
Object tracking on XMOS multi-threaded environment

A Project Report

submitted by

SHYAM KRISH K S
(EE08B030)

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

in

Microelectronics and VLSI Design

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 2013

THESIS CERTIFICATE

This is to certify that the thesis titled Object tracking on XMOS multi-threaded

environment, submitted by Shyam Krish.K.S, to the Indian Institute of Technology,

Madras, for the award of the degree of Bachelor of Technology and Master of Tech-

nology in Microelectronics and VLSI design, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Prof. Sridharan K
Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr.Sudha Natarajan
External Guide
XMOS Semiconductor Pvt. Ltd
IITM
Research park, 600 115

Place: Chennai

Date: 15th May 2013

ACKNOWLEDGEMENTS

I am thankful to Dr. Sudha Natarajan for her guidance throughout the project. She

helped me a lot in directing me to right materials and research papers whenever I was

stuck with doubts. I am also thankful to Dr. K. Sridharan for his valuable discussions

that helped me stay focussed in my project.

And I thank all my friends who were there all along my project. If not for them, this

project might not have been complete. Even if it is not their project, they always helped

me by discussing various concepts necessary for the project.

Thanks to XMOS pvt ltd for providing me required boards for my project. And

thanks to IITM for providing me the best campus and lab environment. Finally thanks

to my Mom for her constant care and support.

i

ABSTRACT

KEYWORDS: Object Tracking, Parallel System, Multithreading

In this thesis a new system is developed for tracking an object in a video frame in a

muticore multithreading environment. Memory storage, object tracking algorithm and

displaying the output in Liquid Crystal Display(LCD) all run in different threads si-

multaneously. The developed system will serve as a test platform for testing any other

object tracking algorithm. The implemented algorithm evolved through comparing dif-

ferent object tracking algorithms in Matlab.

The object tracking system uses 5 threads that run in parallel while 1 thread is used

initially to load the images into SDRAM in RGB565 format. We have achieved a frame

rate of 9frames/s for an image of size 480×272. In addition, we also did experiments

on memory and timing analysis of a multithreaded platform.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES viii

ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Object tracking and Multithreading 1

1.3 Literature survey . 2

1.4 Contributions of the project . 3

1.5 Organisation of the report . 3

2 Object tracking and Matlab implementation 5

2.1 Object tracking . 5

2.1.1 Problems in object tracking 6

2.1.2 Otsu’s threshold . 7

2.1.3 Connected Component Analysis (CCA) 8

2.2 Matlab Implementation . 9

2.2.1 Background subtraction 10

2.2.2 Frame subtraction . 11

2.2.3 Histogram of Oriented Gradients (HOG) 15

2.3 Comparison . 19

3 Object tracking system development in multithreaded environment 21

iii

3.1 Algorithm . 21

3.1.1 Labeling is not necessary for tracking 21

3.1.2 CCA and Optimized CCA 23

3.1.3 Algorithm . 23

3.1.4 Translation . 26

3.1.5 Merging . 27

3.1.6 Inner loop . 29

3.2 Implementation . 30

3.2.1 Image format . 31

3.2.2 Object tracking system . 31

4 Experimental setup and Results 34

4.1 Experimental setup . 34

4.1.1 Flash . 34

4.1.2 SDRAM . 38

4.1.3 LCD . 39

4.1.4 Video Display . 42

4.1.5 Slice Kit . 44

4.2 Experimental studies and results 45

4.2.1 Experimental studies . 45

4.2.2 Resource utilization . 46

4.2.3 Results . 46

5 Analysis of memory and timing 51

5.1 Memory analysis . 51

5.2 Timing analysis . 52

6 Conclusion and Future work 66

6.1 Conclusion . 66

6.2 Future work . 66

A APPENDIX 67

A.1 Introduction to XC programming 67

iv

A.2 Matlab codes . 69

A.2.1 Background subtraction 69

A.2.2 Frame subtraction . 69

A.2.3 Main code for HOG tracking 73

A.2.4 HOG - function . 75

A.2.5 Feature - function . 77

A.2.6 Detect Sample Image - function 78

A.2.7 Predict - function . 80

A.3 XC codes . 81

A.3.1 XC-1A LED - Example code 83

A.3.2 Video Display . 86

A.3.3 Frame subtraction - main function 90

A.3.4 Binarization, cca call and put bounding box 92

A.3.5 Connected Component Analysis 100

LIST OF TABLES

2.1 Difference image in Background subtraction and Frame subtraction 13

2.2 Variation of difference image with parameter lamda 14

2.3 Feature selection . 18

2.4 Comparing object tracking algorithms 20

3.1 Input and Output of CCA . 25

3.2 Merging and Translation depending on the neighbors 29

4.1 Buffer array as stored in sdram . 39

5.1 Memory required for different datatypes 51

5.2 Memory analysis table I . 53

5.3 Memory analysis table II . 54

5.4 Memory analysis table III . 55

5.5 Timing analysis table I . 56

5.6 Timing analysis table II . 57

5.7 Timing analysis table III . 58

5.8 Timing analysis table IV . 59

5.9 Timing analysis table V . 60

5.10 Timing analysis table VI . 61

5.11 Timing analysis table VII . 62

5.12 Timing analysis table VIII . 63

vi

LIST OF FIGURES

2.1 Histogram of an image . 8

2.2 Connected components . 9

2.3 Flow chart of Background subtraction 10

2.4 Noise removal . 11

2.5 Sample processing . 12

2.6 Flow chart of Frame subtraction 13

2.7 Extracting HOG feature . 16

2.8 Histogram binning and interpolation 17

3.1 Flow chart of object tracking application 22

3.2 Noise affects label’s uniqueness 22

3.3 Worst case noise . 24

3.4 Labeling . 24

3.5 Flow chart for issuing label . 25

3.6 Translation . 27

3.7 Merging . 28

3.8 Inner loop . 30

3.9 Image format . 31

3.10 Thread diagram . 32

4.1 SPI specification file for FLASH Numonyx M25P10-A 35

4.2 Output of libflash code . 36

4.3 FLASH partition . 38

4.4 SDRAM server . 39

4.5 LCD server . 40

4.6 Processing speed versus number of parallel threads 42

4.7 Video display . 43

4.8 Experimental setup . 44

vii

4.9 Slice kit port map . 45

4.10 Resource utilization . 47

4.11 Bounding box has been put over the moving object 48

4.12 Bounding box has been put over the moving object 49

4.13 Bounding box has been put over the moving object 50

5.1 Flash, CCA and Otsu’s threshold - Parallel processing 64

A.1 Timer operation . 68

A.2 XC-1A port map . 82

A.3 Cyclic LED control sequence . 82

A.4 par usage in cyclic led code . 83

viii

ABBREVIATIONS

HOG Histogram of Oriented Gradient

CCA Connected Component Analysis

XTA XMOS Timing Analyzer

ix

CHAPTER 1

INTRODUCTION

1.1 Motivation

Mobile and portable platforms increasingly require the ability to handle images and

videos smoothly. Image data is large in size and mobile devices can afford to have only

a chip or two to perform the processing. It is therefore important to study computing

devices that support parallel processing so that applications run in real-time. Some of

the contemporary computing solutions are based on Field Programmable Gate Arrays

(FPGAs) and processors that support multi-threading. This project examines the power

of the latter. In particular, the project examines the use of multi-threaded and multi-

core processors from XMOS for performing a typical image processing task, namely

object tracking, at high speed. We briefly review the basics of object tracking as well as

multithreading and then proceed to state the precise contributions of this project.

1.2 Object tracking and Multithreading

Detecting a particular object in each and every frame of the video is known as object

tracking. Almost any existing object tracking algorithm can track an object, if the im-

age sequences are noise free but the amount of resources it consumes may be huge.

In addition, real time performance is another constraint which mainly depends on the

algorithm used for tracking.

Real time operation can be accomplished via parallel processing or multithreading. A

thread is part of a program which can run independently. Any process or an application

program can be split into independent smaller codes which can be made to run as a

thread. Multithreading CPUs have hardware support to run each thread concurrently.

It can be compared with multiprocessing. The main difference between mutithreading

and mutiprocessing is that, error in one thread can bring down all the threads in a pro-

cess whereas an error in one process, can not bring down another process.

For instance, if video compression and object tracking are two different processes, fail-

ure in video compression may not affect object tracking process and vice versa. In

object tracking process, we have memory interface, algorithmic unit and LCD display

for the output as independent units of the code. Independent here refers to the ability to

fetch next image data and store it in memory while processing the current image. How-

ever, failure in storing the next image data in memory by a memory interface thread can

affect other subsequent threads in the object tracking process.

1.3 Literature survey

Even though implementing parallel object tracking application is the main objective of

the project, the project involved thorough learning about the basic image processing

concepts and sequential object tracking for moving on to parallel coding. The textbook

by Gonzalez and Eddins (2004) provides all the concepts required for the basics of im-

age processing. Otsu’s algorithm is one of the main concepts that has been studied and

implemented from Gonzalez and Eddins (2004). Real time object tracking implemen-

tation in Liu et al. (2011) involves doing a background subtraction in FPGA where the

search path to locate the current position of the object has been parallelized. In Mah-

moud et al. (2003), the authors implement a block matching algorithm in parallel. A

semi-systolic array of non-programmable processor elements has been used to paral-

lelize the whole application. A non-programmable processor is equivalent to a thread

in the XMOS platform.

One of the main components of any image processing application is Connected Compo-

nent Analysis (CCA). Connected component analysis helps in retrieving area, centroid

and bounding box information from a binary image. Holding an image in a buffer and

performing CCA is a much easier problem. It becomes really complicated when mem-

ory available for such buffers is limited. Single pass connected component analysis

Johnston and Bailey (2008) gives good idea of CCA. Optimized single pass connected

component analysis Ma et al. (2008) reduces memory consumption even further com-

2

promising on giving unique labels to different disconnected components. Using labels

obtained from CCA output is in general not advisable for object tracking as random

noise will disturb the labeling process. Hence Optimized CCA is more useful than the

normal CCA. Multiple objects tracking based on frame subtraction Yang et al. (2005)

needs memory for storing two images (current and previous frame). Histogram of Ori-

ented Gradient (HOG) descriptor is used for human detection Dalal and Triggs (2005).

Finally, Pulli et al. (2012) gives good perspective on what parts of the image processing

can be parallelized.

1.4 Contributions of the project

The contributions of the project are as follows.

1. Detailed study of various object tracking methods in the literature as well as the
XMOS multi-threaded computing environment.

2. Simulation of some sub-algorithms for object tracking in Matlab.

3. Design of an object tracking system that uses several threads.

4. Design of storage of image sequences carefully to facilitate streaming and pro-
cessing using different threads

5. Implementation of some sub-algorithms for object tracking (especially frame sub-
traction) on an XMOS multi-threaded processor and testing of the sub-algorithms.

6. Analysis of memory and time management in XMOS processors.

1.5 Organisation of the report

The remaining of this report has been organized as follows.

Chapter 2 explains the basics of object tracking in detail. It explains different object

tracking algorithms coded in Matlab. At the end comparison between algorithms is

given.

Chapter 3 gives an introduction to experimental setup. It explains the parallel processor

we used in this project and also gives an idea of how the set up has been developed.

Chapter 4 gives the memory and timing analysis. It also has an example code built

3

using the concepts developed in the analysis.

Chapter 5 gives the detailed explanation of the implemented algorithm. It also gives

explanation of the code written, resources consumed and results.

Appendix gives an intoduction to XC programming language, Matlab codes for all the

implemented algorithms and also XC codes.

4

CHAPTER 2

Object tracking and Matlab implementation

In this chapter we have discussed the basics of object tracking and matlab implemen-

tation of sub algorithms of object tracking. We have explained the sub algorithms in

details and have compared the algorithms at the end of this chapter.

2.1 Object tracking

The main aim of any object tracking algorithm is to provide the trajectory of an object

over time by locating its position every frame of the video. In a particular object track-

ing algorithm, there are various sub modules that needs to understood to get an over all

understanding of the tracker. There are several different algorithms for object tracking.

In this project report, we will take two major algorithms and explain them in detail.

Depending on whether the background is static or dynamic, we have two different al-

gorithms to deal with tracking an object. Background being static means, there should

not be any illumination changes, there should not be any moving leaves due to wind or

there should not be any waves or ripples in pond, and there should not be any moving

clouds. So the environment is much tighter. Artificial lighting environment like inside

an office may have an ideal static background.

Gaussian mixture models, Eigen model etc. . . are used when background remains static.

In Gaussian mixture models and Eigen models, the static background is modeled using

a set of video frames. After 10 to 20 frames, objects can be tracked with ease using

these background models. These background modeling algorithms handles changes in

the background to some extent as it always adapts itself after every 10 to 20 frames.

Every frame is subtracted from the background model to get a difference image. Using

this difference image, all the foreground objects can be identified. From this foreground

we can detect the required object using some other algorithms and hence the object can

be tracked.

In simple background subtraction, we will usually have the background of the video

in advance. For example, inside an office, background can be an image (when nobody

is present inside) with all lights switched on. There is another method called Frame

subtraction, which is much sophisticated than Background subtraction as the variation

in the background can be tolerated to some extent.

In cases where background is not static we need to follow completely different ap-

proach. An example for non-static background is tracking a car in a highway. Here

we need to describe the object based on certain sharp features. These features should

be such that, we can differentiate object with that of the background. It is sufficient if

we are able to “Detect” the object in every frame. In order to detect the moving car,

you can choose color, size, model etc. . . But the chosen feature can easily match with

another car that is passing closer to the car which needs to be tracked. So much sharper

features are necessary while tracking cars in a highway. In order to detect clouds, we

can take features such as color (blue) and image derivative to get the boundary between

cloud and the sky. So with this two simple features, we can detect clouds. But In order

to detect a snake, we need to have even more features as snakes are of different colors

and size. The features chosen for snake can easily be confused with worms if we have

missed any feature that distinguishes worms and snakes. So “Object Representation” or

“Feature Selection” is very important for detecting an object. A set of features or “Ob-

ject Descriptor” is similar to DNA or finger print which helps differentiate one object

from other.

From the discussion above, we can see that each object needs special set of features or

“Object Descriptor” in order to detect them. Histogram of Oriented Gradients is one

such object descriptor used mainly for human detection. With added features to HOG,

it is possible for human identification but it is much different algorithm than detection.

HOG based tracker will be explained later in the report. The following picture is an

example for object tracking.

2.1.1 Problems in object tracking

Real time speed requirements, illumination changes, object shape changes, noise in

images and occlusion are few major problems when dealing with object tracking. While

6

we cannot remove noise which depends on the sensor used inside the camera we can

deal with other issues to some extent. Handling occlusion is one of the major issue

in descriptor based tracking. There are two different occlusions, partial and complete

occlusion. To deal with occlusion, machine learning (or statistical) concepts can be used

rather than simple algorithms. For example, if we want to track a particular book and

we are able to track it using descriptor based object tracking. Certain unique features

or descriptor is extracted from the book and used for detecting it in every frame. Now

if some other book partially starts occluding, then the descriptor gets changed. We

have two set of descriptors representing the same book. When the book comes out of

occlusion, the algorithm might start tracking the other book which occluded our original

book. These kinds of issues usually come up while doing experiments with different set

of videos.

In frame subtraction method, we will essentially increase noise while subtracting two

different frames. Hence the path of any object will be predicted with greater noise. If

the object is moving in a complex track, the predicted track may not be smooth. Kalman

filter can be used to reduce such noise and smooth track can be obtained in some cases.

2.1.2 Otsu’s threshold

Thresholding is an important step in image segmentation. In object tracking if we can

segment an image into background and foreground, tracking the object becomes much

simpler. For example, say we need to track a fish in a clear pond (without any leaves

or bottom being visible) and also the fish is fully black in color. In such a case, there

will two different peaks in image histogram as shown in figure 2.1. Thresholding with a

value in the middle of the two peaks (around 125) will allow us to locate the fish in the

image. In cases where there are only two peaks, threshold value can be obtained using

Otsu’s thresholding. In frame subtraction application, the difference image obtained in

one of the step will have to be thresholded to obtain a binary image. In that case, a

normal constant thresholding gives much better results than Otsu’s threshold. This has

been verified with lots of experiments with different videos. Otsu’s threshold has been

implemented and it will be explained in later section.

7

Figure 2.1: Histogram of an image

For detailed explanation of thresholding, the reader is referred to Gonzalez and Ed-

dins (2004). Dilation and erosion, opening and closing are basic image processing steps

which are discussed in detail in Gonzalez and Eddins (2004). These help in analyzing

blobs while tracking an object. Selecting what type of thresholding will suit, dilation or

erosion etc. . . is essential while dealing with frame subtraction algorithm.

2.1.3 Connected Component Analysis (CCA)

Connected component analysis is the main sub-module in frame subtraction algorithm.

After thresholding the difference image we obtain a binary image. This binary image

has blobs which have to be analyzed to obtain foreground object’s location in image,

area and bounding box. In the figure 2.2 there are three complex objects and they

have to be labeled as shown. CCA helps us to obtain area, bounding box and centroid

information from the binary image. Optimized CCA implemented will be discussed in

detail later. Optimized CCA retrieves the features (area, bounding box etc) in a single

pass without giving any labels.

8

Figure 2.2: Connected components

2.2 Matlab Implementation

Object tracking being an important application, Matlab has lots of supporting modules

necessary for developing an object tracking algorithm. All the basic steps described in

introduction such as Otsu’s threshold, image closing and opening, dilation and erosion

and connected component analysis (CCA) are available as functions in Matlab. These

basic image processing operations help in analyzing a blob obtained in frame subtrac-

tion and background subtraction algorithms. Experiments were performed to obtain a

good threshold option resulting in clean binary image.

Demos available in Matlab give a lot of insight for a beginner in object tracking. Gaus-

sian Mixture model based object tracking demo in Matlab shows how the background

is modeled using GMM. After going through couple of demos in Matlab, a new code

has been developed using few in built functions in Matlab. “Frame subtraction” based

object tracking (Code is available in the appendix) has been implemented. This basic

object tracking algorithm works only if the background is static. Background should

not have illumination changes and moving objects.

9

2.2.1 Background subtraction

The algorithm involves subtraction of current frame from the background. First frame

in the video is chosen as background for the entire video footage. The figure 2.3 of the

entire algorithm.

Figure 2.3: Flow chart of Background subtraction

Once we obtain the difference image, it has to go through thresholding to obtain a

binary image. This binary image looks similar to the one shown in figure 2.1. Thresh-

old is fixed for a particular video clip. It is easy to identify an ant in white background

rather than a black background. It will also vary if you resize the images in the video.

So choosing the right threshold is empirical.

After obtaining the binary image, REGIONPROPS function in Matlab helps us to re-

trieve area, bounding box and centroid information from the blobs. If there is lot of

noise in the binary image sequence, the binary image is then passed through image

filters like median filter followed by erosion, dilation, closing or opening function as

shown in figure 2.4. While tracking a car using background subtraction, sometimes

there is no connection between car’s front portion and the top (viewing from top as

shown in later image sequences). This disconnection may be due to the threshold value

chosen and also due to the wind screen present between them. The windscreen gen-

erally has low pixel values and hence a threshold greater than these values eliminates

this to be the part of the car misleading us to think it as a background. So it is better to

perform closing operation.

The features obtained using regionprops function (connected component analysis),

helps us to track single object. It can also track multiple objects if they are well sep-

10

Figure 2.4: Noise removal

arated in the image sequence. Let us consider that we are tracking two cars in the

available video frame. From the nth binary image, we will obtain the location of both

the cars and we put green bounding box on one of them and a red bounding box on

the other. In the (n + 1)th frame we will again get two locations (more than two will

be shown due to noise, but we need to consider only those whose area exceeds certain

threshold - areathresh in frame subtraction code). After eliminating the features whose

area component is above area threshold or choosing only two features (since we are

tracking only two cars) whose area component is highest, you can do a closest neighbor

search from the previous centroid location. Hence the location which is closest to green

box in previous frame will get a green bounding box and so does the red bounding box.

A sample processing of background subtraction is shown in figure 2.5.

2.2.2 Frame subtraction

Frame subtraction is an improvement made on the background subtraction where we

subtract the nth frame from (n − k)th frame instead of the 1st frame. It works better

than background subtraction as small movements in the background such as moving

clouds, leaves and ripples in the pond etc can be handled well. Background model has

to be updated in each and every frame to handle such dynamics in the background.

The code implemented in Matlab is based on Yang et al. (2005). In the code that we

developed based on the paper does not involve background modeling as in the paper

and also does not handle occlusion. Dynamic matrix is the main concept that has been

implemented from Yang et al. (2005). The importance of dynamic matrix will be under-

stood after understanding the difference image obtained in frame subtraction algorithm

(code for frame subtraction is available in the appendix). Flow chart for frame subtrac-

tion is given in the figure 2.6.

11

Figure 2.5: Sample processing

12

Figure 2.6: Flow chart of Frame subtraction

frame 1 frame 2 Difference image

Table 2.1: Difference image in Background subtraction and Frame subtraction

The difference image obtained in frame subtraction is quite different from that of

background subtraction. The moving objects whose intensity is constant won’t be vis-

ible in the binary image. If a square with constant intensity (white) moves on a black

background, you will be able to see only the edges of the square in the frame subtracted

difference image. Whereas in background subtraction, you will be able to get complete

square in the binary image. The 2.1 will help you notice the difference in the “difference

image” obtained using frame and background subtraction.

The difference image obtained in frame subtraction method has disconnection in

the same object which can not be filled with closing functions (ideally). In reality such

constant intensity objects are very rare and noise present in the image will definitely

turn on few pixels between the two lines shown in the above difference image. So using

some sort of dynamic matrix Yang et al. (2005) along with image closing operation will

help to make a good binary image which is then sent to extract features for tracking.

13

lamda = 1 lamda = 10 lamda = 20

Table 2.2: Variation of difference image with parameter lamda

In the code lamda is the variable used for dynamic matrix. lamda is basically a value

allocated to pixels instead of “1” in the binary image. So if lamda is equal to 1, the

dynamic matrix is same as binary image. But if lamda is 2, all the pixels in the binary

image whose value is 1 are replaced by 2. In the next frame, this dynamic matrix will

be updated using the information from the new difference image. The pixels previously

allocated as value 2 will be decremented by 1 if they are not having value 1 in current

binary image (meaning they are not moving or they are part of background). If any new

pixel is found with value 1 in current binary image which has value of 0 or 1 in the

dynamic matrix, it is replaced with value 2. So increasing the value of lamda will result

in increased size of the tail in the moving object. The effect of the dynamic matrix can

be viewed in table 2.2.

In table 2.2, we see how dynamic matrix varies with lamda. Increasing the value

of lamda increases the tail of the moving object in a direction opposite to its motion.

Fixing this value of lamda has to be done experimentally for every video. But lamda

mostly depends on the size and the speed of the moving objects and hence can be fixed

for normal videos. If an object moves too fast in the scene, then lamda has to be reduced

so that it doesn’t leave a huge tail. To get satisfactory results, value of lamda can be 2

for most of the input videos.

14

There are three more parameters in the code which has relevance to getting nice blobs in

the binary image/dynamic matrix. They are area threshold (area_thresh in code), pixel

level threshold (level in code) and subtracting frame (k frames old than the current

frame; k is replaced by gamma in code).

Value of gamma can usually be kept 1. That is, we are subtracting the current frame

with previous frame. Pixel level threshold is a parameter which is computed using

Otsu’s algorithm. Pixel level threshold depends mostly on the contrast between the

foreground and background object. It also depends slightly on the noise level in the

difference image. Pixel level threshold value has to be higher than the noise intensity

and lesser than foreground intensity value. Its value can be kept as 25 (obtained after

experimenting with 5-6 videos). Area threshold depends mainly on the size of the

image. It is directly proportional to the size of the image. If the value of area threshold

is 30 for 120x160 image sequences, it will be 60-70 for 240x320 image sequences. All

these parameters have to be set correctly for a new video for proper tracking.

2.2.3 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradient (HOG) is an object descriptor. A set of features (color,

intensity gradient, area, scale etc. . .) which helps in describing an object is known as

“descriptor”. HOG is a descriptor mainly used for detecting humans in an image. This

set of features is invariant to scale (to some extent). It mainly depends on two factors,

one is the contrast between foreground and background and the other is the geometry

of the object.

HOG captures the local features of an object much better than any of the other descrip-

tors. A detailed description of HOG can be read from Dalal and Triggs (2005). An

online lecture Shah (2012) is also available on HOG which gives very clear explana-

tion of the same. In this chapter we will briefly describe HOG and explain the code

developed for tracking (code is available in the appendix)

15

Extraction HOG features

Consider the image shown in the figure 2.7. It is an image of size 64 × 128. Divide

the image into 16 × 16 blocks with 50 percent overlap. There will be a total of 105

blocks (7x15). Each block is further divided into 2 × 2 cells. A single cell has 8 × 8

pixels inside them. Take gradient of the cells and quantize them into 9 bins as shown

in figure 2.8. This vector of length 9, is a feature vector describing that particular cell.

Concatenating all the feature vectors gives us a super vector of size 3780 (105× 4× 9).

This super vector describes the entire image.

Figure 2.7: Extracting HOG feature

Authors of the paper Dalal and Triggs (2005) have given a simplified code for ex-

tracting HOG feature from an image. The code can be found in appendix and also

16

Figure 2.8: Histogram binning and interpolation

online Ludwig (2010).

Tracking using HOG features

In the initial frame, we need to enter the object’s location and its bounding box manu-

ally. From the initial bounding box, we extract HOG features and it describes the object

for the next frame. We also extract HOG features from around the object in order to

describe the background. In the next frame, we search for the object around its initial

location. In the search radius we keep the size of the initial bounding box as constant.

We keep extracting HOG features from the bounding boxes inside the search radius and

compute its distance from the features extracted in the last frame. The bounding box

which is closest to object feature (extracted in last frame) is assigned as the new loca-

tion of the object in current frame.

During tracking, scale of the objects might vary through the image sequence and we

need to predict the object’s location in real time. Different objects will have different

area on the image and hence we cannot use same window size for every object. More-

over, there is a problem of drift while tracking using descriptors. This drift occurs due to

constant addition of noise from the background. Because of this drift, the bounding box

slowly recedes from the object and gets stuck to one location in the background with

slight jiggle from frame to frame. In the code, we have handled partial occlusion but

it cannot detect an object which has disappeared due to complete occlusion and comes

17

Only HOG feature [HOG,initial location]

Table 2.3: Feature selection

back again in the scene 20-30 pixels away from the original position. For example, it

cannot detect a car completely occluded by a tree once and comes back into the scene

at the other end of the tree. In order to detect the car in such situations, search radius

has to be increased and it might affect real time performance.

In order to improve the feature vector of the object, we included initial location, mean,

variance and skewness of intensity along with HOG features. Initial location was useful

when the object is moving slow otherwise drift gets increased. We also experimented

with giving less weightage for location feature but still the drift was more while using

initial location.

From table 2.3 it is clear that drift of the bounding box due to background noise

becomes more when initial location is included as a feature vector.

18

2.3 Comparison

As descriptor based tracking suffers from serious drift problems, it seems better to track

objects using background subtraction or frame subtraction method. Descriptor should

be more robust than HOG and must take less computation time so that we can track

the object in real time. We can come up with better descriptor than HOG (with above

qualities) but implementing them in hardware is out of the scope of this project. We

developed code for HOG in XC and have given in appendix. We did not implement

tracker using HOG but used it to explain few concepts of XC programming language in

the later chapter.

From the table 2.4 we see frame subtraction gives much better results than back-

ground subtraction. The leaves in the trees are moving due to wind. The intensity

variation due to noise makes the output of background subtraction much worse. Leaves

don’t move much from one frame to next frame and hence frame subtraction output is

better without those noises.

19

Algorithm Output

Background subtraction

Frame subtraction

HOG tracking

Table 2.4: Comparing object tracking algorithms

20

CHAPTER 3

Object tracking system development in multithreaded

environment

In this chapter we have discussed the optimized connected component analysis algo-

rithm in detail. We have shown hoe we used optimized CCA to develop object tracking

system. We have explained the object tracking system and have given the details of

threads that run in parallel.

3.1 Algorithm

Object tracking using frame subtraction method primarily consists of connected com-

ponent analysis. It is used to analyze binary images to obtain features of the foreground

objects. There are typically four stages to such algorithms. It is shown in figure 3.1.

First the input (gray scale) image is obtained from FLASH or from SDRAM in RGB565

format. The image is preprocessed to extract foreground objects from the whole image.

During the preprocessing step, thresholding is done to convert the image into a binary

image which is easy to analyze. This binary image consists of a number of regions

which are considered to be our desired object to be tracked or in other words, they are

collectively known as foreground. Next, connected component analysis is used to label

these foreground regions with a unique label. It also helps in extracting information

such as area, bounding box and centroid of the objects available in the foreground. In

the feature extraction stage, features such as area, bounding box and centroid can be

obtained which helps in object tracking application.

3.1.1 Labeling is not necessary for tracking

Labeling the blobs in the binary image often leads to confusion. It is due the presence

of noise in the image. Compare frame 30 and frame 31 shown in the figure 3.2. In the

Figure 3.1: Flow chart of object tracking application

figure 3.2, we have shown 30th and 31st frame of the video, in which we are tracking

an object running down a step. The ball is moving both in X-axis and Y-axis. In frame

30, we get the object labeled as two. But in frame 31, the same ball gets labeled as

one. This clearly illustrates providing labels during connected component analysis is

not necessary. Optimized connected component analysis does not issue labels. We can

reduce the amount of memory consumption by half in optimized connected component

analysis. This has been implemented in XMOS processor and the code is available in

appendix.

Figure 3.2: Noise affects label’s uniqueness

22

3.1.2 CCA and Optimized CCA

Traditional CCA algorithm, takes binary image as input and gives out label, area,

bounding box and centroid as output. As we know labels are not necessary for tracking

an object, we try to use this as an advantage to reduce the memory consumption. So

optimized CCA mainly reduces the memory consumption.

The maximum number of disconnected object in a binary image is equal to dHt
2
e×dWt

2
e

3.1.3 Algorithm

The input for the algorithm is a cleaned binary image. The output of the algorithm is

to provide area[size] and bounding box[size] information of the moving object. It is a

single pass algorithm with two row buffers. Data structures used in the algorithm Ma

et al. (2008) are given below.

size - WIDTH/2

T[size] - Translational table

PD[size] - Previous row Data table

PM[size] - Previous row Merger table

CD[size] - Current row Data table

CM[size] - Current row Merger table

Stack[size] - An array to keep track of serial merging. If label 3 merges with label 2

and while processing the current row, label 2 merges with label 1, it means label 3 is

merged with label 1.

SP - Stack pointer

Size of the data structure is half the width of the image. We assume there cannot be

more objects than half the width of the image. In worst case scenario, we will have to

use full size of the data structure and it will be mainly due to noise.

In figure 3.3, the width of the image is 8. It shows the maximum number of objects

within two rows due to noise cannot be more than 4. We further make an assumption

that number of objects won’t exceed “size” in the entire image. In reality we won’t

observe noise as shown in above figure. As described in chapter 3, noise depends on the

threshold we choose. If threshold chosen is low, noise levels may exceed and program

23

Figure 3.3: Worst case noise

might terminate. It will print an error message in the console. This error message is

due to illegal array access. As noise level increases, allocated data structure size won’t

be sufficient and there will be a label which exceeds the data structure size. When we

observe an error message indicating illegal array access, increasing the threshold is one

of the solutions. Let us go through the labeling process in the algorithm. The table 3.1

will show input and output of the labeling function.

Figure 3.4: Labeling

In figure 3.4, X is the current pixel which has to be given a label. It is labeled based

on its four neighbors which have been already processed by labeling function. A, B and

C are labels issued by labeling function while processing the previous row. AE, BE and

CE are equivalent labels issued while processing the current row. A, B, C, AE, BE and

CE all remain “0” at the beginning of the image pixel. Equivalent label information is

available in translation data structure. The following flow chart shown in figure 3.5 is

used while issuing a label for X.

24

Input Output

Table 3.1: Input and Output of CCA

Figure 3.5: Flow chart for issuing label

25

In the above flow chart shown in figure 3.5, rectangular boxes indicate condition

statement. The branch to the right indicates the condition is true and the left indicates

the condition is false. For example, if the pixel is an object, then check if DE is greater

than zero or else label the pixel as “0”. The darkened circle indicates the label issued to

the pixel. #1, #2 and #3 inside each darkended circle points to specific functions.

1. It is known as update general function. When translation and merging is not
necessary a simple area update function is sufficient. For area computation, the
pseudo code will be

CD[index] = CD[index] + 1;

Where index is the respective label issued in the darkened circle.

2. This function is known as update stack. If DE is same as CE it means the con-
nection between them has already been established before and hence a normal
update as #1 is sufficient. If they are not same, it means we have to merge them
together. Stack is used to keep in track of serial merging. Merger table is updated
with the help of stack and stack pointer. For area computation, the pseudo code
for update stack will be

if(DE==CE)
{
CD[CE] = CD[CE] + 1;
}
else
{
stack(CE,DE);
CD[CE] = CD[DE] + CD[CE] + 1;
CD[DE] = 0;
}

3. This function is known as update translate. The following steps are performed.
Translation of previous row’s label “C” to current row label “DE”. Accumulate
area of label “C” in “DE”. After accumulation in current row label, previous row
data table has to be cleared at index “C”. The steps in update translate are as
follows.

T[C] = DE;
CD[DE] = CD[DE] + PD[C] + 1;
PD[C] = 0;

3.1.4 Translation

Translation table helps in maintaining connection between current row pixel and previ-

ous row pixel. We will take the image shown in figure 3.6 as example.

26

Figure 3.6: Translation

While processing the current row, we have started with issuing “1” as the label for

first pixel. We issue “2” for second pixel as it is not connected with label “1” of current

row. After issuing label “2” we notice that its neighbor C is greater than “0” which

means label “2” of current row is connected to label “1” of previous row. Translation

table helps us maintaining this connection. Label “1” in previous row gets transformed

to label “2” of current row.

T[1] = 2;

Equivalent label for previous row’s label “1” is “2”. This connection has been estab-

lished at the end of the current row. You can see the final pixel of the current row is

labeled as “2”. Translation table helps in such connections in the current row. Transla-

tion table is cleared at the end of each row after completing all the necessary calculations

for area, bounding box and centroid.

3.1.5 Merging

If there are two different current row labels in the neighborhood, they are connected

and must have same label. This connectedness is achieved with the use of merger table.

The image shown in figure 3.7 can be taken as an example for merging.

While processing 1st pixel in the 2nd row, we issue label “1” (Whenever we en-

27

Figure 3.7: Merging

counter first object pixel in a new row we start issuing label staring from “1”. This is

the main idea of label reuse). This leads to translate previous row’s label “1” to current

row’s label “1”.

T[1] = 1

At the end of 2nd row after issuing label “1” to 8th column pixel, we empty translation

table and make it all zero. Similarly while processing 1st pixel of 3rd row, transition

table is invoked. Again T[1] becomes equal to 1. 2nd pixel of 3rd row gets a new

label “2” as its not known to be connected to current row label “1” till X is seen as

an object pixel. When we have to label X, we have to make sure current row label

“2” is connected to current row label “1”. This connection is known with the help of

translation table and merger table. First translation table makes CE of X as 1.

CE = T[1] = 1;

After going through the label selection flow chart, X is issued label “1” and merger

function is invoked to connect current row label “2” as “1”.

M[2] = 1;

The table 3.2 shows when translation and merging function are invoked based on the

equivalent labels.

28

DE AE BE CE Label Translation Merging
0 0 0 0 New May be -
0 0 0 1 CE May be May be
0 0 1 0 BE - -
0 0 1 1 CE - -
0 1 0 0 AE May be -
0 1 0 1 CE - May be
0 1 1 0 BE - -
0 1 1 1 CE - -
1 0 0 0 DE May be -
1 0 0 1 CE - May be
1 0 1 0 DE - -
1 0 1 1 DE - -
1 1 0 0 DE May be -
1 1 0 1 CE - May be
1 1 1 0 DE - -
1 1 1 1 DE - -

Table 3.2: Merging and Translation depending on the neighbors

3.1.6 Inner loop

Inner loop is a condition where there exists a loop inside a U-shaped connected object.

It is the simplified version of spiral object. The image shown in figure 3.8 will help us

understand the process dealing with inner loops.

When we have to label X, the algorithm goes through following steps in sequence.

1. AE=BE=DE=0, CE=1 as C is connected with current row label “1”. Its connec-
tion information is present in translation table.

2. X is issued “1” as its label.

3. CD[1] is incremented by 1 for area computation.

4. Check if A is connected or A is greater than zero.

5. In this case A=2 and hence connected to current row label 1. 2’s area has to be
accumulated to current row label “1”’s area.

6. CD[1] = PD[2] + CD[1];

7. PD[2] = 0;

The following ideas are important while implementing the algorithm.

1. In this case we need not translate A. We need not allocate T[2] as 1. It won’t be
necessary as it is an inner loop.

29

Figure 3.8: Inner loop

2. We need not check whether B is an object pixel. If B is an object pixel then BE
will be same as CE. This implies CE covers BE. This can be noticed in the table
for merging and translation.

3. Similarly DE covers AE and CE. BE if exists covers AE and CE. If BE is greater
than 0, then even if AE or CE exists it will be equal to BE.

3.2 Implementation

While implementing such an algorithm in XMOS embedded platform, the image data

(RGB565 format) is streamed from the SDRAM in a raster format. Classical labeling

algorithm is a two pass labeling process which requires the whole image to be present

in the buffer to extract features. Unfortunately, memory available in XMOS is as low as

64kb/core. So an optimized single pass connected component analysis is implemented

instead of classical connected component analysis.

30

3.2.1 Image format

Image format used is RGB565 format. We read image.tga file of size 480 × 272. In

RGB888 format, we need 382.5kilobytes(480 × 272 × 3 ÷ 1024) to store image.tga.

The image size is much more than 64kilobytes. We need to break the image into 8

parts and load them part by part into SDRAM. Each part is 47.8125kilobytes. The file

image.tga has 8 bits each for red, blue and green. We need to convert it to RGB565

format by ignoring 3 least significant bits from blue and red, and 2 least significant bit

from green.

Obtained RGB565 format image is loaded into SDRAM. We use only green component

of the image in connected component analysis. Green is less noisy when compared to

red and blue since we lose only 2 least significant bits. A RGB image when converted to

grayscale, green has about 70 percent contribution[reference]. RGB565 format is used

to brighten each pixel in the LCD. This is shown in figure 3.9.

Figure 3.9: Image format

3.2.2 Object tracking system

The design runs 5 threads in parallel. The figure 3.10 will describe how the threads

interact with each other and display tracked object in the LCD.

In figure 3.10 c_loader, client, c_sdram and c_lcd are channels used for communica-

tion between different threads. The grey rectangular boxes app, loader, display_controller,

sdram_server and lcd_serer are threads. They all run in parallel. The green rectangular

boxes are hardware that is connected to the slice kit. SDRAM corresponds to SDRAM

31

Figure 3.10: Thread diagram

slice and LCD corresponds to LCD slice. Sdram_ports and lcd_ports are specific ports

to which sdram slice and lcd slice are connected to slice kit. Port mapping has been

explained in chapter 3.

Loader thread does the following steps until all the images are loaded into the SDRAM.

1. Read image in TGA format of size 480× 272

2. Divide them into 8 parts

3. Load each part into SDRAM after converting each pixel to RGB565 format (It
concatenates two pixels into one 32-bit integer)

The app thread in figure 3.10 is our object tracking application. It takes image data

from SDRAM, does the processing and makes necessary changes to the image data to

display it in LCD along with the bounding box around the object.

In detail, app thread reads one row of pixel data (480 pixel = integer array of size 240)

from current image and same numbered row from previous frame. It subtracts these

two arrays to get a difference array. Difference array needs to be processed pixel by

pixel to obtain a binary image. We take 1st variable from integer difference array of

size 240. An integer variable occupies 32 bits while a pixel occupies only 16 bits in

RGB565 format. There are two pixels concatenated into one single integer variable.

32

As described earlier, 1st 16 bits of the integer corresponds to pixel 1 and later 16 bits

corresponds to pixel 2 of the LCD.

We need to separate red, green and blue from 16 bit data. As per the format, 5 least

significant bit corresponds to red, 5 most significant bit corresponds to blue and the

remaining 6 bits in the middle corresponds to green. We consider only green compo-

nent of the difference array. The green component is multiplied by 4 and passed on to

thresholding. After thresholding the pixel (green difference of the pixel), it is passed on

to optimized CCA. Once all the pixels (480×272) are processed, we get area, bounding

box and centroid information of the object from optimized CCA. Using the extracted

features, we can track the object.

Display controller thread manages SDRAM server and LCD server. It manages reading

and writing of data into sdram. Next image handle is maintained in such a way that

overwriting does not occur on lcd. Further information is given in comments section of

the code. Display controller is available online Jason.

We have given the code for displaying a video in the appendix. It does not use dis-

play controller and loader threads. Images are loaded into sdram one by one manually.

Video display has been already discussed in chapter 3. XC codes available online are

not included in appendix as far as possible.

Sdram_server and lcd_Server gets commands from display controller. Their functions

are explained in chapter 3. They are not explained under the heading of sdram_server

or lcd_server but the functions explained are similar to it.

33

CHAPTER 4

Experimental setup and Results

We used two development board from XMOS namely XK-1A and XC-1A before mov-

ing on to slice kit. XK-1A is the basic development board whose flash size is 128 kilo

bytes. We store image in raw format into the flash. With the stored image, we veri-

fied otsu’s algorithm and optimized CCA algorithm. XC-1A is more sophisticated than

XK-1A and has a flash memory of size 512 kilo bytes. We stored couple of images to

test optimized CCA in continuous mode. We got frame rate less than 1frame/sec for

a sequence of 120× 160 images. After timing analysis we realized flash is taking about

50ms to get one pixel while CCA computation takes place at much faster rate (6ms

per pixel). Even though flash and CCA thread was running in parallel, CCA thread had

to wait for flash for a long time which is very inefficient. So we either have to build a

buffer to match the modules running in two different speeds or use SDRAM instead. We

have given the timing analysis in results section later in this report. For our final system,

we used slice kit, SDRAM for storing images and LCD for displaying the output.

4.1 Experimental setup

4.1.1 Flash

Flash storage is permanent memory storage. Data won’t get erased after we switch off

the power supply to the board. In XC-1A development board, 512 Kilo byte SPI flash

memory is present. Flash programming chapter in “Tools User Guide” XMOS, helps

us understand the working of flash operations. A number of APIs have been present

in XMOS development environment for reading and writing into flash. The syntax for

using the APIs are present in the “Tools User Guide”. Flash library built inside XMOS

development environment (libflash) supports a wide range of flash devices available

in the market. Each flash device is described using SPI specification file. The SPI

specification file describes the device characteristics such as page size, number of pages,

commands for reading, writing and erasing data. If we have to use a flash device that is

not supported by XMOS development tool, we need to get the SPI specification file for

the device and include it in the source folder.

The configuration file for Numonyx M25P10-A NUMONYX (2008) is shown in

figure 4.1.

Figure 4.1: SPI specification file for FLASH Numonyx M25P10-A

Flash attached in slice-kit is “NUMONYX_M25P16”. This can be verified with a

libflash code available online Jason. This code uses following functions.

1. fl_getFlashType()

2. fl_getFLashSize()

3. fl_getPageSize()

4. fl_getDataPartitionSize()

5. fl_getNumDataPages()

6. fl_getDataSectorsSize()

7. fl_eraseAllDataSectors()

8. fl_writeDataPage(0,mypage)

9. fl_readDataPage(0,mypage)

35

10. fl_disconnect()

You will be able to find explanations of the above functions in “Tools User Guide”.

When we run the code in slice-kit, it will print the output as shown in figure 4.2 in the

console.

Figure 4.2: Output of libflash code

Writing image data into flash and reading can be done in various ways. If the image

size is small (less than 50 kilo bytes) we can store the entire image in the array “mypage”

of the libflash code and directly load the image into flash. Format of the image used

to store in the flash is very important for easy reading of the data. We followed the

following steps to get the right image format.

1. Save the image in “pgm” format

2. Open the image in an editor and remove the headers of image.pgm. Headers
contain information regarding the size of the image.

3. Load this into flash with the help of “libflash” code if the image size is small or
else use the “c code” that has been developed for loading.

If the image size is small and to use “libflash” code for loading, we need to follow

the following steps.

1. Read the image into Matlab

2. Open a text file and write the pixel value in comma separated format. If the image
size is 120x160, then the number of rows in the text file is 120 and the number of
columns is 160.

3. Copy the contents of the text file into an array “mypage” to load it into flash.
Once we copied the image data into the array, running the program will load it
into flash.

36

If the image size is large, an error message will be displayed in the console indicat-

ing memory has exceeded 64kilobytes. We need to break the image into 2 or 3 so that

we can load the image in parts.

1. Break the text file so that the memory error doesn’t occur. Instead of copying the
entire 120 rows in the text file, we can try loading 60 rows.

2. Copy 1st part of the image into “mypage” array and load it into the flash.

3. Copy 2nd part of the image into “mypage” array, change the writing address of
flash according to size of the 1st part. If part 1 contains 60 rows and 160 columns,
we have 9600 bytes of data. The size of the myspace should have been changed
to 9600. While loading the second part, the writing address has to be increased
by 9600.

4. If there are more parts than 2, continue 2nd and 3rd step until the whole image is
loaded into flash.

As the above manual method is cumbersome, we developed a “C code” to do the

same steps. The “C code” will read the raw image data (headers removed) load it into

flash. It handles image of any size which is within the size of data sector in flash. This

“C code” has to be built in XMOS development environment to obtain an executable

binary file. Once we have the binary file and raw image file, we need to configure flash

device and load the image data into it. Not all 512 kilo bytes in flash can be utilized

for storing data. We need to configure amount of space for data sector. The following

commands in XMOS command prompt can be used to configure the flash and load the

raw image data into it.

1. xrun -l

2. xflash –target-file XK_SK_L2.xn –erase-all

3. xflash <filename>.xe –target-file XK_SK_L2.xn –boot-partition-size 65536 –write-
all image_raw.pgm

4. perl “write.pl” image_raw.pgm 20

First command will list all available XMOS devices. Second command erases com-

plete flash memory including the boot partition. Third command allocates 65536 bytes

to boot partition, loads <filename>.xe into it and loads image_raw.pgm into data par-

tion. Slice-kit has 32 sectors as shown in the flash test output. If we want to write the

37

Figure 4.3: FLASH partition

image into particular sector, use 4th command. The image gets loaded into 20th sector.

The figure 4.3 shows boot partition and data partition.

When we have to use slice-kit development board instead of XC-1A (or to any other

board) the following changes have to be made to “C code” to load image data into flash

in slice kit. In the appendix, in connect.xc file we need to change the device specification

so that it matches with the flash specification in slice kit. Similarly, to use libflash code

to check the flash in slice kit, we need to add the name of the flash attached in slice kit

in the myflashdevices[] array.

4.1.2 SDRAM

SDRAM that we are using for our project has 64MegaBits. The memory available

in SDRAM is split into 4 banks. Each bank has 212 rows, 28 columns of cells where

a cell is a 16-bit memory. We have used sc_sdram_burst-master an open source code

developed by XMOS available at Jason. The figure 4.4 gives overall picture of the

SDRAM working. There are three main functions used for performing writing and

reading operations in the SDRAM. They are

1. sdram_buffer_write(chanend, bank, row, col, size, buffer)

2. sdram_buffer_read(chanend, bank, row, col, size, buffer)

3. sdram_wait_until_idle(chanend, buffer)

‘chanend’ is one end of the channel used for communication between the application

program and the sdram server. Bank can take any value between 0 and 3 choosing one

38

Figure 4.4: SDRAM server

among the four banks available. Similarly row and col are used to address a specific

location in the SDRAM. ‘size’ is the size of the buffer that we want to be written onto

or read from SDRAM.

The functions read/write two cells at a time. This can only be understood with an

example. Say we need to write an integer array of 3 words.

Buffer = {0xFFFF, 0x1FFF, 0x2FFF}

Invoking the 1st function with size equals 3, sdram_buffer_write(chanend, 0, 0, 0,

3, Buffer); sdram cells are written in the following fashion.

0x0000 0xFFFF 0x0000 0x1FFF 0x0000 0x2FFF

Table 4.1: Buffer array as stored in sdram

Now invoking the 2nd function with “col” changed as “col+1”, sdram_buffer_read(chanend,

0, 0, 1, 3, Buffer); will produce a buffer with following values.

Buffer = {0xFFFF0000, 0x1FFF000, 0x2FFF****}

4.1.3 LCD

LCD, we used in our project, has a resolution of 480 × 272 with pixel format of

RGB565. We have used sc_lcd-master which is an open source code of XMOS avail-

able at http://www.github.com/xcore. It displays XMOS logo on the screen. In this

case, they store the entire image in RAM to display the image and use RGB565 format

39

for lightening each pixel. The main reason for not using RGB888 format is due to lack

of availability of output pins in the slice kit.

The code writes two neighboring pixels at a time. An integer data type is of 32 bits,

first 16 bits correspond to one pixel and the later 16 bits correspond to its neighboring

pixel. For example, 0xFFFF0000 makes the first pixel black and second pixel white. An

image has to be in above format to be displayed on the LCD screen. First an image of

RGB888 format has to be converted into RGB565 format. Then we need to concatenate

two neighboring pixel. The following example explains how to concatenate two pixels

(We have written a Matlab code which does this for us, later a c code is also written;

both are available in appendix). The figure ?? gives overall picture of the SDRAM

working.

0xF0FF 0x00FF 0x01AE 0xFF0F. . . be the first four pixel value in RGB565 format

without concatenation. 0x00FFF0FF 0xFF0F01AE will be our new concatenated for-

mat useful for displaying on LCD screen. So an image of size 120x160 in RGB24

format will become 120x80 in our new format. This can be understood better by look-

ing at the code snippets provided in the appendix.

Figure 4.5: LCD server

LCD server takes care of the port configuration. It gets the data to be displayed in

the correct format from the application program written by us and displays it on the

screen. lcd_init, lcd_req, lcd_update are three main functions used in the code. lcd_init

checks whether the LCD is ready for use. It checks for a control token of a given value.

If the next byte in the channel is a control token which matches the expected value then

it is input and discarded, otherwise an exception is raised. lcd_req is again similar to

lcd_init where a token is sent through channel indicating the previous write operation

40

on the LCD is complete and hence the server can receive next data to be written on the

screen. lcd_update receives a row of information from the application program (row

here means 240 × 32 bits or an integer array of size 240. Number of pixels in a row is

480. Since we write two pixels at a time in RGB565 format we only need an integer

array of size 240). LCD server takes care how to display the entire row. Having finished

displaying the entire row, lcd_req will receive a token indicating that we can send the

next row’s data. This happens in an infinite while loop to display an image continuously.

Double buffer

Double buffer is used to prevent ‘flickering’ while displaying image on the LCD. We

have image data stored in SDRAM. As the size of the LCD screen is 480×272, a single

row of pixel will need a buffer of size 240 × 4 bytes. An integer array of size 240 is

required to display one row in LCD. It is 240 and not 480 because we use RGB565

format.

In double buffer usage, we have two integer buffers of size 240. While buffer A is being

displayed on the LCD, buffer B is getting filled up with data for next row of pixels from

SDRAM. Timing becomes important for real-time performance. In the code given in

appendix, while displaying buffer A, we are clearing buffer B instead of loading it with

next row data and vice versa. The necessity of clearing will be explained shortly. We

can also triple buffer if we have memory to improve on time complexity.

There are two other functions that are fairly important. “add” and “sub” function. The

server works with a dual buffer concept. There are two integer buffers of size 240.

Buffer A is meant for displaying even rows while buffer B is meant for displaying odd

rows on the LCD screen. The total number of rows on the LCD is 272. Let the size of

an image we need to display be 120× 160 and assume we display it in the left corner of

the LCD. Both A and B are initialized with the background color to start with. Between

1st row and 120th row we need to update the values of these buffers according to the

image and this is done by the “add” function. Once we have finished displaying the

entire image, we must display background for the entire 121st row but in the buffer B

we will still have values of 119th row’s data. Hence, the rest of the rows (121 - 270)

will be filled with values of 119th row. To avoid this we use sub function which updates

41

(resets) the buffers with background color after displaying the entire image.

SDRAM and LCD are running in parallel. The following code snippet will help you

understand they run in two different threads. Even though only 2 threads are required, 6

more threads are added to simulate worst case scenario. Instead of par(int i=0;i<6;i++)

while(1);, we can write while(1); 6 times both means the same. The figure 4.6 shows

the clock frequency versus number of threads. If more than 4 threads are active, each

thread is allocated at least 1
n

cycles (for n threads).

Figure 4.6: Processing speed versus number of parallel threads

4.1.4 Video Display

Video is a sequence of images that has been displayed at a particular rate on the LCD

screen. We store the image sequence of the video in the SDRAM and display them on

the LCD screen. Every frame is displayed for 50ms which is tunable. Having under-

stood how the SDRAM stores our images, it is easy to understand this. The following

flow chart will help us understand.

The figure ?? shows the simplest way for displaying the video. If we want to im-

42

Figure 4.7: Video display

43

prove on the memory constraints, we can get the image line by line from the SDRAM

instead of the whole frame. This might affect the real time performance but since we

are allowing a delay (50ms) this shouldn’t be a problem. We can reduce the delay to

account for it. When we have to display an image of size 480× 272 in RGB565 format,

the size of the image is 255 kilo bytes (480 × 272
2

× 4 ÷ 1024). We know the size of

the internal RAM is 64kilobytes per processor. Even if we utilize both the processors

available in slice kit, we only get 128 kilo bytes and program memory will take some

part of it. This explains we cannot have an entire image in a buffer to display it on the

LCD screen. So we used a display controller which helps us to display 480× 272 sized

images. We will discuss about the display controller in next chapter.

4.1.5 Slice Kit

Slice kit is a development board used in our project. It contains 2 XCORE processors

handling 16 threads in parallel. Rapid prototyping of systems becomes possible with

slice kit because it supports a lot of interfaces available as slices. We use SDRAM and

LCD slices for our project. The experiment setup is shown in the figure 4.8.

Figure 4.8: Experimental setup

SDRAM used in our project has a size of 8 Mega bytes. LCD screen size is 480 ×

272. In the main board you will be able to see four slots available: square, circle, start

44

and triangle. We can even interchange the position of LCD and SDRAM but we need

to modify ports accordingly. As discussed, before developing applications for slice-kit

we need to understand its hardware specifications.

Figure 4.9: Slice kit port map

In the figure 4.9 socket_00, socket_01, socket_10, socket_11 represent square, star,

circle and triangle respectively. X0 indicates XCore0 and X1 indicates XCore1. We

have to use correct ports in the application program.

4.2 Experimental studies and results

4.2.1 Experimental studies

Parameters of the code won’t be fixed. Intensity threshold to convert difference image

into binary image does not remain constant. Otsu’s threshold gives bad results in obtain-

ing clean binary image. Thus automatic threshold selection using otsu’s thresholding is

not possible. Otsu’s threshold looks for two major peaks and gives the average value of

those intensities.

In difference image we ideally need almost all pixels to fall into “0” and there will

be very few pixels between 15 and 100. Object pixels would lie between 15 and 100.

Hence to such histograms, otsu’s threshold might issue 20 or 30 as its threshold and

45

binary image will be free from noise. In reality, due to presence of noise there might be

a peak at 7 or 10 making the output of otsu’s threshold as 7. This increases the noise

present in the binary image which becomes hard to remove with any image process-

ing. Intensity threshold has to be determined empirically for each video. This increase

in noise levels due to otsu’s thresholding is observed among few frames of the image

sequence. It is always better to keep noise levels low by choosing the threshold empiri-

cally. A clean binary image is necessary in every frame to continuously track the object

without losing it.

In difference pixels, we used all three components to track the object. While doing it

we observed lots of noise. We observe the noise by displaying the clean binary image

on the lcd. After numerous trials we observed the binary image is clean only with green

component of the image. This is due to the following

1. We use 6 bits for green whereas we use only 5 bits for blue and red.

2. While converting RGB image to gray scale, green contributes about 70 percent to
the gray scale image.

4.2.2 Resource utilization

The figure 4.10 shows the resources utilized for object tracking application.

In slice kit there are two Xcore processors. The above pi chart in figure 4.10 includes

both the processor. Total memory is 128 kilo bytes (64 kilo bytes per processor). One

timer has been used to determine the frame rate of the output. We obtained a processing

speed of about 10 frames per second (9.67frame/s).

4.2.3 Results

The results obtained from object tracking application are shown in figures 4.11, 4.12

and 4.13.

46

Figure 4.10: Resource utilization

47

Figure 4.11: Bounding box has been put over the moving object

48

Figure 4.12: Bounding box has been put over the moving object

49

Figure 4.13: Bounding box has been put over the moving object

50

CHAPTER 5

Analysis of memory and timing

In this chapter we have given memory and timing analysis of the processor we used

to develop our object tracking system. Timing analysis is done with the help of timer

avalilable in the board. Memory analysis is done with the help of XMOS development

environment.

5.1 Memory analysis

Memory analysis is important in embedded systems in order to design an application

with lowest memory consumption. Basic of C gives an overview of memory consump-

tion due to different data types. The following tables ?? will provide few details about

it.

Data type Memory
Integer 4 bytes
Char 1 byte

Signed char 1 byte
Float 4 bytes

Double 8 bytes

Table 5.1: Memory required for different datatypes
??

Memory in embedded systems can be categorized as program memory, stack mem-

ory and free memory. When we build a XC code, the compiler converts it to a binary

file. This binary file is loaded into XMOS processor to run the application in XMOS

hardware. XMOS processor has an internal RAM memory of 64 kilo bytes. The com-

piler checks whether the memory usage doesn’t exceed 64 kilo bytes while building the

XC code. Sum of program memory, stack memory and free memory will always be

equal to 64 kilo bytes.

Stack memory consists of variables such as integers, characters, arrays etc. . . Program

memory consists of syntax and logic. This can be understood with the help of the tables

5.2 5.3 and 5.4.

In table 2, “remarks” indicate the inferences from the analysis of different codes

that has been given in column “code”. Every code has very mild variations from rest of

them. Comparing one among the rest gives a clear picture of the analysis.

In XMOS development environment, double click on the binary file available in the

project explorer. This will open a window consisting of memory consumption, number

of logical cores used and number of timers used. All the experimental data given in the

table above are obtained from XMOS development environment. The above table helps

programmer to know which part of the code goes to which type of memory. One can

develop memory efficient code using above table.

5.2 Timing analysis

Timing analysis is very important to develop algorithm that can run in real time. All

algorithms are developed from the basic operations such as comparison, addition, sub-

traction, division etc. . . How much time it takes to compute the value of sin(x), how

many clock cycle it takes to compare two variables?, does it depend on the type of vari-

ables we use? All these questions can be answered after going through this section. In

built timers are used for timing analysis. We have given time taken in terms of number

of clock cycles rather than seconds. Time period of one clock cycle in XMOS processor

is 10ns.

The tables 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12. helps in understanding tim-

ing constraints. It helps to develop better codes that can run in real time. It is better to

keep memory and timing analysis concepts in mind before writing an application in XC.

Once we finish writing 1000 lines of code, it becomes difficult to reduce the memory

required by the code. In the same sense it is difficult to check which part of the code is

responsible for exceeding the time constraint.

XMOS timing analyzer (XTA) is a tool that is available in XMOS development en-

vironment. It is used to determine whether all timing-critical sections of the code are

guaranteed to execute within their deadlines. This tool can measure shortest and longest

52

S.no Code Stack
memory

Program
memory Remarks

1
#include <xs1.h>
void main(){char c;} 208 880 None

2

#include <xs1.h>
void main(){int

c[16*1010];
char a,b;}

64652 884 Zero free memory

3
#include <xs1.h>
void main(){timer t;} 208 896 None

4

#include <xs1.h>
void main(){char c;

for(c=0;c<1;c++);}
208 916

Compare with 1. In-
cluding “for loop” in-
creases only program
memory.

5

#include <xs1.h>
void main(){char c;

for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);
for(c=0;c<255;c++);

for(c=0;c<255;c++);}

208 1240
For loop increases only
program memory

6

#include <xs1.h>
void main(){char c;
if(c){;}
else{;}}

208 896
If else increases pro-
gram memory

Table 5.2: Memory analysis table I

53

7

#include <xs1.h>
#include <stdio.h>
void main(){
printf("\n");}

1548 18808

Printf increases pro-
gram memory. Stack
memory increase may
be due to internal
variables of printf()
function.

8

#include <xs1.h>
#include <stdio.h>
void main(){printf(
"This is shyam
krish...\n");}

1548 18828

Changing “ n” with
“This is shyam kr-
ish...n” increases only
the program memory.

9

#include <xs1.h>
#include <stdio.h>
void printhelp();
void main(){
printhelp();}
void printhelp(){
printf("This is shyam
krish...\n");}

1556 18832

Introducing a dummy
function increases both
stack and program
memory

10

#include <xs1.h>
#include <stdio.h>
void printhelp();
void main(){
printhelp();}
void printhelp(){
int c[1000];
printf("This is shyam
krish...\n");}

5556 18836
Increase of 4000 bytes
in account for an inte-
ger array of size 1000

Table 5.3: Memory analysis table II

54

11

#include <xs1.h>
#include <stdio.h>
void printhelp();
void main(){
printhelp();
printhelp();
printhelp();}
void printhelp(){
int c[1000];
printf("This is shyam
krish...\n");}

5556 18840

Calling the same
function sequentially
doesn’t increase the
stack memory.

12

#include <xs1.h>
#include <stdio.h>
void printhelp();
void main(){
par{
printhelp();
printhelp();
printhelp();}}
void printhelp(){
int c[1000];
printf("This is
shyam krish...\n");}

16716 18968
Parallel code triples the
stack memory as com-
pared with 10 and 11

13

#include <xs1.h>
#include <stdio.h>
void printhelp();
void main(){
par{
printhelp();
printhelp();
printhelp();}}
void printhelp(){
int c[1000];}

12084 1024

Compare this with 8
and 10. Removing
printf() statement in-
side printhelp() func-
tion has caused this
change.

14

#include <xs1.h>
void main(){
int c[16*1023];}

Not ap-
plicable

Not ap-
plicable

Program exceeds 64
kilo bytes and the com-
piler shows an error
report in the console.

Table 5.4: Memory analysis table III

55

S.no Code Time
taken Remarks

1

int c[256],ts,te;
char i,a[256],b[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = i;

b[i] = i;}
t :> ts;
for(i=0;i<255;i++)
{ C[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

14297

Multiplication of two
char variables with
some value. May be an
average multiplication
time of char variable
can be obtained by
dividing 14297 by 255
which equals 56 clock
cycles.
The variable “ts” repre-
sents starting time and
“te” represents ending
time.

2

int c[256],ts,te;
int i,a[256],b[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = i;

b[i] = i;}
t :> ts;
for(i=0;i<255;i++)
{ c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

13275

Integer multiplication
with same values
as that of character
variable in previous
code.
We expect integer mul-
tiplication to take more
time than character
multiplication. Hence
this looks ambiguous
and we again ran the
same code.

3

int c[256],ts,te;
int i,a[256],b[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = i+255;

b[i] = i+255;}
t :> ts;
for(i=0;i<255;i++)
{ c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

13274

Running the same
code gave almost same
answer. Even though
XMOS is said to be
deterministic, these
ambiguous results are
something to note.
All these timings are
not the worst case tim-
ing. We assumed the
worst case timing will
be obtained when we
multiply highest values
that a data type can
hold.

Table 5.5: Timing analysis table I

56

4

int c[256],ts,te;
int i,a[256],b[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = 65535-i;

b[i] = 65535-i;}
t :> ts;
for(i=0;i<255;i++)
{ c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

13275

Changing higher values
didn’t change the result
for multiplying two in-
teger variables.

5

int c[256],ts,te;
int i,a[256],b[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = 65535;

b[i] = 65535;}
t :> ts;
for(i=0;i<255;i++)
{ c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

13275

The worst case tim-
ing found out by multi-
plying integer variables
with highest it can take
(65535).

6

int c[256],ts,te;
char i,a[256],b[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = 255;

b[i] = 255;}
t :> ts;
for(i=0;i<255;i++)
{ c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

14808

Worst case character
multiplication. This
worst case value is
again lesser than the
normal value obtained
in the 1st code.

Table 5.6: Timing analysis table II

57

7

int ts,te;
char i,a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{ if(i<15){

a[i] = i;
b[i] = i;}
else{a[i] = 15;

b[i] = 15;}}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

14807

We tried to change the
value of variables in
some random fashion.
Still we got the same re-
sult as worst case.

8

int ts,te,i;
float a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*100/9;
b[i] = i*111/11;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

60610
Multiplication of float
variables.

9

int ts,te,i;
double a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*100/9;
b[i] = i*111/11;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]*b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

97638

Multiplication of dou-
ble variables is takes
more time than multi-
plication of float vari-
able 60610.

Table 5.7: Timing analysis table III

58

10

int ts,te,i;
double a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{ a[i] = i*100/9;
b[i] = i*111/11;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]/b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

348153

Division of double
variables. This is much
higher than 102608
which is the time taken
for Division of float
variables.

11

int ts,te,i;
float a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*100/9;
b[i] = i*111/11;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]/b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

102608
Division of float vari-
ables.

12

int ts,te,i;
int a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*100/9;
b[i] = i*111/11;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]/b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

Not appli-
cable

Zero by zero division
error

Table 5.8: Timing analysis table IV

59

13

int ts,te,i;
int a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*10;
b[i] = i*11 + 1;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]/b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

15698
Division of integer vari-
ables.

14

int ts,te,i;
int a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*10;
b[i] = i*11 + 1;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

9449

Time taken for copy-
ing an integer vari-
able. So while cal-
culating time for divi-
sion, multiplication this
“copying time” or “reg-
ister access time” is in-
cluded.

15

int ts,te,i;
float a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*10;
b[i] = i*11 + 1;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

9449
Copying a float vari-
able.

Table 5.9: Timing analysis table V

60

16

int ts,te,i;
double a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*10;
b[i] = i*11 + 1;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

10469
Copying a double vari-
able with integer value.

17

int ts,te,i;
double a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i*100/9;
b[i] = i*111/11;;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

10215
Copying a double vari-
able with non-integer
value.

18

int ts,te,i;
char a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;
b[i] = i+1;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

9195
Copying a character
variable with integer
value.

Table 5.10: Timing analysis table VI

61

19

int ts,te,i;
char a[256],b[256],c[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;
b[i] = i+1;}
t :> ts;
for(i=0;i<255;i++)
{c[i] = a[i]/b[i];}
t :> te;
printf("Time taken: %d\n",te-ts);

15698
Division of character
variables.

20

int ts,te,i;
char a[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;}
t :> ts;
for(i=0;i<255;i++)
{printf("%d\n",a[i]);}
t :> te;
printf("Time taken: %d\n",te-ts);

-
1530452759

Timer can be used to
measure a maximum
delay of 21 seconds

21

int ts,te,i;
char a[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;}
t :> ts;
for(i=0;i<25;i++)
{printf("%d\n",a[i]);}
t :> te;
printf("Time taken: %d\n",te-ts);

297099797

Printing 25 character
values on the console
takes as much as 2.97
seconds.

Table 5.11: Timing analysis table VII

62

22

int ts,te,i;
char a[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;}
t :> ts;
printf("%d\n",a[5]);
t :> te;
printf("Time taken: %d\n",te-ts);

10578311 0.1 second

23

int ts,te,i;
char a[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;}
t :> ts;
for(i=0;i<10;i++)
{printf("%d\n",a[i]);}
t :> te;
printf("Time taken: %d\n",te-ts);

126788051 1.26 seconds

24

int ts,te,i;
char a[256];
timer t;
for(i=0;i<255;i++)
{a[i] = i;}
t :> ts;
for(i=0;i<10;i++)
{printf("This is shyam

krish...\n");}
t :> te;
printf("Time taken: %d\n",te-ts);

116687436

1.17 seconds. There is
no memory access re-
quired to print “This is
shyam krish. . . n”. So
even though there are
26 characters to be dis-
played on console (in-
cluding white spaces) it
takes much lesser time
than 2.97 seconds (to
print 25 character vari-
ables)

25

t :> ts;
t :> te;
printf("Time taken: %d\n",te-ts);

5

“te” is assigned in the
next line of assigning
“ts”. It is hard to ac-
cept it takes 5 clock cy-
cles for this. We tried
to run this code multi-
ple time and time taken
didn’t change. It re-
mained as 5 clock cy-
cles.

Table 5.12: Timing analysis table VIII

63

time required to execute a section of code. This tool is limited to sequential logic. It is

not advisable to determine timing reports for parallel logic.

We used XTA to analyze timing constraints in connected component analysis applica-

tion. In CCA application, flash and Otsu’s thresholding algorithm runs in parallel in

step 1. In step 2, flash and CCA algorithm runs in parallel. CCA receives image data

from flash pixel by pixel.

Figure 5.1: Flash, CCA and Otsu’s threshold - Parallel processing

A grayscale image is stored in flash of height Ht and width Wt. In the above

figure, in step 1, flash communicated to otsu’s thresholding function through channel.

They both run in parallel. After running for (Ht×Wt) times (covering all the pixel of

the image) we get otsu’s threshold as the output. This threshold is used for converting

the grayscale image to binary image. In step 2, we again read this grayscale image from

flash pixel by pixel and send it to CCA function. Inside CCA function the threshold

is applied to binarize the image. We are not storing any segment of the image in the

processor. Every pixel goes to CCA function only once. After going through all the

pixel from the image (Ht×Wt), CCA outputs area, bounding box and centroid infor-

mation of the blobs present in the image. The whole process is shown in figure 5.1.

Flashing image data and otsu’s algorithm have already been discussed in detail in the

64

earlier chapters. CCA will be discussed in next chapter.

Using XTA we observed that, the time taken to fetch one pixel from flash is more than

the time taken for that pixel to go through CCA function. It means most of the time

CCA keeps waiting for the image data to come from flash. As XTA is not advisable to

use for parallel logic, timers are used to analyze the timing constraint.

65

CHAPTER 6

Conclusion and Future work

In this chapter, we give the summary of the work done and discuss possible future work.

6.1 Conclusion

Compared several tracking algorithm in matlab and implemented frame subtraction

method in XMOS multithreaded environment. We have implement optimized CCA

which reduced the memory requirements drastically. The developed object tracking

system uses 5 threads simultaneously. We have achieved a frame rate of 9frames/s.

Currently we are detecting all the moving objects in the video and put a bounding box

around the object with highest area. We extended this to show bounding box on objects

with top three or more area. So the implemented code is apt for tracking a single mov-

ing object in the video perfectly as shown in the results.

6.2 Future work

Possible extensions are

1. It can be easily extended to track multiple moving objects by comparing the cur-
rent and previous features obtained.

2. Camera slice was not available when we did the project. Once camera slice is
made available, with an addition of one more thread we can make more sophisti-
cated system.

3. Descriptor based algorithm can be applied instead of analyzing blobs in the binary
image. Our conclusion is we need a beeter descriptor than HOG.

APPENDIX A

APPENDIX

A.1 Introduction to XC programming

XC is a higher level language for hardware programmers like Verilog. Syntax for XC

is similar to that of C. XC can be taken as extended version of C with port mapping,

timers, parallelism etc. . . The following rules are different from C comparing it to XC.

In XC

1. I = I++; // invalid statement

2. Arrays are implicitly passed b reference

3. Functions can return multiple values

4. A character array of size 10 can be reinterpreted as integer array of size 2. The
remaining 2 bytes of data in the character are lost.

The following are few hardware commands used in XC programming.

1. inp_port :> register;

2. out_port <: register;

3. in port oneBit = XS1_PORT_1A;

4. out port counter = XS1_PORT_4A;

5. oneBit :> register;

6. counter <: register;

7. oneBit when pinsneq(x) :> x;

8. oneBit when pinseq(x) :> x;

9. par{thread1;
thread2;} //8 parallel threads per XCore processor

10. timer t;

11. t :> time; time = delay + time;

12. t when timerafter(time) :> void;

1, 2 are syntax for input from a port and output to a port respectively. 3rd is syntax

for using oneBit as 1 bit input port. 4th makes counter as a 4 bit output port. 5, 6 are

examples for 1 and 2 respectively. Register can be any data type (int, char etc. . .). In

general, when outputting to a n bit port, the least significant n bits of the output value

are driven on the pins and the rest are ignored. 7th is a conditional waiting statement

in which the data from oneBit port will be sampled and put into register x only when

oneBit pin is not equal to the current value of x. It is known as conditional waiting

statement because the execution will wait indefinitely at that statement until the pin

becomes not equal to register x. 8th is another conditional waiting statement which

checks for pin becoming equal to register x and loads it into x. 9th is a syntax for

parallel logic in XC. 10th is the syntax for timer declaration. 11th is syntax where the

value of the timer is loaded into the register time. The register time is an unsigned

integer type. 12th is a delay statement, it is similar to conditional wait statement. It

will keep on waiting till the timer variable t becomes equal to the delay plus time and

load the value of t into void (means it is not used anywhere else). Timer variable t is an

unsigned integer variable. The clock period is 10 ns. The maximum delay is 21 seconds

(31 bit delay). The figure A.1 will help you understand 31 bit delay.

Figure A.1: Timer operation

“After” time is after the timer t value has been loaded into register time. For more

information on syntax and example codes refer [reference].

68

A.2 Matlab codes

A.2.1 Background subtraction

This code is mainly derived from a demo available in Matlab. The name of the demo

is “Detecting cars in a video of traffic”. We changed the video for tracking and varied

different parameters available in the code. We could not get a clean binary image using

this code. The details regarding the experiments are available in chapter 2.

A.2.2 Frame subtraction

clear all

close all

clc

%% Multi media reader

%obj = mmreader(’1.avi’);

obj = mmreader(’1.avi’);

nframes = get(obj, ’NumberOfFrames’);

nframes = 200;

% impyramid is used to reduce time complexity

I = read(obj,1);

%I = impyramid(read(obj, 1),’reduce’);

%I = impyramid(I,’reduce’);

% taggedCars is used to show the test video along with

bounding boxes

% binaryvideo gives the sequence of binary frames generated

taggedCars = zeros([size(I,1) size(I,2) 3 nframes], class(I));

binaryvideo = zeros([size(I,1) size(I,2) nframes], class(I));

%% Paramaeters for tuning

69

[m n o] = size(I);

D = zeros(m,n); % Dynamic matrix

binary = zeros(m,n);

area_thresh = 80; % bwareaopen’s area threshold

lamda = 1; % Dyanamic matrix’s tail control

gamma = 1; % Currently previous frame

level = 25; % Thresholding, increasing it will reduce the

noise level

%% Frame subtraction

%Frame subtraction is done using dynamic matrix. For every new

frame

%or current frame, it’s previous frame is used as it’s

background. Their

%difference will give us the difference image which is

thresholded using

%the parameter level. After thresholding, we are assigning a

value of lamda

%to every pixel where the difference image is greater than 1.

This

%modification from normal binary image to dynamic matrix which

takes lamda

%in place of "1", allows us to track constant intensity moving

objects

%better. Elements in "Dynamic matrix" if greater than zero are

taken as

%moving objects. Dynamic matrix is updated in the next

iteration.

for i=2:nframes

B = read(obj,1); %background subtraction

% B = read(obj,i-gamma);

%B = impyramid(read(obj,i-gamma),’reduce’);

%B = impyramid(B,’reduce’); % Background frame

70

CF = read(obj,i);

%CF = impyramid(read(obj,i),’reduce’);

%CF = impyramid(CF,’reduce’); % Current frame

img = CF - B; % Difference image

img=img.*img; % Squaring each pixel so that all are positive

img = rgb2gray(img);

[m n] = size(img); % Better to assign it here as we

encountered changes

% Thresholding

for a=1:m

for b=1:n

if(img(a,b)>level)

img(a,b)=255;

else

img(a,b)=0;

end

end

end

% Removes all the blobs which are having area lesser than

area_thresh

img = bwareaopen(img,area_thresh);

%Joins the blobs in the image together by filling in the gaps

between

%them and by smoothing their outer edges.

img = imclose(img,strel(’rectangle’,[5 5]));

img = imfill(img,’holes’);

% Dynamic matrix

for j=1:m

for k=1:n

71

if(D(j,k) && (~img(j,k)))

D(j,k) = D(j,k)-1;

end

if(img(j,k))

D(j,k) = lamda;

end

end

end

%Binary video

for j=1:m

for k=1:n

if((~D(j,k)))

binary(j,k) = 0;

end

if(D(j,k))

binary(j,k) = 1;

end

end

end

binaryvideo(:,:,i) = 255.*binary;

taggedCars(:,:,:,i) = CF(:,:,:);

BI=binary;

% Bounding box

stats = regionprops(BI, {’Centroid’,’Area’,’BoundingBox’});

[image1 num] = bwlabel(BI);

stats = regionprops(image1, ’BoundingBox’);

[M N] = size(stats);

for l = 1:M

for m1 =

floor(stats(l).BoundingBox(1)):floor(stats(l).BoundingBox(1))+stats(l).BoundingBox(3)

for n1 =

floor(stats(l).BoundingBox(2)):floor(stats(l).BoundingBox(2))+stats(l).BoundingBox(4)

72

x1 = floor(stats(l).BoundingBox(1));

y1 = floor(stats(l).BoundingBox(2));

if(m1 && n1 && x1 && y1)

taggedCars(y1,m1,2,i) = 255;

taggedCars(y1+stats(l).BoundingBox(4),m1,2,i) = 255;

taggedCars(n1,x1,2,i) = 255;

taggedCars(n1,x1+stats(l).BoundingBox(3),2,i) = 255;

end

end

end

end

i

end

%% Output videos

% implay(binaryvideo,20);

% implay(taggedCars,20);

%%

for j=1:200

imshow(taggedCars(:,:,:,j));

hold on;

text(5, 18, strcat(’Frame no: ’,num2str(j)), ’Color’,’b’,

’FontWeight’,’bold’, ’FontSize’,20);

pause;

hold off;

end

A.2.3 Main code for HOG tracking

HOG feature extraction has been done with the help of a code available online. We

changed the parameters best suitable for tracking. Since the size of the object we are

tracking on an average is 30× 30, we are not splitting the image into two or more parts

as described in HOG. So the length of the feature vector is 9. If we want to track a

73

large object, then we need to change number of windows in x and y directions. It will

increase the length of the feature vector (9× num_win_x× numwin_y).

% Tracking using HOG implementation

clc;clear all;close all;

%Loading video file

addpath(’./input_videos’);

obj = mmreader(’1.avi’);

img = read(obj, 1);

%img = impyramid(img,’reduce’);

% get the initial bounding box for the objects to be tracked

from the user

[I2 rect] = imcrop(img);

init = ceil(rect);

initstate = init; %initial tracker

x = initstate(1);% x axis at the Top left corner

y = initstate(2);

initfeature = Feature(I2);

%%

nframes = get(obj, ’NumberOfFrames’);

num = nframes;% number of frames

%--

x = initstate(1);% x axis at the Top left corner

y = initstate(2);

w = initstate(3);% width of the rectangle

h = initstate(4);% height of the rectangle

%---

for i = 2:num

i

74

img = read(obj,i);

%img = impyramid(img,’reduce’);

imgSr = img;% imgSr is used for showing tracking results.

%negx = NegsampleImg(img,initstate,0.8);

%posx = DetectsampleImg(img,initstate,1,1,1);

detectx = DetectsampleImg(img,initstate,8,5,2);

index = Predict1(detectx,initfeature,img);

x = detectx.sx(index);

y = detectx.sy(index);

w = detectx.sw(index);

h = detectx.sh(index);

initfeature = Feature(imcrop(img,[x y w h]));

initstate = [x y w h];

imshow(imgSr);

hold on;

rectangle(’Position’,initstate,’LineWidth’,2,’EdgeColor’,’g’);

text(5, 18, strcat(’Frame no: ’,num2str(i)), ’Color’,’b’,

’FontWeight’,’bold’, ’FontSize’,20);

set(gca,’position’,[0 0 1 1]);

pause(0.00001);

hold off;

pause;

end

A.2.4 HOG - function

%Image descriptor based on Histogram of Orientated Gradients

for gray-level images. This code

%was developed for the work: O. Ludwig, D. Delgado, V.

Goncalves, and U. Nunes, ’Trainable

%Classifier-Fusion Schemes: An Application To Pedestrian

Detection,’ In: 12th International IEEE

75

%Conference On Intelligent Transportation Systems, 2009, St.

Louis, 2009. V. 1. P. 432-437. In

%case of publication with this code, please cite the paper

above.

function H=HOG(Im,nwin_x,nwin_y)

% nwin_x=3;%set here the number of HOG windows per bound box

% nwin_y=3;

B=9;%set here the number of histogram bins

[L,C]=size(Im); % L num of lines ; C num of columns

H=zeros(nwin_x*nwin_y*B,1); % column vector with zeros

m=sqrt(L/2);

if C==1 % if num of columns==1

Im=im_recover(Im,m,2*m);%verify the size of image, e.g.

25x50

L=2*m;

C=m;

end

Im=double(Im);

step_x=floor(C/(nwin_x+1));

step_y=floor(L/(nwin_y+1));

cont=0;

hx = [-1,0,1];

hy = -hx’;

grad_xr = imfilter(double(Im),hx);

grad_yu = imfilter(double(Im),hy);

angles=atan2(grad_yu,grad_xr);

magnit=((grad_yu.^2)+(grad_xr.^2)).^.5;

for n=0:nwin_y-1

for m=0:nwin_x-1

cont=cont+1;

angles2=angles(n*step_y+1:(n+2)*step_y,m*step_x+1:(m+2)*step_x);

magnit2=magnit(n*step_y+1:(n+2)*step_y,m*step_x+1:(m+2)*step_x);

v_angles=angles2(:);

76

v_magnit=magnit2(:);

K=max(size(v_angles));

%assembling the histogram with 9 bins (range of 20

degrees per bin)

bin=0;

H2=zeros(B,1);

for ang_lim=-pi+2*pi/B:2*pi/B:pi

bin=bin+1;

for k=1:K

if v_angles(k)<ang_lim

v_angles(k)=100;

H2(bin)=H2(bin)+v_magnit(k);

end

end

end

H2=H2/(norm(H2)+0.01);

H((cont-1)*B+1:cont*B,1)=H2;

end

end

A.2.5 Feature - function

function [f] = Feature(I)

%[m n o] = size(I);

% X = zeros(m*n,o);

%

% X(:,1) = reshape(I(:,:,1),m*n,1);

% X(:,2) = reshape(I(:,:,2),m*n,1);

% X(:,3) = reshape(I(:,:,3),m*n,1);

% for i=1:n

% for j=1:o

% l = (i-1)*m + 1;

% u = i*m;

77

% X(o,l:u) = I(:,i,o);

% end

% end

% centroids = CentroidImg(I);

% avg = mean(X);

% c = cov(X);

% c1 = [c(1,1) c(2,2)];

% s = skewness(X);

I = impyramid(I,’reduce’);

I = impyramid(I,’reduce’);

centroids = CentroidImg(I);

I1 = rgb2gray(I);

H = HOG(I1,2,2);

%f = [centroids];% avg c1 s H’]; % trial 1

f = H’;

end

A.2.6 Detect Sample Image - function

Search boxes around the previous object location can be obtained the following func-

tion. Alpha and beta determines the search radius. Scale determines the coarseness of

the search.

function samples =

DetectsampleImg(img,initstate,alpha,beta,scale)

% Generates search boxes for object detection

% Inputs

% alpha -- x-alpha .. x .. x+alpha

% beta -- y-beta .. y .. y+beta

% img -- input image

% scale -- Increments.. It’s important for smooth tracking

results. Smaller

% the scale smoother the tracking

% Outputs

78

% sx, sy, sw and sh

[m n] = size(img);

x = initstate(1,1);

y = initstate(1,2);

w = initstate(1,3);

h = initstate(1,4);

j = 0;

for i=-alpha:scale:alpha

if((1<(x+i)) && (x+i<(n-w)))

j = j+1;

X(1,j) = x + i;

end

end

if(j==0)

X = 1;

end

j = 0;

for i=-beta:scale:beta

if((1<(y+i))&&(y+i<(m-h)))

j = j+1;

Y(1,j) = y + i;

end

end

if(j==0)

Y=1;

end

[mx nx] = size(X);

[my ny] = size(Y);

xy = nx*ny;

79

Xmat = ones(ny,nx)*diag(X);

Ymat = ones(nx,ny)*diag(Y);

samples.sx = reshape(Xmat,1,xy);

samples.sy = reshape(Ymat’,1,xy);

samples.sw = ones(1,xy)*w;

samples.sh = ones(1,xy)*h;

if(min(size(samples.sx))==0)

samples.sx = 1;

samples.sy = 1;

samples.sw = w;

samples.sh = h;

end

end

A.2.7 Predict - function

function index = Predict1(detectx,initfeature,img)

for i=1:max(size(detectx.sx))

x = detectx.sx(i);

y = detectx.sy(i);

w = detectx.sw(i);

h = detectx.sh(i);

Ht = Feature(imcrop(img,[x y w h]));

p(i) = 1/sum((Ht-initfeature).^2); %must be closer to

positive samples

% q(i) = sum((Ht-Htn).^2); %must be far away from negative

samples

end

size(detectx.sx)

Decide = p;

80

idx = find(max(Decide)==Decide);

index = idx(1);

end

A.3 XC codes

XMOS technology provides multi-core multi-threaded environment to develop high-

performance systems in a C-like language, namely XC. A comparative study between

Verilog and XC programming is available online Xmos.

In order to understand XMOS programming, channel communication and parallel cod-

ing, we have explained this example code which is written for XC-1A board. XC-1A

has 4 processors and each processor can run a maximum of 8 threads in parallel. It has

4 push buttons, 12 LEDs around the main chip and 4 more LEDs near push buttons.

The output of the code is to generate glowing LEDs in a cycle. All the four processors

run in parallel and they glow their respective LEDs when the control comes to them.

Before starting to code any hardware, it is better to understand the port mapping of the

board. XC-1A hardware manual XMOS helps you understand the port maps with good

illustrations. Our main objective in the code is to glow all LEDs in cyclic fashion. In

this process we will also understand how channels work. Figure A.2 below gives the

port mapping to understand how to glow the LEDs.

XCore0 has control over LED I, LED II, LED III and select which color to glow

green or red. XCore1 has control over LED IV, LED V, LED VI. Similarly XCore2 and

XCore3 have their respective LEDs shown above. In port column, the pin X0D40 is

connected to an 8 bit port’s 4th bit. In order to glow LED I, we need to send value 16 to

the PORT_CLOCKLED_0. LED II glows when ‘32’ is sent to PORT_CLOCKLED_0

and LED III glows when 64 is sent to the port. A single processor has control of only 3

LEDs. After switching its LEDs one after the other, it has to send a signal to its neigh-

boring processor asking it to switch its LEDs one after other. In order to make a cyclic

LED, we need to communicate between different processors. This communication is

done with the help of channels. A data type “chan” helps us to create a channel variable.

Every channel variable must have two channel ends.

81

Figure A.2: XC-1A port map

Figure A.3: Cyclic LED control sequence

82

In figure A.3, red circles are LEDs, arrows are channels used for communication

between the processors and start is token given to any of the channel end to start the

process. The following code segment will help understand “par” syntax and channel

usage.

Figure A.4: par usage in cyclic led code

The syntax for running 4 threads in parallel is shown in the figure A.4. Inside par

statement, “on stdcore [0]” indicates that the thread runs in XCore0. There are totally 4

cores available in XC-1A. Single thread runs in every core available in the board. Note

the usage of “chan” variable and compare it with figure 2. In XCore3 at the end of

function, “1” is passed as opposed to “0” for rest of them. “1” behaves as the “start”

token in figure 2. For more information go to appendix and understand the full code.

In the hardware manual for XC-1A you will be able to see lots of peripherals available

on the board. LEDs, push buttons, speaker, SPI flash, I/O expansion areas and prototyp-

ing area. All these can be used once we understand how to send signal to each of them.

For using any peripheral, first we need to study the hardware and then start developing

application for the same.

The project folders will be given as a soft copy. Here we have given only the main codes

which we have used in the project. Codes for testing flash, sdram and lcd are available

in Jason.

A.3.1 XC-1A LED - Example code

#include <platform.h>

#define PERIOD 20000000

out port cled0 = PORT_CLOCKLED_0;

83

out port cled1 = PORT_CLOCKLED_1;

out port cled2 = PORT_CLOCKLED_2;

out port cled3 = PORT_CLOCKLED_3;

out port cledG = PORT_CLOCKLED_SELG;

out port cledR = PORT_CLOCKLED_SELR;

out port ledscore = PORT_BUTTONLED;

in port button = PORT_BUTTON;

void tokenFlash (chanend left, chanend right, out port led,

int delay, int

isMaster)

{

timer tmr;

unsigned t;

int token;

if (isMaster) /* master inserts token into ring */

right <: 1;

while (1)

{

left :> token; /* input token from left neighbor */

led <: 16;

tmr :> t;

tmr when timerafter (t+ delay) :> t;

led <: 32;

tmr when timerafter (t+ delay) :> t;

led <: 64;

tmr :> t;

tmr when timerafter (t+ delay) :> t;

led <: 0;

right <: token; /* output token to right neighbor */

}

}

void tokenFlash1 (chanend left, chanend right, out port led,

int delay, int

isMaster)

84

{

timer tmr;

unsigned t;

int token;

int i=1;

if (isMaster) /* master inserts token into ring */

right <: 1;

while (1)

{int press;

int j=0;

button :> press;

left :> token; /* input token from left neighbor */

tmr :> t;

while(j<30){

led <: 16;

j++;

}

tmr :> t;

tmr when timerafter (t+ delay) :> t;

while(j<50){

led <: 32;

j++;

}

/*tmr when timerafter (t+ delay) :> t;*/

tmr when timerafter (t+ delay) :> t;

while(j<70){

led <: 64;

j++;

}

if(press!=0xf){

ledscore <: i;

i++;

if(i>15){i=0;}

tmr :> t;

85

tmr when timerafter (t+ 5*delay) :> t;

}

tmr :> t;

tmr when timerafter (t+ delay) :> t;

led <: 0;

right <: token; /* output token to right neighbor */

}

}

int main(void){

chan c0, c1, c2, c3;

par

{

on stdcore [0]:{cledG <: 1;

cledR <: 1;

tokenFlash1 (c0, c1, cled0, PERIOD, 0);

}

on stdcore [1]: tokenFlash (c1, c2, cled1, PERIOD, 0);

on stdcore [2]: tokenFlash (c2, c3, cled2, PERIOD, 0);

on stdcore [3]: tokenFlash (c3, c0, cled3, PERIOD, 1);

}

return 0;

}

A.3.2 Video Display

Video display

#include <platform.h>

#include "lcd.h"

#include <stdio.h>

#include <print.h>

#include "sprite.h"

#include "sdram.h"

#define BUF_WORDS (60/2*60)

#define MAX_FRAMES 5

86

unsigned frame[BUF_WORDS];

//unsigned read_buffer[BUF_WORDS];

lcd_ports ports = {

XS1_PORT_1G, XS1_PORT_1F, XS1_PORT_16A, XS1_PORT_1B,

XS1_PORT_1C, XS1_CLKBLK_1};

on tile[0]: sdram_ports ports1 = {

// XS1_PORT_16A, XS1_PORT_1B, XS1_PORT_1G, XS1_PORT_1C,

XS1_PORT_1F, XS1_CLKBLK_1 };

XS1_PORT_16B, XS1_PORT_1J, XS1_PORT_1I, XS1_PORT_1K,

XS1_PORT_1L, XS1_CLKBLK_2 };

static inline void add(unsigned x, unsigned y, unsigned line,

unsigned buffer[]){

if(line >= x && line < x + SPRITE_HEIGHT_PX)

for(unsigned i=y;i<y + SPRITE_WIDTH_WORDS;i++)

buffer[i] =

frame[(line-x)*SPRITE_WIDTH_WORDS+(i-y)];

}

static inline void sub(unsigned x, unsigned y, unsigned line,

unsigned buffer[]){

if(line >= x && line < x + SPRITE_HEIGHT_PX)

for(unsigned i=y;i<y + SPRITE_WIDTH_WORDS;i++)

buffer[i] = BACK_COLOUR;

}

void demo(chanend c_lcd,chanend server){

unsigned i=0,j=0,row_cnt,col_cnt;

timer t;

unsigned time_start,time_end;

unsigned read_buffer[BUF_WORDS];

87

int x = 20,y = 20;

unsigned

buffer[2][LCD_ROW_WORDS],black_frame[LCD_ROW_WORDS];

unsigned buffer_index = 0, update = 0;

for(unsigned i=0;i<LCD_ROW_WORDS;i++)

buffer[0][i] = buffer[1][i] = black_frame[i]=

BACK_COLOUR;

lcd_init(c_lcd);

i = 0;

while(1){

j = j+1;

j = j%MAX_FRAMES;

//There are 256 cells in a row of a bank in SDRAM.

row_cnt = j*BUF_WORDS*2/256; //actual address

16-bit cell so multiplied with 2.

col_cnt = (j*BUF_WORDS*2)%256;

// Read the SDRAM into the read_buffer.

sdram_buffer_read(server, 0, 0+row_cnt, 0+col_cnt,

BUF_WORDS, read_buffer);

//Wait until idle, i.e. the sdram had completed

reading and hence the data is ready in the buffer.

sdram_wait_until_idle(server, read_buffer);

for(i=0;i<BUF_WORDS;i++){

frame[i] = read_buffer[i];

}

t :> time_start;

time_start = time_start + 100000000;

i = 1;

while(i)

{

add(x, y, 0, buffer[buffer_index]);

lcd_req(c_lcd);

88

lcd_update(c_lcd, buffer[buffer_index]);

for(unsigned line=1;line<LCD_HEIGHT;line++){

add(x, y, line, buffer[1 - buffer_index]);

lcd_req(c_lcd);

lcd_update(c_lcd, buffer[1 - buffer_index]);

sub(x, y, line-1, buffer[buffer_index]);

buffer_index = 1 - buffer_index;

}

sub(x, y, LCD_HEIGHT-1, buffer[buffer_index]);

t :> time_end;

if(time_end>=time_start)

{

i =0;

}

}

/* t :> time_start;

time_start = time_start + 100000000;

i = 1;

while(i)

{

lcd_req(c_lcd);

lcd_update(c_lcd, black_frame);

for(unsigned line=1;line<LCD_HEIGHT;line++){

lcd_req(c_lcd);

lcd_update(c_lcd, black_frame);

}

t :> time_end;

if(time_end>=time_start)

{

i =0;

}

}*/

}

}

89

void main() {

chan c_lcd,c_sdram;

par {

sdram_server(c_sdram, ports1);

lcd_server(c_lcd, ports);

demo(c_lcd,c_sdram);

}

}

The commented code is useful to control frame rate (decrease). It is also used to exper-

iment the lcd working.

A.3.3 Frame subtraction - main function

#include <platform.h>

#include "sdram.h"

#include "lcd.h"

#include "display_controller.h"

#include "transitions.h"

#include <stdio.h>

#include "loader.h"

on tile[0] : lcd_ports lcdports = {

XS1_PORT_1G, XS1_PORT_1F, XS1_PORT_16A, XS1_PORT_1B,

XS1_PORT_1C, XS1_CLKBLK_1 };

on tile[0] : sdram_ports sdramports = {

XS1_PORT_16B, XS1_PORT_1J, XS1_PORT_1I, XS1_PORT_1K,

XS1_PORT_1L, XS1_CLKBLK_2 };

#define IMAGE_COUNT (13)

//char images[IMAGE_COUNT][30] = { {"4001-tif.tga"},

{"4010-tif.tga"},{"4019-tif.tga"},{"4037-tif.tga"},{"4046-tif.tga"},{"4055-tif.tga"},

// {"4064-tif.tga"},

90

{"4073-tif.tga"},{"4082-tif.tga"},{"4091-tif.tga"},{"4100-tif.tga"},{"4109-tif.tga"}};

//char images[IMAGE_COUNT][30] = { {"4001-tif.tga"},

{"4010-tif.tga"},{"4019-tif.tga"},{"4046-tif.tga"},{"4037-tif.tga"},{"4055-tif.tga"},{"4064-tif.tga"},

//

{"4073-tif.tga"},{"4082-tif.tga"},{"4091-tif.tga"},{"4100-tif.tga"},{"4109-tif.tga"}};

char images[IMAGE_COUNT][30] = { {"2001-tif.tga"},

{"2011-tif.tga"},{"2021-tif.tga"},{"2031-tif.tga"},{"2041-tif.tga"},{"2051-tif.tga"},{"2061-tif.tga"},

{"2071-tif.tga"},{"2081-tif.tga"},{"2091-tif.tga"},{"2101-tif.tga"},{"2111-tif.tga"},{"2121-tif.tga"}};

static void load_image(chanend c_server, chanend c_loader,

unsigned image_no) {

unsigned buffer[LCD_ROW_WORDS];

for (unsigned line = 0; line < LCD_HEIGHT; line++){

for(unsigned i=0;i<LCD_ROW_WORDS*2;i++)

c_loader :> (buffer, short[])[i];

image_write_line(c_server, line, image_no, buffer);

wait_until_idle(c_server, buffer);

}

}

void app(chanend server, chanend c_loader){

unsigned image[IMAGE_COUNT];

unsigned fb_index = 0, frame_buffer[2];

unsigned current_image=0;

unsigned next_image = (current_image+1)%IMAGE_COUNT;

for(unsigned i=0;i<IMAGE_COUNT;i++){

image[i] = register_image(server, LCD_ROW_WORDS,

LCD_HEIGHT);

printf("image handle:%d\n",image[i]);

load_image(server, c_loader, image[i]);

}

frame_buffer[0] = register_image(server, LCD_ROW_WORDS,

LCD_HEIGHT);

frame_buffer[1] = register_image(server, LCD_ROW_WORDS,

LCD_HEIGHT);

91

frame_buffer_init(server, image[0]);

while(1){

fb_index = transition_alpha_blend(server, frame_buffer,

image[current_image], image[next_image], 3, fb_index);

current_image = next_image;

next_image = (current_image+1)%IMAGE_COUNT;

}

}

int main() {

chan c_sdram, c_lcd, client, c_loader;

par {

on tile[0]:app(client, c_loader);

on tile[0]:display_controller(client, c_lcd, c_sdram);

on tile[0]:sdram_server(c_sdram, sdramports);

on tile[0]:lcd_server(c_lcd, lcdports);

on tile[1]:loader(c_loader, images, IMAGE_COUNT);

}

return 0;

}

A.3.4 Binarization, cca call and put bounding box

// Binarization of the image, CCA and bounding box are done in

this code

#include "transitions.h"

#include "lcd.h"

#include "display_controller.h"

#include "cca_slice.h"

#define thresh 5

92

//This function is used to put bounding box around the object

static void transition_alpha_blend_impl(chanend server,

unsigned next_image_fb,

unsigned image_from, unsigned image_to, unsigned s,

unsigned line,int xmin[],int xmax[],int ymin[],int

ymax[],int area[]) {

unsigned dst[LCD_ROW_WORDS];

unsigned Ht[SIZE],Wt[SIZE];

unsigned max=0;//,area[SIZE];

unsigned c;//,ht=15,wt=5;

int xb,yb,index=0;

char x1[SIZE];//={31,31,21,19,23,34,48,65,59,66,77,99,104};

char y1[SIZE];//={17,17,22,27,33,41,49,60,70,81,97,113,135};

char count=0;

for(c=0;c<SIZE;c++)

{

Ht[c] = ymax[c]-ymin[c];

Wt[c] = xmax[c]-xmin[c];

}

for(c=0;c<SIZE;c++){

if(max<area[c]){

index = c;

max=area[c];

}

}

image_read_line(server, line, image_to, dst); //Get dst[]

from sdram. It gets the complete row of pixels

wait_until_idle(server, dst); //Waits until the array is

obtained from sdram

xb = ymin[index];

yb = xmin[index]/2; //Since two pixels are written at once

on the lcd

for (c = 0; c < SIZE; c++) {

93

if (area[c] > 30) { //area threshold. Only area

greater than 30 can have bounding box

count = count + 1;

xb = ymin[c];

yb = xmin[c]>>1; //two pixels at a time

concept

if ((line == xb) || (line == (xb + Ht[c]))) {

for (unsigned j = yb; j < (yb + Wt[c]

/ 2); j++) {

if ((j>0) && (j <

LCD_ROW_WORDS)) {

dst[j] = 0xF800F800;

//blue clor bounding

box {b,g,r} =

{’11111’,’000000’,’00000’}

}

}

}

if ((line < (xb + Ht[c])) && (line > xb)) {

if ((yb>0) && (yb < LCD_ROW_WORDS)) {

dst[yb] = 0xF800F800;

}

if (((yb + Wt[c] / 2)>0) && ((yb +

Wt[c] / 2) < LCD_ROW_WORDS)) {

dst[yb+Wt[c]/2] = 0xF800F800;

}

}

}

}

94

// Display tagged video

image_write_line(server, line, next_image_fb, dst);

//Dipslay dst[], a row of modified pixels in the lcd. It

is modified in order to put bbox

wait_until_idle(server, dst);

}

//above here are implimentations

//The below function is used for binarization and send pixel

values to cca module

void read_sdram_cca(unsigned dst[],unsigned src[],streaming

chanend cca,int line){

char diff1,diff2;

int ec,oc,eb,ob;

unsigned c;

for(c=0;c<LCD_ROW_WORDS;c++){

oc = (0x000007E0 & dst[c])>>5; //extract odd

pixel value (green component) from current

image. {b,g,r}={’00000’,’111111’,’00000’}=

0X07E0

ec = (0x07E007E0 & dst[c])>>21; //extract even

pixel value (green component) from current

image. {b,g,r}={’00000’,’111111’,’00000’}=

0X07E0

ob = (0x000007E0 & src[c])>>5; //extract odd

pixel value (green component) from background

image. {b,g,r}={’00000’,’111111’,’00000’}=

0X07E0

eb = (0x07E007E0 & src[c])>>21; //extract even

pixel value (green component) from background

95

image. {b,g,r}={’00000’,’111111’,’00000’}=

0X07E0

if(oc>ob){

diff1 = oc-ob; //diff1 holds absolute

value of difference between the green

component of the odd pixels

}

else

diff1 = ob-oc;

if(ec>eb){

diff2 = ec-eb; //diff2 holds absolute

value of difference between the green

component of the even pixels

}

else

diff2 = eb-ec;

if(((diff1)>thresh) && ((diff2)>thresh)){ //Only

if both diff1 and diff2 are greater than

intensity threshold, it will be considered as

object..

dst[c] = 0xFFFFFFFF; //...pixel. It

inherently acts as noise filter as salt

and pepper noises won’t show up in

binary image...

} // All other options also experimented:: for

example diff1 can be greater than threshold

but diff2 may not be. In such cases, it is

logical to...

else{ //.. consider dst[c] = 0xFFFF0000. But if

we consider 0xFFFF0000 and 0x0000FFFF case,

noise increases in the binary image. So the

current..

96

dst[c] = 0x00000000; //..implementation is

good. Need not experiment

}

}

for(c=0;c<LCD_ROW_WORDS;c++)

{

for(char j=0;j<=1;j++)

{

if((line>5) && (line<265) && (c>5) &&

(c<(LCD_ROW_WORDS-5))){//Near the edges

of the image, I am avoiding any pixel

being an object pixel..

if(dst[c]==0xFFFFFFFF) //... It is done to

avoid any run time error while issuing

bounding box. You can change it and see

o/p.

cca <: 200; //Something greater than

threshold for cca. CCA must

recognise this as object pixel. Go

to CCA code..

else //... and see the threshold while

labeling. 200 is greater than the

intensity threshold in cca. You can

give 255 instead of 200.

cca <: 0;}

else

cca <: 0;

}

}

}

97

unsigned transition_alpha_blend(chanend server, unsigned

frame_buffer[2],

unsigned image_from, unsigned image_to, unsigned frames,

unsigned cur_fb_index) {

unsigned next_fb_index;

streaming chan ch_cca;

unsigned src[LCD_ROW_WORDS];

unsigned dst[LCD_ROW_WORDS];

int

xmin[SIZE],ymin[SIZE],xmax[SIZE],ymax[SIZE],area[SIZE];

for (unsigned frame = 0; frame < frames; frame++) {

unsigned fade = frame * MAX_ALPHA_BLEND / frames;

unsigned line1,line2;

next_fb_index = (cur_fb_index + 1) & 1;

//CCA has to be included here to make it online

for(line1=0;line1<SIZE;line1++){

xmin[line1]=0;

xmax[line1]=0;

ymin[line1]=0;

ymax[line1]=0;

area[line1]=0;

}

par{ //CCA and sdram reads are happening in parallel. When a

row of pixels are evaluated by CCA module, next row of

pixels are obtained from sdram.

{

for(line1=0;line1<LCD_HEIGHT;line1++)

{

image_read_line(server, line1, image_to,

dst);

wait_until_idle(server, dst);

image_read_line(server, line1, image_from,

src); // Frame subtraction

//image_read_line(server, line1, 0, src); //

98

Background subtraction. Comment Frame

subtraction and uncomment Background

subtraction...

wait_until_idle(server, src); //... to do

background subtraction

read_sdram_cca(dst,src,ch_cca,line1);

//Binary video can be seen if you uncomment the following two

lines and comment the lines meant for tagged video in

function meant for bbox

//image_write_line(server, line1,

frame_buffer[next_fb_index], dst);

//wait_until_idle(server, dst);

}

}

conn_comp_anal(ch_cca,10,xmin,xmax,ymin,ymax,area); //CCA

}

for (unsigned line = 0; line < LCD_HEIGHT; line++) {

transition_alpha_blend_impl(server,

frame_buffer[next_fb_index],

image_from, image_to, fade,

line,xmin,xmax,ymin,ymax,area); //Outputs from CCA

are sent to bounding box function

}

frame_buffer_commit(server, frame_buffer[next_fb_index]);

cur_fb_index = next_fb_index;

}

next_fb_index = (cur_fb_index + 1) & 1;

frame_buffer_commit(server, frame_buffer[next_fb_index]);

return next_fb_index;

}

99

A.3.5 Connected Component Analysis

//--

// Program: Single Pass Connected Component Analysis with

Label Reuse

// Input: Grey image (read from the flash of XMOS board,

XK-1A for example)

// Output: Curret and Previous Data table displaying features

of connected components

// References:

// 1. Ni Ma, D.G.Bailey and C.T.Johnston, "Optimized Single

pass connected component analysis",

// Image and Vision Computing Conference, Dec 2007.

// 2. R.C.Gonzalez and R.E. Woods, 10.3.3-Optimum global

thresholding using Otsu’s method,

// Digital Image Processing, Pearson

Prentice Hall, 2009.

//--

//<-----------------------------------HEADER

FILES-------------------------------------->

#include<xs1.h>

#include<flashlib.h>

#include<platform.h>

#include<print.h>

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

//<-----------------------------------MACROS--->

#define HEIGHT 272

#define WIDTH 480

100

#define SIZE WIDTH/2+1+10

//<-----------------------------------FUNCTION

DECLARATION------------------------------>

//CCA label reuse

void update_translation(unsigned int, unsigned int, unsigned

int, unsigned int,

int[], int[], int[], int[], int[], int[], int[],

int[], int[], int[],

int[], int[], int[], int[], int[]); //Whenever new

label is assigned

void update_stack(int, int, unsigned int, unsigned int,

unsigned int, int[],

int[], int[], int[], int[], int[], int[], int[]);

//Whenever merging condition

void update_general(int, unsigned int, unsigned int, int[],

int[], int[],

int[], int[], int[], int[]); //If old label is

assigned

void conn_comp_anal(streaming chanend, int, unsigned[],

unsigned[], unsigned[],

unsigned[], unsigned[]); //Connected component

analysis using label reuse

void update_DE(int);

//<-----------------------------------MAIN

FUNCTION------------------------------------>

//<-----------------------------------UPDATE

TRANSLATION-------------------------------->

//Keeps track of connection between new label and the

previously assigned labels

void update_translation(unsigned int x, unsigned int y,

101

unsigned int i,

unsigned int j, int CD[], int CD_cogx[], int

CD_cogy[], int CD_xmin[],

int CD_xmax[], int CD_ymin[], int CD_ymax[], int

T[], int PD[],

int PD_cogx[], int PD_cogy[], int PD_xmin[], int

PD_xmax[],

int PD_ymin[], int PD_ymax[]) {

if (y) {

T[y] = x; //x = DE, y = C or x = new + 1, y = A|B|C

//Area computation

CD[x] = PD[y] + CD[x] + 1;

PD[y] = 0;

//COG computation

CD_cogx[x] = PD_cogx[y] + CD_cogx[x] + j;

PD_cogx[y] = 0;

CD_cogy[x] = PD_cogy[y] + CD_cogy[x] + i;

PD_cogy[y] = 0;

//Bounding box computation

if (CD_xmin[x] > PD_xmin[y])

CD_xmin[x] = PD_xmin[y];

if (CD_xmax[x] < PD_xmax[y])

CD_xmax[x] = PD_xmax[y];

if (CD_ymin[x] > PD_ymin[y])

CD_ymin[x] = PD_ymin[y];

if (CD_ymax[x] < PD_ymax[y])

CD_ymax[x] = PD_ymax[y];

}

}

//<-----------------------------------UPDATE

STACK------------------------------------->

//Whenever a merging condition occures, Current data table is

102

updated along with

//the labels are stored separately so that it can update

Current merger at the end

//of every row

void update_stack(int x, int y, unsigned int i, unsigned int j,

unsigned int SP, int CD[], int CD_cogx[], int

CD_cogy[], int CD_xmin[],

int CD_xmax[], int CD_ymin[], int CD_ymax[], int

stack[]) {

if (x == y) {

CD[y] = CD[y] + 1;

CD_cogx[y] = CD_cogx[y] + j;

CD_cogy[y] = CD_cogy[y] + i;

} else {

stack[SP] = x; //x = DE, y = CE

stack[SP + 1] = y;

SP = SP + 2;

CD[y] = CD[y] + CD[x] + 1;

CD[x] = 0;

//COG computation

CD_cogx[y] = CD_cogx[y] + CD_cogx[x] + j;

CD_cogx[x] = 0;

CD_cogy[y] = CD_cogy[y] + CD_cogy[x] + i;

CD_cogy[x] = 0;

//Bounding box

if (CD_xmin[y] > CD_xmin[x])

CD_xmin[y] = CD_xmin[x];

if (CD_xmax[y] < CD_xmax[x])

CD_xmax[y] = CD_xmax[x];

if (CD_ymin[y] > CD_ymin[x])

CD_ymin[y] = CD_ymin[x];

if (CD_ymax[y] < CD_ymax[x])

CD_ymax[y] = CD_ymax[x];

103

}

} // stack(3,2), stack(2,1)---> [1 2 2 3]’

//<-----------------------------------UPDATE

GENERAL------------------------------------->

//When old label is assigned and no merger condition is

encountered

void update_general(int index, unsigned int i, unsigned int j,

int CD[],

int CD_cogx[], int CD_cogy[], int CD_xmin[], int

CD_xmax[],

int CD_ymin[], int CD_ymax[]) {

CD[index] = CD[index] + 1;

CD_cogx[index] = CD_cogx[index] + j;

CD_cogy[index] = CD_cogy[index] + i;

//Bounding box

if (CD_xmin[index] > j)

CD_xmin[index] = j;

if (CD_xmax[index] < j)

CD_xmax[index] = j;

if (CD_ymin[index] > i)

CD_ymin[index] = i;

if (CD_ymax[index] < j)

CD_ymax[index] = i;

}

//<-----------------------------------LABEL

SELECTION------------------------------------>

//Selection tree is from the paper. At each end of the branch

set of decisions are taken.

//If a new label is assigned, then Translation table update is

required.

//If a merginging condition occurs, then stack is updated...

104

//then at the end of the row Current Merger table is updated.

//If only a old label is assinged then the label’s

corresponding data must be updated.

int label1(int data, int th) {

}

//<-----------------------------------CCA--->

void conn_comp_anal(streaming chanend c, int threshold,

unsigned xmin[],

unsigned xmax[], unsigned ymin[], unsigned ymax[],

unsigned area[]) {

//<-----------------------------------VARIABLE

DECLARATION------------------------------>

int T[SIZE] = { 0 }, PD[SIZE] = { 0 }, PM[SIZE] = { 0 },

CD[SIZE] = { 0 },

CM[SIZE] = { 0 }, stack[SIZE] = { 0

};//,area[SIZE]={0}; //size of SIZE

//T - TRANSLATION TABLE, PD - PREVIOUS DATA TABLE, PM -

PREVIOUS MERGER TABLE

//CD - CURRENT DATA TABLE, CM - CURRENT MERGER TABLE,

STACK - STACK TABLE FOR UPDATING CM[]

int PD_cogx[SIZE] = { 0 }, CD_cogx[SIZE] = { 0 },

PD_cogy[SIZE] = { 0 },

CD_cogy[SIZE] = { 0 };

int cogx[SIZE] = { 0 }, cogy[SIZE] = { 0 };

int PD_xmin[SIZE] = { 0 }, CD_xmin[SIZE] = { 0 },

PD_ymin[SIZE] = { 0 },

CD_ymin[SIZE] = { 0 };

int PD_xmax[SIZE] = { 0 }, CD_xmax[SIZE] = { 0 },

PD_ymax[SIZE] = { 0 },

105

CD_ymax[SIZE] = { 0 };

//int

xmin[SIZE]={0},xmax[SIZE]={0},ymin[SIZE]={0},ymax[SIZE]={0};

int RB[WIDTH + 2] = { 0 }; //size of WIDTH+1 with last

element always be zero and also 0^{th} element

remains zero

//RB[0] = RB[WIDTH+1] = 0 ALWAYS

int A, B, C, AE, BE, CE, DE;

//A B C are derived from PM[] and RB[]

//AE BE DE are equivalent labels derived from A B C AND

T[]

int data, i, j, new1, SP = 0, temp; //SP := Stack Pointer

//new1 is label assigning variable

unsigned int count = 0, size;

//printf("I came in :)\n");

//Algorithm

for (i = 0; i < HEIGHT; i++) {

SP = SP - 1;

while (SP > 0) {

CM[stack[SP - 1]] = CM[stack[SP]];

SP = SP - 2;

}

SP = 0; //Stack pointer goes to zero for new1 row

for (int k = 0; k < SIZE; k++) {

T[k] = 0;

if (PD[k]) {

area[count] = PD[k];

cogx[count] = PD_cogx[k] / (PD[k]);

cogy[count] = PD_cogy[k] / (PD[k]);

xmin[count] = PD_xmin[k];

xmax[count] = PD_xmax[k];

106

ymin[count] = PD_ymin[k];

ymax[count] = PD_ymax[k];

count = count + 1;

}

PD[k] = CD[k];

PD_cogx[k] = CD_cogx[k];

PD_cogy[k] = CD_cogy[k];

PD_xmin[k] = CD_xmin[k];

PD_ymin[k] = CD_ymin[k];

PD_xmax[k] = CD_xmax[k];

PD_ymax[k] = CD_ymax[k];

CD[k] = 0;

CD_cogx[k] = 0;

CD_cogy[k] = 0;

CD_ymax[k] = 0;

CD_ymin[k] = 0;

CD_xmax[k] = 0;

CD_xmin[k] = 0;

PM[k] = CM[k];

CM[k] = 0;

}

DE = 0;

new1 = 0;

RB[0] = 0;

RB[WIDTH + 1] = 0;

for (j = 1; j < (WIDTH + 2); j++) {

if (j < (WIDTH + 1)) {

c :> data; //get the data from the

channel or from an array

if (data)

//printf("data:%d ",data);

//Get all the value of

neighbourhood context through

A = PM[RB[j - 1]]; //temp =

107

RB[j-1];

B = PM[RB[j]];

C = PM[RB[j + 1]]; //Labels assigned

based on the last row information

AE = T[A];

BE = T[B];

CE = T[C]; //Labels re-assigned simply

to preserve connectivity alone

RB[j - 1] = DE; //Previous DE value is

updated in Row Buffer

//new1 label is assigned to DE &&

Label selection exactly as given in

table

if (data > threshold) {

if (DE && (!C)) {

update_general(DE, i, j,

CD, CD_cogx, CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax);

DE = DE;

}

if (DE && C && (!CE)) {

update_translation(DE, C,

i, j, CD, CD_cogx,

CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax, T,

PD,

PD_cogx,

108

PD_cogy,

PD_xmin,

PD_xmax,

PD_ymin,

PD_ymax);

DE = DE;

}

if (DE && C && CE) {

update_stack(DE, CE, i, j,

SP, CD, CD_cogx,

CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax,

stack);

DE = CE;

}

if ((!DE) && BE) {

update_general(BE, i, j,

CD, CD_cogx, CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax);

DE = BE;

}

if ((!DE) && (!BE) && CE &&

(!A)) {

update_general(CE, i, j,

CD, CD_cogx, CD_cogy,

109

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax);

DE = CE;

}

if ((!DE) && (!BE) && CE && A &&

AE) {

update_stack(AE, CE, i, j,

SP, CD, CD_cogx,

CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax,

stack);

DE = CE;

}

if ((!DE) && (!BE) && CE && A &&

(!AE)) {

//update_translation(CE,A);

//Translation is not

required as it is a

inner loop

CD[CE] = CD[CE] + PD[A];

PD[A] = 0;

//COG

CD_cogx[CE] = CD_cogx[CE]

+ PD_cogx[A];

PD_cogx[A] = 0;

CD_cogy[CE] = CD_cogy[CE]

+ PD_cogy[A];

110

PD_cogy[A] = 0;

//Bounding box

if (CD_xmin[CE] >

PD_xmin[A])

CD_xmin[CE] =

PD_xmin[A];

if (CD_xmax[CE] <

PD_xmax[A])

CD_xmax[CE] =

PD_xmax[A];

if (CD_ymin[CE] >

PD_ymin[A])

CD_ymin[CE] =

PD_ymin[A];

if (CD_ymax[CE] <

PD_ymax[A])

CD_ymax[CE] =

PD_ymax[A];

DE = CE;

}

if ((!DE) && (!BE) && (!CE) &&

AE) {

if (C)

update_translation(AE,

C, i, j, CD,

CD_cogx,

CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax,

T,

PD,

111

PD_cogx,

PD_cogy,

PD_xmin,

PD_xmax,

PD_ymin,

PD_ymax);

else

update_general(AE,

i, j, CD,

CD_cogx, CD_cogy,

CD_xmin,

CD_xmax,

CD_ymin,

CD_ymax);

DE = AE;

}

if ((!DE) && (!BE) && (!CE) &&

(!AE)) {

//Begining of new object

new1 = new1 + 1;

CM[new1] = new1;

//Area

CD[new1] = 1;

//COG

CD_cogx[new1] = j;

CD_cogy[new1] = i;

//Bounding box

CD_ymin[new1] = i;

CD_xmin[new1] = j;

CD_ymax[new1] = 0;

CD_xmax[new1] = 0;

if (A) {

112

T[A] = new1;

CD[new1] = CD[new1]

+ PD[A];

PD[A] = 0;

CD_cogx[new1] =

CD_cogx[new1] +

PD_cogx[A];

PD_cogx[A] = 0;

CD_cogy[new1] =

CD_cogy[new1] +

PD_cogy[A];

PD_cogy[A] = 0;

//Bounding box

if (CD_xmin[new1] >

PD_xmin[A])

CD_xmin[new1]

=

PD_xmin[A];

if (CD_xmax[new1] <

PD_xmax[A])

CD_xmax[new1]

=

PD_xmax[A];

if (CD_ymin[new1] >

PD_ymin[A])

CD_ymin[new1]

=

PD_ymin[A];

if (CD_ymax[new1] <

PD_ymax[A])

CD_ymax[new1]

=

113

PD_ymax[A];

}

if (B) {

T[B] = new1;

CD[new1] = CD[new1]

+ PD[B];

PD[B] = 0;

CD_cogx[new1] =

CD_cogx[new1] +

PD_cogx[B];

PD_cogx[B] = 0;

CD_cogy[new1] =

CD_cogy[new1] +

PD_cogy[B];

PD_cogy[B] = 0;

//Bounding box

if (CD_xmin[new1] >

PD_xmin[B])

CD_xmin[new1]

=

PD_xmin[B];

if (CD_xmax[new1] <

PD_xmax[B])

CD_xmax[new1]

=

PD_xmax[B];

if (CD_ymin[new1] >

PD_ymin[B])

CD_ymin[new1]

=

PD_ymin[B];

if (CD_ymax[new1] <

PD_ymax[B])

114

CD_ymax[new1]

=

PD_ymax[B];

}

if (C) {

T[C] = new1;

CD[new1] = CD[new1]

+ PD[C];

PD[C] = 0;

CD_cogx[new1] =

CD_cogx[new1] +

PD_cogx[C];

PD_cogx[C] = 0;

CD_cogy[new1] =

CD_cogy[new1] +

PD_cogy[C];

PD_cogy[C] = 0;

//Bounding box

if (CD_xmin[new1] >

PD_xmin[C])

CD_xmin[new1]

=

PD_xmin[C];

if (CD_xmax[new1] <

PD_xmax[C])

CD_xmax[new1]

=

PD_xmax[C];

if (CD_ymin[new1] >

PD_ymin[C])

CD_ymin[new1]

=

PD_ymin[C];

115

if (CD_ymax[new1] <

PD_ymax[C])

CD_ymax[new1]

=

PD_ymax[C];

}

DE = new1;

}

}

else {

DE = 0;

}

//Printing the array after label

re-use algorithm

/*if(j==WIDTH)

printf(" %d\n",DE);

else

printf(" %d",DE);*/

} else {

RB[j - 1] = DE;

}

}

}

size = SIZE - count;

for (j = 1; j < size; j++) {

if (CD[j] > 0) {

area[j + count - 1] = CD[j];

cogx[j + count - 1] = CD_cogx[j] / CD[j];

cogy[j + count - 1] = CD_cogy[j] / CD[j];

xmin[j + count - 1] = CD_xmin[j];

xmax[j + count - 1] = CD_xmax[j];

116

ymin[j + count - 1] = CD_ymin[j];

ymax[j + count - 1] = CD_ymax[j];

}

}

count = 1;

/*printf(" Obj.No \t Area \t COG \t Bound_x \t Bound_y

\n");

for(j=1;j<SIZE;j++){

if(area[j]){

printf(" %d \t\t %d \t (%d,%d) \t (%d,%d) \t (%d,%d)

\n",count,area[j],cogx[j],cogy[j],xmin[j],xmax[j],ymin[j],ymax[j]);

count = count+1;}

if(PD[j]){

printf(" %d \t\t %d \t (%d,%d) \t (%d,%d) \t (%d,%d)

\n",count,PD[j],cogx[j],cogy[j],xmin[j],xmax[j],ymin[j],ymax[j]);

count = count+1;}

}

printf("\nTotal number of objects = %d\n",count-1);*/

}

117

REFERENCES

1. Dalal, N. and B. Triggs, Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1. 2005. ISSN 1063-6919.

2. Gonzalez, R. E. W., Rafael C. and S. L. Eddins, Digital image processing using MAT-
LAB. Pearson Education India, Reading, MA, 2004.

3. Jason, A. S. (). Controlling external sdram. URL https://github.com/xcore/
sc_sdram_burst.

4. Johnston, C. and D. Bailey, Fpga implementation of a single pass connected compo-
nents algorithm. In Electronic Design, Test and Applications, 2008. DELTA 2008. 4th
IEEE International Symposium on. 2008.

5. Liu, S., A. Papakonstantinou, H. Wang, and D. Chen, Real-time object tracking sys-
tem on fpgas. In Application Accelerators in High-Performance Computing (SAAHPC),
2011 Symposium on. 2011.

6. Ludwig, O. (2010). Hog descriptor for matlab. URL http:
//www.mathworks.in/matlabcentral/fileexchange/
28689-hog-descriptor-for-matlab.

7. Ma, N., D. Bailey, and C. Johnston, Optimised single pass connected components
analysis. In ICECE Technology, 2008. FPT 2008. International Conference on. 2008.

8. Mahmoud, I., H. Abd El-Halym, and S.-D. Habib, Hardware development and im-
plementation of an object tracking algorithm. In Microelectronics, 2003. ICM 2003.
Proceedings of the 15th International Conference on. 2003.

9. MathWorks (1994). Detecting cars in a video of traffic. URL http:
//www.mathworks.in/products/image/examples.html?file=
/products/demos/shipping/images/ipextraffic.html.

10. NUMONYX (2008). Datasheet of flash m25p10-a. URL http://www.xmos.com/
references/m25p10a.

11. Pulli, K., A. Baksheev, K. Kornyakov, and V. Eruhimov (2012). Realtime computer
vision with opencv. Queue, 10(4), 40:40–40:56. ISSN 1542-7730. URL http://
doi.acm.org/10.1145/2181796.2206309.

12. Shah, M. (2012). Histogram of oriented gradients(hog). URL http://www.
youtube.com/watch?v=0Zib1YEE4LU.

13. XMOS (). Xc-1a hardware manual. URL https://www.xmos.com/download/
final/XC-1A-Hardware-Manual%281.2%29.pdf?time=1366795753.

118

https://github.com/xcore/sc_sdram_burst
https://github.com/xcore/sc_sdram_burst
http://www.mathworks.in/matlabcentral/fileexchange/28689-hog-descriptor-for-matlab
http://www.mathworks.in/matlabcentral/fileexchange/28689-hog-descriptor-for-matlab
http://www.mathworks.in/matlabcentral/fileexchange/28689-hog-descriptor-for-matlab
http://www.mathworks.in/products/image/examples.html?file=/products/demos/shipping/images/ipextraffic.html
http://www.mathworks.in/products/image/examples.html?file=/products/demos/shipping/images/ipextraffic.html
http://www.mathworks.in/products/image/examples.html?file=/products/demos/shipping/images/ipextraffic.html
http://www.xmos.com/references/m25p10a
http://www.xmos.com/references/m25p10a
http://doi.acm.org/10.1145/2181796.2206309
http://doi.acm.org/10.1145/2181796.2206309
http://www.youtube.com/watch?v=0Zib1YEE4LU
http://www.youtube.com/watch?v=0Zib1YEE4LU
https://www.xmos.com/download/final/XC-1A-Hardware-Manual%281.2%29.pdf?time=1366795753
https://www.xmos.com/download/final/XC-1A-Hardware-Manual%281.2%29.pdf?time=1366795753

14. Xmos (). Xc for verilog designers. URL https://www.xmos.com/download/
final/XC-for-Verilog-Designers-Whitepaper%281.0%29.pdf?
time=1366795703.

15. XMOS (). xtimecomposer user guide. URL https://www.xmos.com/
download/final/xTIMEcomposer-User-Guide%28X3766B%29.pdf?
time=1366795935.

16. Yang, T., Q. Pan, J. Li, and S. Li, Real-time multiple objects tracking with occlusion
handling in dynamic scenes. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1. 2005. ISSN 1063-6919.

119

https://www.xmos.com/download/final/XC-for-Verilog-Designers-Whitepaper%281.0%29.pdf?time=1366795703
https://www.xmos.com/download/final/XC-for-Verilog-Designers-Whitepaper%281.0%29.pdf?time=1366795703
https://www.xmos.com/download/final/XC-for-Verilog-Designers-Whitepaper%281.0%29.pdf?time=1366795703
https://www.xmos.com/download/final/xTIMEcomposer-User-Guide%28X3766B%29.pdf?time=1366795935
https://www.xmos.com/download/final/xTIMEcomposer-User-Guide%28X3766B%29.pdf?time=1366795935
https://www.xmos.com/download/final/xTIMEcomposer-User-Guide%28X3766B%29.pdf?time=1366795935

