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ABSTRACT

KEYWORDS: Analytical Placement; Electronic Design Automation; Kraftwerk;

Parallel; Multicore; CUDA

With rapid scaling of semiconductor manufacturing technology in the recent years, the

complexity of integrated circuits has increased drastically leading to millions and bil-

lions of components in one single chip. This increasing trend require major improve-

ments in physical design automation to maintain the current pace of innovation. Modern

VLSI design flows require considerable effort and time in physical layout, where tran-

sistor locations affect nearly all downstream optimizations. However, despite massive

improvements in algorithms developed in academia and industry, current placement

algorithms leave room for improvement both in quality and speed.

The goal of the placement problem is to position movable components in a fixed

area such that no components overlap with each other and some cost metric like over-

all interconnect wirelength or timing, is optimized. Although it is a classical problem,

many modern design challenges have reshaped this problem. As a result, the place-

ment problem has attracted much attention recently, and many new algorithms have

been developed to handle the emerging design challenges. Modern placement algo-

rithms can be classified into three major categories: simulated annealing, min-cut, and

analytical algorithms. According to the recent literature, analytical algorithms typically

achieve the best placement quality for large-scale circuit designs. In this thesis, there-

fore, we shall select a leading analytical placer, Kraftwerk2, and give a systematic and

comprehensive survey on the essential performance bottlenecks and issues in analytical

algorithms, and propose ways to improve the overall performance by employing paral-

lel optimization techniques to overcome its computational bottlenecks without making

major changes in the overall algorithm itself.
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CHAPTER 1

Introduction

1.1 Electronic Design Automation

In the current digital era and electronic devices play a major part in our daily lives. In-

tegrated circuits (ICs) are at the heart of all these devices. MP3 players, mobile phones,

laptops, tablets, cars, and even household appliances have high number of integrated

circuits in them. And each of these integrated circuits can be made up of millions or

billions of individual transistors. Due to this massive complexity of integrated circuits,

they can only be designed by algorithms run on computers or on other dedicated hard-

ware like FPGAs. Such algorithms used to design integrated circuits fall under the

broad domain of electronic design automation (EDA). Modern EDA problems are very

tough because we need to handle these large-scale designs which are growing in scale

and complexity every year. Hence, fast and efficient algorithms are necessary for the

EDA of future circuits.

1.2 VLSI Design Flow

A broad overview of the electronic design automation process is shown in Figure 1.1.

The first step of EDA is to specify the circuit. Here, the main features like performance,

functionality, and physical dimensions are defined. After this, the circuit is modelled

at system level using a hardware description language like VHDL or Verilog. The next

step is logic synthesis, which first transforms the behaviour description of the circuit

into a register transfer description. Based on this register transfer model, the gate level

description is constructed. After logic synthesis, the circuit is simulated, and various

specifications are verified. If the specifications are not met, the previous logic synthesis

step is done again. If specifications are met, layout synthesis is done next. During

layout synthesis, the placement of gates, and routing of nets are done. Floorplanning



Figure 1.1: VLSI Design Flow

is done to position the I/O pins, and to determine the dimensions of macros. During

placement, various design rules are considered, like minimal interconnect between the

gates. After placement, net routing is done, after which the entire circuit is described

only in terms polygons. At this stage, the circuit is simulated and verified again to check

if specifications are met. If not, the EDA is repeated from previous steps. At the end of

EDA, the lithography masks are created, and the circuit is fabricated using these masks.

1.3 Placement

Placement is one important step of VLSI design flow, which highly affects the quality

of a circuit. The input to the placement algorithm consists of individual gates or bigger

macros called modules, interconnected by nets. The goal of the placement step is to

determine the positions of these modules, while meeting different objectives and con-

straints. The fundamental constraints are that the modules do not overlap, and that all

modules are located within the chip area. Depending on the type of circuit placed, the

modules may be required to align to predefined rows or a grid. Usually, the main ob-
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jective of placement is to minimize the total wirelength, i.e., to minimize the sum of the

lengths of all nets. This objective is used because with a minimal wirelength, the circuit

is easy to route, the maximal clock frequency is high, and the power consumption is

low.

Although the placement problem sounds easy, it is a combinatorial problem, which

is known to be a NP-complete problem (Donath, 1980). Hence, there exists no algo-

rithm up to date, which solves the problem optimal with polynomial runtime complex-

ity. In the extreme case, a brute-force approach has to be implemented which checks all

feasible placements in order to find the optimal placement. With millions of modules,

billions of feasible placements, the runtime is not practicable.

Modern placement algorithms can be classified into three major types.

• Simulated Annealing Based Placement

This type of placers attempts to find an optimal placement by perturbing module

positions based on simulated annealing. Hence they can adopt various objec-

tives with little modification to the implementation. For smaller designs, a good

placement can be achieved due to the small solution space. However, the mod-

ule perturbation may not be scalable on large-scale circuits. Few placers that use

this approach are Dragon (Taghavi et al., 2005) and TimberWolf (Sechen and

Sangiovanni-Vincentelli, 1985).

• Min-Cut Placement

Min-cut placement algorithms recursively partitions the circuit and chip region,

and then assign sub-circuits into sub-regions in a multilevel approach. There al-

gorithms are usually very efficient and scalable. Min-cut partitioning tries to min-

imize the expected wirelength between sub-regions by minimizing the number of

cuts between sub-circuits. It is also harder to handle whitespace in the earlier

levels of the multilevel process. More importantly, the hierarchical approach of

solving each subproblem independently might lack the global information for the

interaction among different subregions, thus limiting the solution quality. Exam-

ple min-cut placers are Capo (Adya et al., 2004a) and NTUplace (Chen et al.,

2005).

3



• Analytical Placement

Analytical placement formulates the placement problem as mathematical pro-

gramming composed of an objective function and a set of placement constraints,

and then optimizes the objective through analytical approaches. From recent lit-

erature and the ISPD placement contests, it can be seen that analytical placement

can achieve better placement quality for large-scale circuit designs. Few exam-

ples are Kraftwerk2 (Spindler et al., 2008) and mPL6 (Chan et al., 2006), among

many others.

It is clear from recent literature and industry driven contests like ISPD, that analyt-

ical placers have a distinct advantage over other types of placers in terms of solution

quality, consistency and scalability.

The rest of this thesis is organized as follows. Chapter 2 introduces the basic

structure of the analytical placement algorithm. Chapter 3 explains in the details the

Kraftwerk2 (Spindler et al., 2008) algorithm which is specific analytical placement al-

gorithm we have selected to parallelize and improve in terms of runtime. Chapter 4

explains our efforts in parallelization and optimization of Kraftwerk2. Finally, conclu-

sions are given in Chapter 5.

4



CHAPTER 2

Analytical Placement

2.1 Basics of Analytical Placement

As mentioned earlier, placement is the process of determining the locations of circuit

devices on a fixed die such that no devices overlap with each other and some cost metric

(e.g., wirelength) is optimized. Most modern analytical placers consist of the following

three major steps:

1. Global placement computes the best position for each module to minimize the

predefined cost (e.g., wirelength) while ignoring some placement constraints like

module overlap. Global placement is generally considered the most important

step, due to its crucial impact on the overall placement quality.

2. Legalization removes all overlaps among modules.

3. Detailed placement further improves the legalized placement solution in an iter-

ative manner by rearranging a small group of modules in a local region.

These three steps are explained in details in the following section.

2.2 Global Placement

During global placement, the circuit is modelled by a hypergraph H = (V,E). Let ver-

tices V = v1, v2, ..., vn represent modules, and hyperedges E = e1, e2, ..., em represent

nets. Let xi and yi be the x and y coordinates of the center of module vi, respectively.

The typical objective of global placement is to minimize its wirelength, and a funda-

mental constraint is to avoid any cell overlap. The global placement problem can be

formulated as a constrained minimization problem as follows:



min W (V,E)

s.t. no overlaps among modules,

where W (V,E) is the wirelength function. The minimization problem consists of two

parts, wirelength estimation and overlap reduction. The wirelength models needed for

wirelength estimation are explained in Section 2.3, and overlap reduction techniques are

explained Section 2.4. Methods used to integrate the aforementioned parts are explained

in Section 2.5. Finally, few cost optimization techniques are explained in Section 2.6.

2.3 Wirelength Models

The wirelength of a net e ∈ E is usually defined by its total half-perimeter wirelength

(HPWL) as follows:

W (V,E) =
∑
e

( max
vi,vj∈E

|xi − xj|+ max
vi,vj∈E

|yi − yj|) (2.1)

=
∑
e

(max
vi∈E

xi −min
vi∈E

xi + max
vi∈E

yi −min
vi∈E

yi) (2.2)

=
∑
e

(Le,x + Le,y) (2.3)

However, W (V,E) is not differentiable, it is hard to find its minimum value. Hence, it

is necessary to use a continuous differentiable function to approximate the HPWL. Few

popular smooth wirelength approximations are explained in the following subsections.

2.3.1 Quadratic Model

Quadratic wirelength model is the halved sum of the quadractic euclidean length be-

tween all two-pin connections. Hence wirelength can be represented as

Le,x =
1

2

P∑
i=1

P∑
j=i+1

wx,ij(xi − xj)2 (2.4)

6



where P represents the number of pins in net n. The half scaling factor is used to have

a simpler derivative form. Multi-pin nets are often modelled by the clique net model or

the star net model to fit the two-pin connection model. The clique model considers all

possible two-pin connections of a net, while the star net model introduces an additional

star pin per net and connects each pin of the net to the star pin. The clique model is

equivalent to the star net model in the quadratic cost, if the clique cost is scaled with

1/P (Viswanathan and Chu, 2005).

Figure 2.1: Two models for a five-pin net. (a) The clique model. (b) The star model.

The net weight wx,ij is used to adjust the quadratic objective to approximate the

linear objective (HPWL). For example, Gordian-L (Sigl et al., 1991) uses the following

formula to determine the x-component weight for the approximation:

wGordianLx,ij =
1

P

2

P

4

|xi − xj|
(2.5)

The first term 1/P adjusts the clique model to the star net model. The second term

2/P adjusts the number of connections of the clique to the number of connections in

the corresponding spanning tree. The third term 1/|xi − xj| linearizes the quadratic

distance between two pins.

2.3.2 Bound2Bound Model

Regardless of the wx,ij , the clique net model has a high approximation error between

the total length of the clique net and the HPWL. The problem of the clique model is that

its inner connections add to the clique length, which are otherwise not considered for

HPWL, as shown in Figure 2.2(a). In this figure, the boundary pins are those with the

7



Figure 2.2: The clique net model and the Bound2Bound net model. (a) shows inner
connections that are not added in the HPWL calculation. (b) B2B net model
with inner connections removed

smallest/largest coordinates, and other pins are inner pins. There are three connections

only connecting to inner pins, but these connections are ignored in the HPWL metric.

The Bound2Bound net model removes all inner two-pin connections, as shown in

Figure 2.2(b). The net weight wB2B
x,ij of the Bound2Bound net model is given below

wB2B
x,ij =

 0 vi, vj ∈ inner pins
2

P−1
1

|xi−xj | else.

With this connection weight, the quadratic wirelength function in Equation 2.4 ex-

actly matches the HPWL (Spindler et al., 2008).

Le,x =
1

2

P∑
i=1

P∑
j=i+1

wB2B
x,ij (xi − xj)2 (2.6)

= max
vi∈e

xi −min
vi∈e

xi (2.7)

2.3.3 LSE Model

To accurately approximate and to smooth the HPWL, logarithm-sum- exponential (LSE)

approximation of the max/min function is prevailing in recent placers, such as APlace

(Kahng and Wang, 2005), mPL6 (Chan et al., 2006), and NTUplace3 (Chen et al.,

8



2008). The HPWL of a net e ∈ E can be approximated by using LSE as follows:

LSEe = γ

(
log
∑
vk∈e

exp
xk
γ

+ log
∑
vk∈e

exp
−xk
γ

+ log
∑
vk∈e

exp
yk
γ

+ log
∑
vk∈e

exp
−yk
γ

)
(2.8)

When γ approaches zero, the LSE wirelength is close to the HPWL (Naylor et al.,

2001).

lim
γ→0

LSEe = HPWLe (2.9)

However, due to the computer precision, we can only choose a reasonably small γ

to avoid any arithmetic overflow during the implementation. In particular, LSEe is

differentiable, and thus it serves as a good approximation to HPWLe, in terms of

precision as well as computation.

2.3.4 Lp-norm Model

Another good smoothing method of the HPWL is the Lp-norm approximation:

Lpnorme =

(∑
vk∈e

xpk

) 1
p

−

(∑
vk∈e

x−pk

)− 1
p

+

(∑
vk∈e

ypk

) 1
p

−

(∑
vk∈e

y−pk

)− 1
p

(2.10)

The use of parameter p is similar to γ in LSE model. When p is close to zero, the

Lp-norm model gives a good approximation to the HPWL.

lim
p→∞

Lpnorme = HPWLe (2.11)

Due to the computer precision, similarly, we can only choose a reasonably large p

to prevent any arithmetic overflow during the implementation. The authors in (Chan

et al., 2006) compared the LSE and Lp-norm models and concluded that the LSE model

usually outperforms the Lp-norm one in terms of HPWL.

9



2.4 Overlap Reduction

The second step for analytical placement is the reduction of overlap between the mod-

ules and distribute them evenly within the placement area. Few popular overlap reduc-

tion techniques are described in the following subsections.

2.4.1 Partitioning

Partitioning decomposes the circuit into smaller subcircuits and assigns those parti-

tioned subcircuits to appropriate subregions. The movement of each cell is constrained

within their subregion and hence the amount of overlaps can be reduced. Partitioning-

based overlap reduction is done in two stages, the partitioning stage and the refinement

stage. In the partitioning stage, with a given initial placement, the circuit is partitioned

and assigned to subregions. In the refinement stage, various heuristics are used to im-

prove the partition quality. If the resulting partitions are not able to fit within the subre-

gion, the partition is refined by adjusting the size of each partition. This can be done by

formulating a transportation problem (Brenner and Struzyna, 2005) to assign modules

to subregions while minimizing displacement.

2.4.2 Cell Shifting

Another possible method to reduce cell overlaps is to spread cells through cell shifting.

This was first proposed by Viswanathan and Chu in (Viswanathan and Chu, 2005). The

basic idea is to distribute modules over the placement region while preserving their rela-

tive order obtained from initial placement. During cell shifting, the placement region is

divided into equal-sized bins first and an adjusted bin structure is constructed according

to the current utilization of each bin. Then, every module is moved based on the linear

mapping from the initial bin structure to the adjusted one.

10



2.4.3 Min Cost Flow

This was first proposed in (Agnihotri and Madden, 2007). A physical clustering is first

performed to cluster nearby cells together and then the placement region is partitioned

into uniform subregions, and a minimum cost flow algorithm is used to assign clusters

into the corresponding subregions. After the construction of clusters and subregions, the

best assignment of the clusters to the subregions is found by formulating and solving a

minimum cost flow problem.

2.4.4 Diffusion

Use of physical diffusion process to reduce overlap was introduced in (Ren et al., 2007).

The physical diffusion process is driven by the gradient of concentration. A velocity

function is used to determine movement of modules from initial placement to final op-

timal placement. The velocity is determined by the amount of density and the local

density gradient. The diffusion equations are discretized so that they can be solved for

every time-step. The placement region is divided into equal-sized bins and its density is

calculated based on modules that fall within each bin. The discretized diffusion equa-

tions are solved on the density grids and modules are moved from higher density areas

to lower density ones with decreasing velocity while the module reaches its optimal

position.

2.4.5 Density

Density based approach is one of the most popular methods to reduce overlap. It is

adopted by various placers, such as NTUplace3 Chen et al. (2008), APlace (Kahng and

Wang, 2005), Kraftwerk (Spindler et al., 2008), FDP (Vorwerk et al., 2004) and mFAR

(Hu et al., 2005). The placement region is first discretized into uniform bins. The

density function for bin b is

Db(x, y) =
∑
v∈V

Px(b, v)Py(b, v) (2.12)

11



where Px and Py are the overlap functions of bin b and module v along the x and y

directions. The new overlap constraint becomes

Db(x, y) ≤Mb for each bin b (2.13)

where Mb is the maximum allowable area of modules in bin b. As this density Db(x, y)

is neither smooth nor differentiable, it is hard to optimize it easily. Hence various

smoothing techniques are adopted to make Db(x, y) differentiable. The popular ones

are described below.

• Bell-Shaped Smoothing: Bell-shaped smoothing uses the following function to

smooth the overlap function Px

px(b, v) =


1− ad2x 0 ≤ dx ≤ wv

2
+ wb

b(dx − wv

2
− 2wb)

2 wv

2
+ wb ≤ dx ≤ wv

2
+ 2wb

0 wv

2
+ 2wb ≤ dx

where

a =
4

(wv + 2wb)(wv + 4wb)

b =
2

wb(wv + 4wb)

wb is the bin-width, wv is the module-width, and dx is the distance centers of

modules v and the bin b in the x-direction. Figure 2.3(a) and Figure 2.3(b) show

the original and the smoothed overlap functions, respectively. APlace (Kahng

and Wang, 2005) and NTUplace3 (Chen et al., 2008) use bell-shaped smoothing

functions.

• Helmholtz Smoothing: Another approach is to approximate the smoothed den-

sity D̂b(x, y) with Helmholtz equation.

∆D̂b(x, y)− εD̂b(x, y) = −Db(x, y) (2.14)

where ε is a smoothing parameter, ε > 0, and ∆ is the Laplacian operator. mPL6

(Chan et al., 2006) uses this approach with zero derivative boundary conditions.

12



Figure 2.3: (a) The overlap function Px(b, v). (b) The smoothed overlap function
px(b, v).

• Poisson Smoothing: Another approach is to treat density as electrostatic poten-

tial and then use poisson equation 2.15 to approximate the smoothed density. FDP

(Vorwerk et al., 2004), Kraftwerk (Spindler et al., 2008), and mFAR (Hu et al.,

2005) uses this approach.

∆D̂b(x, y) = −Db(x, y) (2.15)

2.5 Integration of Wirelength and Overlap

The wirelength models and overlap techniques discussed in the previous Sections 2.3

and 2.4 have to be unified so that it can used for global placement. Wirelength optimiza-

tion tends to pull modules together and works contradictory to the overlap reduction,

which pushes modules away from each other. In this section, we discuss various popular

methods to integrate these two conflicting objectives.

2.5.1 Fixed Point Method

One most popular method is to feed the placement obtained from overlap reduction

techniques back to the placement problem by adding fixed points and pseudo con-

nections into the original netlist. Then the placement problem is again solved on the

modified netlist. Figure 2.4 illustrates this approach. One fixed point is created at the

target position obtained from overlap reduction of each module, and a pseudo connec-

13



Figure 2.4: Fixed point method.

tion is made between them. This is adopted by placers like FDP (Vorwerk et al., 2004),

Kraftwerk2 (Spindler et al., 2008) and mFAR(Hu et al., 2005).

2.5.2 Penalty Method

Quadratic penalty method is used to solve a sequence of unconstrained minimization

problems of the form

min W (x, y) + λ
∑
b

(D̂b(x, y)−Mb)
2 (2.16)

where λ is the weighting factor to balance the conflicting wirelength optimization and

overlap reduction.

2.5.3 Partition Constraint

In partitioning-based overlap reduction discussed in Section 2.4.1, the cells are assigned

to subregions instead of specific positions. Such assignment is still required to be linked

back to the original placement problem for the later optimization. This can be achieved

by fixing the center of gravity of modules assigned to the same subregion to the center
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of the subregion.

2.6 Cost optimization

The popular types of the mathematical optimization used for cost minimization is de-

scribed in the following subsections.

2.6.1 Quadratic Programming

The quadratic programming is one of the most common approaches to the placement

problem. With the quadratic wirelength model, it can be solved as a quadratic optimiza-

tion problem given by

min
x

∑
i,j

wx,ij(xi − xj)2 = min
x

1

2
xTQxx + cT

x x + dx (2.17)

where wx,ij represents the weight of the edge connecting modules i and j. The matrix

Qx is the Hessian which represents the hyperedge connectivity. If some modules are

fixed, the Hessian is a symmetric, positive-definite matrix. The vector cx represents

connections between movable and fixed modules, and the vector dx represents con-

nections between fixed modules. This optimization problem is strictly convex and has

a unique minima given by the solution of a single, positive-definite system of linear

equations,

Qxx + cx = 0 (2.18)

Wirelength models like Bound2Bound can easily be integrated by changing the weights

wx,ij accordingly. Overlap reduction techniques can be integrated using fixed point or

partitioning by modifying the matrix Qx or the vector cx appropriately.

2.6.2 Nonlinear Programming

In general, nonlinear optimization problem for placement is solved using the penalty

method of integration. Solving the nonlinear problem is usually very time consuming,
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and hence the multilevel approach is often preferred. Placers like APlace (Kahng and

Wang, 2005), mPL6 (Chan et al., 2006) and NTUplace3 (Chen et al., 2008) uses similar

approaches.

2.7 Legalization

During legalization, all overlaps that exists after global placement are removed with

minimal wirelength increase or module displacement. The relative order of the modules

from global placement is maintained. One of the most popular methods for legalization

is the Tetris-like greedy method (Hill, 2002). Modules are sorted according to their

x coordinates, and then they are placed at the closet available positions with minimal

cost. This algorithm is fast with negligible running time compared to that of the global

placement. Another popular legalization method is called single-row placement. This

method concerns about the optimal positions for the modules to be placed within the

same row at one time, while their relative ordering is kept.

2.8 Detailed Placement

In the detailed placement stage, the standard cell positions is further optimized to im-

prove the placement quality. The objective of detailed placement is to find a better

position for each standard module in the available free spaces. Few popular approaches

are described below.

• Cell order polishing permutes a small window of modules each time to find the

best ordering by enumerating all possible orderings using the branch-and-bound

method. The number of cells contained by the window is an important factor to

control the tradeoff between the running time and solution quality.

• Cell matching is an efficient technique that can optimize more modules at the

same time. The cell matching algorithm finds a group of exchangeable cells inside

a given window, and formulates a bipartite matching problem by assigning the

modules to available slots in the window. The assignment cost is the HPWL
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difference of placing a module in different slots. The bipartite matching problem

can be solved very quickly when the number of modules is smaller than 100.

Compared with other detailed placement algorithms, cell matching can optimize

the placement result more globally.

• Global moving/swapping moves each module to the optimal location among

available whitespaces without changing the positions of other modules. This

technique is especially useful when the design utilization is low. When design

utilization is high, it may not be easy to find a whitespace to place the module.

In this case, this technique tries to swap the module with a module within the

optimal region to see if a better result can be obtained.
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CHAPTER 3

Basics of Kraftwerk2

Kraftwerk2 (Spindler et al., 2008) is one of the most popular academic placers at the

time of writing this thesis. It is credited with achieved a good quality placement with

less runtime. The algorithm is explained in detail in the following sections.

3.1 Initial Placement

In Kraftwerk2, initial placement is done by minimizing the quadratic cost function over

few iterations using Equation 2.18. In each iteration, the Bound2Bound wirelength

model is applied and the connection weights are recomputed. This is repeated over few

iterations until the improvement in wirelength between iterations is less that 10%. At

this point, the initial placement has minimal wirelength. But the modules are concen-

trated somewhere on the chip, usually at the center of the chip and there is significant

overlap. After initial placement, the global placement routine is done, details of which

are described in the next section.

3.2 Global Placement

During global placement, each iteration starts with determining the supply and demand

system D using the Equation 3.1. The supply reflects the free space in the chip and the

demand reflects the density of the modules.

D(x, y) = Ddem
mod(x, y)−Dsup

mod(x, y) (3.1)

The overall demand is computed from individual demand from each module given by,

Ddem
mod,i(x, y) = dmod,i.R(x, y;xi −

wi
2
, yi −

hi
2
, wi, hi) (3.2)



where

R(x, y;xll, yll, w, h) =

 1 if 0 ≤ x− xll ≤ w ∧ 0 ≤ y − yll ≤ h

0 else.

here, xi and yi are the x and y coordinates of the center of module i and wi and hi

are the width and height of module i respectively. xll and yll is the coordinates of the

lower left corner of the module.

Overall demand is the sum of individual module demands

Ddem
mod =

N∑
i=1

Ddem
mod,i(x, y) (3.3)

Supply is given by,

Dsup
mod(x, y) = dsup.R(x, y;xchip, ychip, wchip, hchip) (3.4)

where xchip and ychip are lower left corner of the chip boundary and wchip and hchip are

the width and the height of the chip respectively.

After the supply and demand system is computed on a discretized grid, the Bound2Bound

wirelength is recomputed to calculate the new connection weights based on the current

module positions. Since the objective function is convex, the minimum value can be

found by solving Equation 2.18. In quadratic placement, each two-pin connection be-

tween modules can be viewed as an elastic spring. Hence the cost function represents

the total energy of the spring system, and the derivative of an energy is a force. Hence

minimizing the cost function is analogous to minimizing the overall energy of a mass

spring system and the sum of all forces acting on each module is zero when every mod-

ule is at its equilibrium position. Therefore, the wire force Fnet between the modules is

given by

Fnet = Qxx + cx (3.5)

In Kraftwerk2, we use two additional forces, the hold force and the move force. The

hold force is responsible for keeping the modules at its current position so that they

dont collapse back to the minimal wirelength position while the quadratic cost is being
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minimized. The hold force Fhold is hence the negative of the wire force and is given by,

Fhold = Qxx
′ + cx (3.6)

where x′ is the current x coordinate of the modules. The move force is the force we

apply on the modules to module them apart from each other and hence reduce overlap.

The target fixed point ẋi of each module i is given by

ẋi = x′i −
∂

∂x
D̂(x, y)

∣∣∣∣
xi,yi

(3.7)

where D̂(x, y) is the Poisson smoothed density function. Hence, the move force is

defined as

Fmove = Q̇x(x− ẋ) (3.8)

where Q̇x is a diagonal matrix that contains the weights of the move force. Setting the

sum of the wire force, the hold force, and the move force to zero, the following linear

system can be obtained:

(Qx + Q̇x)∆x = −Q̇xD̂x (3.9)

where ∆x = x− x′ The above equation is solved for both x and y directions separately.

After solving, the module positions are updated and then a quality-control procedure is

called to adjust the weights of the move force. The global placement is stopped if the

cell overlap Ω is below a certain limit, e.g., below 20%. The cell overlap is defined as,

Ω = 1− union of module areas
sum of module areas

(3.10)

After global placement, the modules are legalized where remaining overlaps are re-

moved and the modules are aligned to rows if necessary. Kraftwerk2 utilizes an ap-

proach similar to Tetris (Hill, 2002) to legalize standard cells. After legalization, a

simple greedy detailed placement method is applied to improve the legal placement:

Single modules are flipped, or pairs of neighboring modules are exchanged to improve

the wirelength.

The following chapter explains our efforts to parallelize Kraftwerk2 and improve its

performance in terms of runtime.
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CHAPTER 4

Parallel Optimization of Kraftwerk2

Since the source code for Kraftwerk2 is not freely available, we developed our own

implementation of the Kraftwerk2 algorithm. The entire codebase is in C++ and we

have used Intel MKL (Intel, 2012) for computing the solution to the linear system of

equations 2.18 and 3.9 and for solving the poisson equation needed to smooth the supply

demand system. Since matrix Qx is highly sparse and positive semi definite, we have

used the CSR sparse matrix format to store it and we have used the Conjugate Gradient

iterative method to solve it. Only the initial and global placement phases of Kraftwerk2

were implemented. Legalization and detailed placement was done using the NTUplace3

binary obtained from (NTUplace3, 2008).

The serial implementation was run on the ICCAD 2004 mixed-size benchmark suite

(Adya et al., 2004b) and the ISPD 2005 contest benchmark suite (ISPD, 2005). The

final wirelength values we obtained are shown in Table 4.1.

As can be seen from Table 4.1, we were not able to reproduce the exact wirelength

values that were claimed in (Spindler et al., 2008). We believe this is due to different

internal parameters, legalizer and detailed placement techniques used by us as compared

to the authors of Kraftwerk2. On average, our implementation gave a wirelength that

Benchmark Kraftwerk2 Own Implementation
ibm01 2.24 2.43
ibm04 7.63 8.20
ibm07 10.42 11.40
ibm10 30.15 34.50
ibm13 22.48 25.15
ibm16 54.17 58.13
ibm18 42.36 47.21

adaptec2 92.85 102.85
adaptec4 199.43 216.46
bigblue2 154.74 176.80
bigblue4 852.40 917.23

Table 4.1: Wirelength comparison between Kraftwerk2 and our implementation



Figure 4.1: Total execution time for each benchmark (serial)

Figure 4.2: Percentage of total time spent in each phase

was around 10% more that the wirelength claimed in Spindler et al. (2008). The total

execution time for each benchmark is shown in Figure 4.1.

4.1 Profiling

Before parallelization, we profiled our implementation to find the hot spots in our al-

gorithm. The percentage of total time spent in each of the phases of the algorithm is

shown in Figure 4.2.

As can be seen from Figure 4.2, the algorithm spends on an average 80% of its

total execution time in the global placement phase. Figure 4.3 shows the profile of one

iteration of global placement phase. We can see that a significant time taken by each
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Figure 4.3: Time splitup of one global placement iteration

iteration is spent within the linear solver.

Hence our first effort was directed at improving the solver by parallelizing the solver

on a multicore system, details of which are given in the next section.

4.2 Multicore CPU

The Conjugate Gradient solver uses a steepest descent method to iteratively converge

to the optimal solution of the convex system being solved. The bottleneck of the solver

is a Level-2 BLAS matrix-vector routine that has to be performed once every iteration

within the solver. The Intel MKL Conjugate gradient solver is based on RCI (Reverse

Communication Interface), which means that the solver can use a user-defined matrix-

vector operation instead of the default one. We used a Sparse Level 2 routine which

is parallelized internally to improve the performance. The speedup achieved by using

parallelization is shown in Figure 4.4. The solver now gives almost 3x speedup on using

12 parallel threads.

4.3 Preconditioning

An interesting feature of the iterative solver is that solver runtime is directly related to

the number of iterations that is needed to the converge on the solution and this in-turn
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Figure 4.4: Solver speedup on using parallel BLAS

Figure 4.5: Internal solver iterations during global placement

is directly related to how far the solution is from the initial guess that is provided to

the solver. In our implementation, we provide the placement from the previous global

placement iteration as the starting guess for the solver. Hence, the average module

movement per global placement iteration reflects how far the optimum position is from

the initial guess (previous placement) for the given iteration. In Kraftwerk2, the average

module movement per iteration has a general trend of increasing for the first few itera-

tions and then decreasing for further iterations (Spindler et al., 2008) till it converges.

Our solver also follows this trend, which can be seen from Figure 4.5.

This solver iteration trend is undesirable and leads to high execution times for initial

iterations. We have addressed this by using a preconditioner for the solver, which helps

the solver to converge to the optimum faster. We have selected the Jacobi preconditioner

composed of diagonal element of matrix Qx. The speedup achieved from using the
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Figure 4.6: Solver speedup on using preconditioner

Figure 4.7: Improvement in global placement from using preconditioner

preconditioner can be seen from Figure 4.6. We get over 10x solver speedup with 12

parallel threads and preconditioning compared to serial solver with no preconditioning.

The profile for the global placement iteration with parallel solver is shown in Figure

4.7. We can see that the time spent in the solver routine is now comparable with that of

other routines like sparse matrix construction.

4.4 Wirelength model

Since we are using CSR format to represent the sparse matrix Qx within our imple-

mentation, we need to completely rebuild the matrix in every iteration after the new

Bound2Bound weights are calculated. Due to the limitations of the CSR format, it also
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Figure 4.8: Change in solution quality with wirelength model.

not possible to get good results from parallelizing the matrix construction process with

pthreads.

One way to work around this issue is by switching to other net model where the

weights doesnt depend on the positions of the modules. We have used the net model

adopted by FastPlace (Viswanathan and Chu, 2005). However, this leads to a loss in

solution quality as the net model is no longer linearized. But we believe that the im-

provement in runtime justifies the loss in solution quality.

The loss in solution quality is shown in Figure 4.8. On average, we have a wire-

length degradation of about 9%.

On switching to the FastPlace wirelength model, there is no longer a need to re-

construct the whole matrix in every iteration of global placement. The execution time

comparisons between the net models are shown in Figure 4.9.

We can see that the solve is still the bottleneck of the global placement phase. As

seen from Figure 4.4, we cannot get more than 3x speedup from using more parallel

threads in a CPU. BLAS routines perform very well in massively parallel systems like

GPUs (Graphics Processing Units).

Our efforts to utilize the GPU in global placement are explained in the following

section.
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Figure 4.9: Improvement in global placement from using FastPlace net model

Figure 4.10: GPU Solver and CPU Solver comparison

4.5 GPU

We used the Preconditioned Conjugate Gradient Solver from CUSP Library (CUSP,

2012) to compute the solution to the linear equation on the GPU. CuPoisson (CuPois-

son, 2012) was used to compute the poisson equation on the GPU. The improvement in

global placement performance is shown in Figure 4.10.

Due to memory latency and memory bandwidth limitations, transferring data to the

GPU and back is highly inefficient. Since we are using the FastPlace net model, we no

longer have to compute the matrix during global placement. This opens up the possi-

bility of performing the complete global placement routine on the GPU. Matrix Qx and

module locations are transferred to the GPU after initial placement and final position is

transferred back to host memory (CPU memory) at the end of global placement.
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Figure 4.11: GPU Implementation comparison

Figure 4.12: Speedup obtained on various benchmarks

The improvement in global placement iteration on performing entire global place-

ment routine on GPU is shown in Figure 4.11.

The final speedup from all the various techniques we had explored is shown in

Figure 4.12.
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CHAPTER 5

Conclusion

There are two approaches to improve performance through parallelization. One method

is to tweak the algorithm to introduce data independent computes and parallelization

and the other method is to accelerate the computational bottlenecks of the algorithm

using parallelization. We have explored the latter in the domain of analytical placement

by adopting a well known placer, Kraftwerk2 and parallelizing the compute intensive

areas of the algorithm without introducing major changes to the algorithm itself. We

were able to get a maximum speedup of 3x by utilizing parallel solvers on multicore

CPU systems and a speedup of about 11x on GPU systems. We were further able to

achieve a maximum speedup to 13x by performing the entire global placement routine

on the GPU.
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