  6:         3.333           3.973 
Port  7:         3.332           5.699 
Port  8:        2.635           4.020 
Port  9:         1.539           2.987 
Port  10:       0.034           0.415 

 

Joint test 
      F     pval 
---------------- 
  2.465   0.007 

 

For the full sample, the monthly Sharpe ratio for the market portfolio is 0.113. The 
maximum monthly Sharpe ratio for the residual strategies is 0.109. We sum the squares, 
and then take the square root, to determine the Sharpe ratio of the tangency portfolio. It is 
0.157. The corresponding numbers for the shorter sample are 0.096, 0.209, and 0.230.  

For both sample periods, the MV-efficient portfolios have a decidedly odd structure. 
They consist of extremely large short positions in the aggregate market, combined with 
extremely long positions on the portfolio of largest-cap stocks. The weights for individual 
portfolios for the tangency portfolio are evaluated to construct the tangency portfolio.  

Sharpe ratios 
------------- 

         Market:                            0.096     0.113 
      Max, 10 resid assets:          0.209     0.109 
      Max, all eleven assets:       0.230     0.157 
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Loading of tangency portfolio on market and 10 ME ports 
Portfolio Full sample Shorter sample 

Market:    −15.029        -28.016 
Port  1:         0.807            2.570 
Port  2:       −1.811          -3.110 
Port  3:         0.216            1.461 
Port  4:         0.588           -1.290 
Port  5:         0.396            4.417 
Port  6:         1.937            1.002 
Port  7:         1.958            3.180 
Port  8:         1.741            1.663 
Port  9:         1.179            3.483 
Port 10:        9.017          15.642 

For the full sample, the F statistic is 1.195 with a p-value of 0.29, thus the model is not 
close to rejection. For the more recent sample, the F statistic is 2.465, which has a p-
value of 0.007. Thus the model is rejected at the 1% level. The efficient frontier, market 
portfolio and the tangency portfolio are plotted below. 

 
Figure 7.1:Efficient portfolios full sample. 
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CHAPTER 8 

 

CONCLUSION AND FUTURE RESEARCH 
 

The Endeavour to examine if GARCH-type models were the better models in describing 
return series for VaR was done statistically and empirically. The other companies 
including the S&P-500 index contained correlation in its returns or squared returns, 
which meant that modeling with GARCH was appropriate. After testing the dataset on 
the normality assumptions using variance ratio tests, the models were set up and run; the 
parameters were estimated for each of the model with their conditional volatility as the 
conditional volatility is the main ingredient for forecasting VaR and its depends on 
Conditional variance. ARCH test strongly rejects the null hypothesis that there is no 
ARCH/GARCH effect in given return of S&P-500. Then we check the quality of our 
estimated parameters and volatility. Finally, log returns have an ARCH effect at 
significance level of 5% and given time series has no random sequence of Gaussian 
disturbance. A comparative statistic for each of the forecast has been established to 
confirm the GARCH model’s accuracy.  

In CAPM, it is clear that the linear relationship in the model only holds when the market 
portfolio is efficient. Thus, a central, testable implication of the CAPM is the efficiency 
of the market portfolio. In empirical applications, this is equivalent to testing the intercept 
against zero in the excess return version of the traditional model. Testing N assets, the 
null hypothesis is that all the estimated N intercepts are jointly zero. Several statistics 
allow for joint tests. A number of them are only asymptotically distributed under the null- 
hypothesis. One such test statistic is a Wald type test. Another is the likelihood ratio test. 
In finite samples, these asymptotic approximations can behave rather perversely. They 
tend to reject too often. Fortunately, the Wald type test can be transformed into an exact 
F test, and the likelihood ratio test can be corrected to perform much better in finite 
samples. We have tested the CAPM on a sample of American stocks assigned to 10 size-
sorted portfolios. Monthly, total returns were collected from January 1926 to December 
2011. For the full sample, the model is not close to rejection. But for the more recent 
sample, the model is rejected at 1% level. 

Further study with no assumption on third and fourth order moments can give better 
accuracies. Using multi-variate models can help better understand deviations from the 
regular assumptions. We also highlight the necessity of the use of higher order test 
statistics on QLIKE, MSE and other loss functions to better explain the deviations.  
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