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CHAPTER 1

Introduction

1.1 Silicon Photonics

In the last decade Silicon Photonics has emerged as an important area of re-

search in the field of communication technology. As the device size becomes

smaller, the gate delays, power consumption and other factors start causing prob-

lems for electronic systems. On the other hand optical interconnects have lower

delays and have low power losses. As silicon is transparent to the communication

wavelength(λ = 1.55× 10−6) , and the electronic devices are all based on silicon

based technology, it is possible to create hybrid optical and electronic circuits on

a single chip. While the optical device sizes are very big compared to electronic

devices, due to high index contrast of silicon (n≈3.477) it is possible to have sub-

micron size optical devices in silicon. As the size of the optical device reduces, the

optical field intensity confined within the optical device increases thus making the

phenomena of non-linear effects more prominent during the propagation of light.

Recently, different types of all optical switches in silicon have also been fabricated

and verified, thus extending the silicon photonics research into the possibility of

having all-optical logic circuits, thus eliminating the optical to electronic conver-

sion delays. As the presence of electronic charges within an optical device affect

its performance, it is also possible to have active optical devices in silicon. Due to

the bulkiness of optical structures with respect to electronic structures, and given

their advantages over the electronic structures, hybrid integrated optoelectronic

devices on a single substrate is an important field of research.



1.2 Motivation

The modal calculation of optical waveguides is an important topic in the field of

guided-wave optics. For optical waveguides, calculations of mode sizes, effective

indices, group velocities etc are important for choosing optimal dimensions for

the waveguides. There is a need for modeling techniques accurate for a wide

range of structures. Analytic and semi-analytic methods are suitable for simple

structures such as rib or ridge waveguides or optical fibers. But the advances

in the photonics technologies have established the need for the development of

numerical and approximate methods for the analysis of a wide range of waveguide

structures that are not amenable to exact analytical studies. An efficient mode

solver has to be easier to implement, easy to use, fast and should have smaller

computational requirements. It should be able to provide all the fields in order to

predict accurate propagation constants.

Among the various numerical methods, BPM (Beam Propagation Method),

FEM (Finite Element Method) and FDMs (Finite Difference Methods) have been

widely used. While FEM is better for non-regular structures and adaptive mesh-

ing, the formulations for FEM are quite complicated compared to Finite Differ-

ence Methods and may create solutions with spurious and non-physical modes.

While BPM is more thorough, it requires more computational effort and has quite

complex formulation as compared to FDMs. Also for High Index Contrast materi-

als like Silicon, the paraxial approximation assumed in BPM may not be valid. For

FDMs, once the governing equations and the boundary conditions are provided, it

is straightforward to implement a finite difference scheme.

While large cross section waveguides (area of cross section ≈25µm2), have

TE and TM modes where only one of the Ex, Ey fields is present, smaller cross-
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section waveguides ( e.g., photonic wire) have modes which have both Ex and Ey

components of electric field, hence the need for Full vectorial solutions for modes.

For the first case, the semi-vectorial mode solver has been developed since the

coupling between the TE and TM modes is very small and can be neglected. For

smaller dimensions, this is not the case and both Ex and Ey have to be found for

correct prediction of effective index.

In any optical circuit, it is not possible to use only straight waveguides. For

some applications bent waveguides are needed (e.g., ring resonators). To find out

optimal dimensions (radius and cross-section dimensions) for these waveguides,

again we need to use a mode solver. It has been found that a finite difference

scheme similar to that used for straight waveguides can be developed and imple-

mented in a very similar way.

While the thesis is centered mostly around silicon waveguides, it has also

been found that the finite-difference scheme can be easily adjust to use with some

anisotropic materials such as LiNbO3 where the permittivity tensor has only di-

agonal elements and the diagonal elements are not all equal.

For simulation of waveguides, however, only the modes are not enough. We

need to actually simulate the waveguides in time domain. This is possible us-

ing the mode solver using Mode Expansion methods. But it’s not quite simple

to include non-linearity in the simulations. However, using Auxiliary Differen-

tial Equation formulations it’s possible to include the non-linearity in the FDTD

(Finite-Difference Time-Domain) method itself.

As the photonics industry is moving towards silicon for integrated optics and

optoelectronics, various optical effects are being measured for Silicon such as

Kerr effect and Raman effect. The high optical intensity due to high index con-

trast between silicon (n≈3.477) and SiO2 (n≈1.45), makes it possible to observe
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the non-linear interactions in chip-scale devices. It is also established that the

presence of free carriers affects the refractive index of the material and therefore

the optical guiding properties. Thus it is important to simulate the non-linear

characteristics of silicon waveguides.

Due to high computational and memory costs, the simulation of an entire

structure in FDTD takes a long time (usually many hours). Therefore, it is also

important to explore the possibility of implementing FDTD in other platforms

than just a CPU. To this end, FDTD for large structures is usually implemented

on clusters of CPUs. Since the advancement of GPUs (Graphics Processor Units)

and their native computing languages, the simulations have been shown to speed

up significantly.

1.3 Research Objectives

The Finite Difference Method is a very useful tool and it is quite easy to implement

as well. The goal of the project is to implement the finite difference method

for Maxwell’s equations in both frequency domain and time domain as way to

improve upon the existing methods for solutions for optical waveguides. Although

the time domain method has been implemented for a while now, the non-linearity

of silicon has not been implemented as a standard. The thesis looks towards the

feasibility of time domain methods as a way to simulate non-linear structures.

1.4 Thesis Organization

The first chapter introduces a full-vectorial mode solver along with a semi-vectorial

mode solver for a general waveguide cross-section. Here, the equations for the
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mode solvers have been derived from Maxwell’s Equations in frequency domain.

Using a generalized relationship between the field at a point and its nearby points,

we can construct an eigenvalue equation for the field(1). Both the mode solvers

have been developed and implemented in MATLAB. The results have been com-

pared with lumerical’s mode solver and with analytical results as well wherever

possible.

The second chapter deals with Finite Difference Time Domain (FDTD) method

for simulation for silicon optical waveguides. Here, the linear polarization, non-

linear polarization effects have been implented in the FDTD equations(3). The

non-linear polarization effects included are Raman Effect, Kerr Effect, Two Pho-

ton Absorption, Free Carrier Absorption and Free Carrier Plasma Dispersion Ef-

fect. While Linear, Raman, Kerr effects have been implemented using Auxiliary

Differential Equations (ADE) method, the plasma dispersion effect has been im-

plemented using an iterative method. TPA and FCA have been implemented di-

rectly by inserting the related loss term in conductivity. The simulations were

done in 2D using TMZ mode. The update coefficients for TEZ have been derived

but not implemented. The simulation region has been terminated using Gedney’s

CPML(4). The method has been implemented for SOI photonic wire waveguide

of dimensions 450nm× 200nm.

The Compound FDTD method has been implemented using MATLAB and a

separate code has also been developed using OpenCL.

The final chapter presents conclusions and possible future works.
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CHAPTER 2

Silicon Photonics:Full Vectorial Finite Difference

Method

2.1 Introduction

Most common waveguide structure in Silicon photonics are the rib and the ridge

structures. Because of rectangular meshing used in the FDM, this method is

very suitable for the silicon waveguide structures. For calculating the modes of a

waveguide, the cross-section of the waveguide is used. The mode size and shape

as well as the refractive index of the waveguide are defined for a single wave-

length, ie for a single frequency. Therefore, solving the Maxwell’s equations in

the frequency domain will give the solution for the modes.

The figure ?? shows a general rib waveguide structure used in the FDM for-

mulation. In general, the cross section can have any arbitrary shape, but due to

rectangular grid used, the structure solved for will actually have only rectangular

edges.

2.2 Maxwell’s Equations

We start with the Maxwell’s Equations in frequency domain.



Figure 2.1: Grid and the waveguide structure used in the FDM

∇. ~D = 0 (2.1)

∇. ~H = 0 (2.2)

∇× ~E = −µ0ω ~H (2.3)

∇× ~H = (σ + ωε) ~E (2.4)

For calculation of effective index for a straight waveguide we consider certain

assumptions,

For a lossless waveguide,

σ = 0 (2.5)
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for a straight waveguide,

∂ε

∂z
= 0 (2.6)

for a guided mode,

~E ∼ ~E(x, y)ej(ωt−βz) (2.7)

Using equations (2.5,2.6) with equation (2.1), we get

∂(εEx)

∂x
+
∂(εEy)

∂y
+
∂(εEz)

∂z
= 0

∂(εEx)

∂x
+
∂(εEy)

∂y
+ ε

∂(Ez)

∂z
+ Ez

∂(ε)

∂z
= 0

∂(εEx)

∂x
+
∂(εEx)

∂x
= βεEz

Ez =
1

βε

(
∂(εEx)

∂x
+
∂(εEy)

∂y

)
(2.8)

Therefore we have Ezin terms of Exand Ey.

Expanding equation (2.8) into its scalar components gives,
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−ωµ0Hx =

(
∂Ez
∂y
− ∂Ey

∂z

)
(2.9)

−ωµ0Hy =

(
∂Ex
∂z
− ∂Ez

∂x

)
(2.10)

−ωµ0Hz =

(
∂Ey
∂x
− ∂Ex

∂y

)
(2.11)

Using Equations (2.9) and (2.10) with equation (2.8) gives values ofHx,Hyand

Hz.

Thus, once we know the values of Exand Eyprofiles , we can calculate the

remaining field values.

2.3 The Wave Equations

Taking curl of equation (2.3), and using equation (2.4), we get

∇× (∇× ~E) = −ωµ0∇× ~H

∇× (∇× ~E) = −ωµ0(ωε ~E)

∇(∇. ~E)−∇2 ~E = ω2µ0ε ~E (2.12)

using equation (2.1) again to calculate∇. ~E, we get
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∇.(ε ~E) = 0

ε∇. ~E + ~E.∇ε = 0

∇. ~E = − ~E.∇ε
ε

(2.13)

Equation (2.12) combined with equation (2.13) gives,

∇2 ~E +∇( ~E.∇ε
ε

) + (ω2µε) ~E = 0 (2.14)

Since Ez can be calculated once Exand Eyare found, we can use this equation

as the basis for calculating mode profiles for guided modes of a straight waveg-

uide.

Expanding equation (2.14) into its components,using equation (2.7)

∂2

∂x2
Ex +

∂2

∂y2
Ex +

∂

∂x

(
Ex
ε

∂ε

∂x
+
Ey
ε

∂ε

∂y

)
+ (ω2µε− β2)Ex = 0(2.15)

∂2

∂x2
Ey +

∂2

∂y2
Ey +

∂

∂y

(
Ex
ε

∂ε

∂x
+
Ey
ε

∂ε

∂y

)
+ (ω2µε− β2)Ey = 0(2.16)

Equations (2.15) and (2.16) are discretized and converted to eigen equation

form of type Ax = λx.
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2.3.1 Formulation For Full-vectorial Mode Solver

For full-vectorial mode solver, we do not ignore any of the terms in equations

(2.15) and (2.16).

Before converting equations (2.15) and (2.16) to finite difference form, we

rearrange the terms using the following identity.

∂2

∂x2
Ψ +

Ψ

Φ

∂Φ

∂x
=

∂

∂x
(

1

Φ

∂

∂x
(ΦΨ))

Equations (2.15) and (2.16) become,

∂2

∂y2
Ex +

∂

∂x

(
1

ε

(
∂

∂x
(εEx) +

∂

∂y
(εEy)

))
− ∂2

∂x∂y
Ey + (ω2µε− β2)Ex = 0

(2.17)

∂2

∂x2
Ey +

∂

∂y

(
1

ε

(
∂

∂x
(εEx) +

∂

∂y
(εEy)

))
− ∂2

∂x∂y
Ex + (ω2µε− β2)Ey = 0

(2.18)

Equations (2.17) and (2.18) are discretized using 9-point stencil to get equa-

tions of the following form,

Σ
i
Σ
j

(
AijxxE

ij
x + AijxyE

ij
y

)
= β2Ex (2.19)

Σ
i
Σ
j

(
AijyxE

ij
x + AijyyE

ij
y

)
= β2Ey (2.20)

In (2.19) and (2.20), i = p− 1, p, p+ 1 and j = q− 1, q, q+ 1 as shown in the
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figure ??.

Figure 2.2: Grid used for Discretization of the wave equations.
The Fields Ex, Ey as well as the permittivity εr are defined at lattice points in the
above grid.

Equations (2.19) and (2.20) together form an eigenvalue equation of the fol-

lowing form,

AΦ = β2Φ (2.21)

Where,

A =

Axx Axy

Ayx Ayy


and
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Φ =

Ex

Ey


Equation (2.21) is the final equation used to calculate full-vectorial mode pro-

files and effective index.

Effective indices of different modes can be found using the eigenvalues of

this equation, while electric fields corresponding to these effective indices can be

found from corresponding eigenvectors.

Here, length of field array used in equation (2.21) is (2×Nx×Ny). Therefore,

size of the A matrix is ((2 × Nx × Ny) × (2 × Nx × Ny)), which is 4 times the

size of A matrices used in semivectorial mode solver.

Since we are using 9 point stencil, maximum number of non-zero elements in

any row of A is 9.

For 2-D confined waveguides, we need a 2 dimensional array of field. But,

the field arrays used in equation (2.21) are column vectors. Therefore, we need

to linearize the field arrays to use in equation (2.21). After calculating the mode

profiles, we need to convert them back to 2-D. The linearization scheme used is

shown in the figure ??.

2.3.2 Formulation for Semi-vectorial mode solver

For large cross section high refractive index waveguides, the modes can be sepa-

rated into TE and TM modes. In terms of the fields, this means that for TE modes

Exfield will be dominant while for TM modes Ey field will be dominant. Thus,

equations (2.15) and (2.16) can be decoupled to get separate equations for TE and

13



Figure 2.3: index linearization scheme

TM modes.

∂2

∂x2
Ex +

∂2

∂y2
Ex +

∂

∂x

(
Ex
ε

∂ε

∂x

)
+(ω2µε− β2

TE)Ex = 0 (2.22)

∂2

∂x2
Ey +

∂2

∂y2
Ey +

∂

∂y

(
Ey
ε

∂ε

∂y

)
+(ω2µε− β2

TM)Ey = 0 (2.23)

since the cross coupling terms are negligible.

∂

∂x

Ey
ε

∂ε

∂y
≈ 0

∂

∂y

Ex
ε

∂ε

∂x
≈ 0

Since here we need partial derivatives along only one dimension in any of

terms in equations (2.22) and (2.23), we can use 5 point stencil here.
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Equations (2.22) And (2.23) are discretized to give equations of the following

form for TE and TM modes.

AxEx = β2
TEEx (2.24)

AyEy = β2
TMEy (2.25)

Equations (2.24) and (2.25) are eigen equations and therefore can be solved

using eigenvalue solvers in linear algebra libraries. Effective indices of differ-

ent modes can be found using the eigenvalues of these equations, while electric

fields corresponding to these effective indices can be found from corresponding

eigenvectors.

It should be noted that for a grid of size (Nx × Ny), the eigenvector length is

(Nx×Ny). Therefore, the size of Axand Ay matrices is ((Nx×Ny)×(Nx×Ny)).

Also, since we are using 5 point stencil, maximum number of non-zero elements

in any row of Axand Ay is 5.

2.3.3 Full-Vectorial Mode Solver For Anisotropic Media

In this section, the full vectorial mode solver described above has been adapted for

uniaxially anisotropic materials. For uniaxial anisotropic materials, the diagonal

elements of the permittivity tensor are non-zero and not all equal.

For uniaxially anisotropic media, equations (2.17) and (2.18) are modified as

follows,

15



∂2

∂y2
Ex +

∂

∂x

(
1

εxx

(
∂

∂x
(εxxEx) +

∂

∂y
(εyyEy)

))
− ∂2

∂x∂y
Ey + (ω2µεxx − β2)Ex = 0

(2.26)

∂2

∂x2
Ey +

∂

∂y

(
1

εyy

(
∂

∂x
(εxxEx) +

∂

∂y
(εyyEy)

))
− ∂2

∂x∂y
Ex + (ω2µεyy − β2)Ey = 0

(2.27)

The rest of the derivation remains same as the full-vectorial mode solver de-

scribed in previous section.

2.3.4 Full-Vectorial Mode Solver For Bent waveguides

For bent waveguides equation (2.6) is no longer valid. Therefore, assuming fol-

lowing conditions,

∂ε

∂φ
= 0

∂

r2∂φ2
~E = −β2 ~E

To arrive at the eigenmode equations for bent waveguides, the wave equations

are written in cylindrical coordinates. we start with equation (2.14) in cylindrical

coordinates.
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∇2 ~E +∇( ~E.
∇ε
ε

) + (ω2µε) ~E = 0

1

r

∂

∂r
(r
∂

∂r
Er) +

1

r2
∂2

∂φ
Er +

∂2

∂y2
Er +

∂

∂r

(
Er
ε

∂ε

∂r
+
Eφ
ε

∂ε

r∂φ
+
Ey
ε

∂ε

∂y

)
+ (ω2µε)Er = 0

1

r

∂

∂r
(r
∂

∂r
Ey) +

1

r2
∂2

∂φ
Ey +

∂2

∂y2
Ey +

∂

∂y

(
Er
ε

∂ε

∂r
+
Eφ
ε

∂ε

r∂φ
+
Ey
ε

∂ε

∂y

)
+ (ω2µε)Ey = 0

Figure 2.4: Axes for bent waveguides (Top view).
The blue region is the core of the waveguide. Gray region is the slab/cladding of
the waveguide. r0= radius of curvature of the bend.

To use the above equation, we use the following transformations.

dx = r cosφ

dy = dy

dz = r sinφ

17



for φ ≈ 0,

dz ≈ r × dφ

This gives the following equations,

1

r

∂

∂r
(r
∂

∂r
Er) +

∂2

∂y2
Er +

∂

∂r

(
Er
ε

∂ε

∂r
+
Ey
ε

∂ε

∂y

)
+ (ω2µε− β2)Er = 0

1

r

∂

∂r
(r
∂

∂r
Ey) +

∂2

∂y2
Ey +

∂

∂y

(
Er
ε

∂ε

∂r
+
Ey
ε

∂ε

∂y

)
+ (ω2µε− β2)Ey = 0

Thus we get two wave equations with only Er and Ey components. These two

equations can be solved using the method in section 1.2.1.

To get Ex component of the waveguide, we use, when φ ≈ 0, Ex = Er.

2.4 Simulations and Results

In the figure 1.6 , r = h/H and a/b = w/H , where w = rib width, h = slab height.

The single mode condition obtained the Full Vectorial mode solver described in

this thesis has been compared with the single mode conditions obtained by Soref’s

curve (1) and Effective Index method (EIM).
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Figure 2.5: comparison of mode profiles of fundamental TE mode calculated us-
ing lumerical’s mode solver, and full-vectorial mode solver described
in this thesis.

Waveguide(ncore=3.477) dimensions: Rib Height=2µm, Rib Width=2µm,Slab
height=1µm with SiO2(nSiO2=1.45) below and Air (nAir=1) above the waveg-
uide.

Figure 2.6: Mode profile of TE mode for photonic wire waveguide
Waveguide(ncore=3.477) dimensions = (500nm×300nm) with SiO2(nSiO2=1.45)
below and Air (nAir=1) above.
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Figure 2.7: Analysis of single-mode condition for SOI rib waveguide structures
with rib height = 10µm

Table 2.1: Comparison of effective indices for DC using symmetric and antisym-
metric boundary conditions with simulation of full structure

neff using full vectorial for Directional coupler neff using symmetric boundary condition neff using antisymmetric boundary condition
3.3681 3.3681 -
3.3673 - 3.3673
3.3592 3.3591 -
3.3590 - 3.3590
3.2625 3.2625 -
3.2164 - 3.2165
3.2076 3.2078 -
3.2005 - 3.2004

In the figure, Rib height=1µm, Rib width = 1µm, slab height = 0.5µm,
Separation between waveguides= 1µm.
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Figure 2.8: Directional coupler symmetric TE mode (Ex field)
In the figure, Rib height=1µm, Rib width = 1µm, slab height = 0.5µm, Separation
between waveguides= 1µm.

Figure 2.9: Directional coupler antisymmetric TE mode (Ex field)
In the figure, Rib height=1µm, Rib width = 1µm, slab height = 0.5µm, Separation
between waveguides= 1µm.
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Figure 2.10: Field profile for TE mode for a bend waveguide
In this figure, Rib width = 1.5µm, Rib height = 2µm, slab height = 1µm, Bend
radius = 10µm. The center of the bend circle is towards the right of the structure.
As expected the field profile is shifted towards the left.
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CHAPTER 3

Compound FDTD Method for Silicon Photonics

3.1 Introduction

Silicon exhibits third-order non-linear susceptibility χ(3). The imaginary part of

this susceptibility leads to Two Photon Absorption (TPA). TPA, in turn, leads to

the generation of free carriers. These free carriers affect both real and imaginary

part of the refractive index. This causes the waveguide to show Free Carrier Ab-

sorption (FCA) and free carrier plasma dispersion effects. Therefore TPA is an

important effect as it creates free carriers along with its own nonlinear losses. Sil-

icon also exhibits Raman effect and Kerr effects which can be modeled using the

Drude-Lorentz model.

While the Kerr effect and Raman effect and free carrier plasma dispersion ef-

fect change the real part of the refractive index of the medium, we implement

these effects through their respective polarization currents. Since FCA and TPA

affect the absorption coefficient of the material, ie the imaginary part of the refrac-

tive index, these two effects can be included in the conductivity of the material.

Since we are using frequency domain models for Kerr and Raman effects, we use

Auxiliary Differential Equation method to find out their polarization currents in

time domain.



3.2 FDTD Method

We start with Maxwell’s Equations in time domain.

∇. ~D = 0 (3.1)

∇. ~H = 0 (3.2)

∇× ~E = −µ0
∂ ~H

∂t
(3.3)

∇× ~H =
∂( ~D)

∂t
+ σ ~E (3.4)

Equations (3.1) and (3.2) represent static charges, and therefore are not in-

volved in FDTD method for optical waveguides. Equations (3.3) and (3.4) are

solved using leapfrog method(4).

This involves solving equations (3.3) and (3.4) at successive timesteps but not

simultaneously.

In this thesis, Electric fields have been updated at timestep n and magnetic

fields at n+ 1
2
, where n is an integer.Spatially, the fields are staggered and the grid

is shown in figure ??.

In this thesis, FDTD method has been implemented for TMZ mode. In TMZ

mode the only fields present are Hx, Hy, Ez.

Therefore,
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Figure 3.1: Yee’s cell meshing for FDTD
For TMz mode, Hx, Hy are defined at integral grid points while Ez is defined at
half integral grid points.
For TEz mode, Ex, Ey are defined at integral grid points while Hz is defined at
half integral grid points.

~H = Hxâx +Hyây

~E = Ezâz (3.5)

For TEZ , the field vectors are,

~H = Hzâz

~E = Exâx + Eyây (3.6)
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3.3 The Compound FDTD Method

3.3.1 Methodology

For the first half time step, ~H field is updated using equation (3.3)

∇× ~E = −µ0
∂ ~H

∂t

For the second half time step, ~E field is updated using the following scheme(3).

Starting with equation (3.4),

∇× ~H =
∂( ~D)

∂t
+ σ ~E

∇× ~H = ε0εr
∂

∂t
~E + σ ~E + ~JL + ~JNL (3.7)

Here,

~D = ε0εr ~E + ~PL + ~PNL

~PNL = ~PR + ~PK + ~PP

~JL =
∂

∂t
~PL

~JNL =
∂

∂t
~PNL

σ = σ0 + σTPA + σFCA

where,
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~PL=> Linear Polarization

~PNL=> Nonlinear Polarization

~PR=> Polarization due to Raman Effect

~PK=> Polarization due to Kerr Effect

~PP=> Polarization due to Plasma dispersion effect

σ0=> inherent conductivity

σTPA=> conductivity due to Two Photon Absorption

σFCA=> conductivity due to Free Carrier Absorption

3.3.2 Linear Polarization

For linear polarization,

~PL = χL ~E

~JL = ωχL ~E

where the susceptibility χL is given in the frequency domain by the Drude-

Lorentz model,

χL =
∆εLω

2
L

ω2
L + γLω − ω2

Therefore, in frequency domain, ~JL is given by
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~JL =
ω∆εLω

2
L

ω2
L + ωLω − ω2

~E

This gives rise to the time domain equation around time step n,

~J
n+ 1

2
L =

(α2L + 1)

2
~JnL +

α1L

2
~Jn−1L +

α3L

2
( ~En+1 − ~En−1) (3.8)

where,

α1L =
γL∆t− 2

γL∆t+ 2

α2L =
4− 2(∆tωL)2

γL∆t+ 2

α3L =
ε0∆εLω

2
L∆t

γL∆t+ 2

3.3.3 Raman Effect

Raman susceptibility is also modified using nonlinear Lorentz model(6)

χR =
∆εRω

2
R |Ez|

2

ω2
R + γRω − ω2

Polarization current due to Raman Effect is given by,

~JR =
ω∆εRω

2
R

∣∣∣ ~E∣∣∣2
ω2
R + γRω − ω2

~E

When transforming into time domain, we encounter the term ω
∣∣∣ ~E∣∣∣2 ~E.
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For TMZ mode, in time domain,

∂

∂t
(
∣∣∣ ~E∣∣∣2 ~E) = 3(Ez)

2 ∂

∂t
Ez (3.9)

while for TEZ mode, in time domain,

∂

∂t
(
∣∣∣ ~E∣∣∣2 ~E) =

∂

∂t
((E2

x + E2
y)(Exâx + Eyây))

∂

∂t
(
∣∣∣ ~E∣∣∣2Ex) = (E2

y + 3E2
x)
∂

∂t
Ex + 2ExEy

∂

∂t
Ey

∂

∂t
(
∣∣∣ ~E∣∣∣2Ey) = (E2

x + 3E2
y)
∂

∂t
Ey + 2ExEy

∂

∂t
Ex

Thus Polarization current due to Raman Effect is given for TMZ mode, in

time domain, by

J
n+ 1

2
L =

(α2L + 1)

2
~JnL +

α1L

2
Jn−1L +

α3L

2
(En+1

z − En−1
z ) (3.10)

where,

α1R =
γR∆t− 2

γR∆t+ 2

α2R =
4− 2(∆tωR)2

γL∆t+ 2

α3R =
ε0∆εRω

2
R∆t

γR∆t+ 2
× 3 |Ez|2
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3.3.4 Kerr Effect

For Kerr Effect, susceptibility is given by non-linear Debye model(7),

χK =
ε2 |Ez|2

1 + ωτk

Therefore in time domain, we get

J
n+ 1

2
K = α1KJ

n− 1
2

K + α2K(En+1
z − En−1

z ) (3.11)

where,

α1K =
2τK −∆t

2τK + ∆t

α2K =
ε0ε2

2τK + ∆t
× 3 |Ez|2

3.3.5 Two Photon Absorption

Implementing TPA related absorption into conductivity(8) we update only the

conductivity in the FDTD update equation (3.7).

σTPA = αTPAncε0

TPA Absorption is given by

30



αTPA = βTPAI =
cnε0βTPA

2
|Ez|2

σTPA =
c2n2ε20βTPA

2
|Ez|2 (3.12)

3.3.6 Free Carrier Absorption

Carrier conductivity equivalent to Free Carrier Absorption (FCA) is given by,

σFCA = αFCAncε0 (3.13)

The absorption coefficient is given by(9),

αFCA = σ̄FCA,eNe + σ̄FCA,hNh

where σ̄FCA,e and σ̄FCA,h are FCA cross sections of electrons and holes re-

spectively and are given by(10),

σ̄FCA,e = 8.85× 10−18
(λ[µm]

1.55

)2
σ̄FCA,h = 6.0× 10−18

(λ[µm]

1.55

)2
Assuming Drift , Diffusion and other generation/recombination effects are

negligible, we use the following rate equation,
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∂N

∂t
=

1

2h̄ω
(βTPAI

2)− N

τr

This gives rise to the update equation for carrier concentration,

Nn+ 1
2 =

2τr −∆t

2τr + ∆t
Nn− 1

2 +
τr∆t

2τr + ∆t

c2n2ε20βTPA
4h̄ω

|En
z |

4 (3.14)

3.3.7 Plasma Dispersion

Using equation (3.14) with the Soref’s experimental fit(9) we get update equation

for current due to plasma dispersion effect.

∆nplasma = (−8.8× 10−22Ne − 8.5× 10−18N0.8
h )
(λ[µm]

1.55

)2 (3.15)

J
n+ 1

2
P = 2ε0n

(
∆nplasma(E

n+1
z )En+1

Z −∆nplasma(E
n
z )En

Z

)
(3.16)

3.3.8 The combined equation

Using equations (3.7) with equations (3.8), (3.10), (3.11), (3.12), (3.13), (3.16),

gives the overall update equation,

A1E
n+1
z = A2E

n
z + A3E

n−1
z − α1L

2
Jn−1L − 1 + α2L

2
JnL

− α1L

2
Jn−1R − 1 + α2L

2
JnR − α1KJ

n− 1
2

K

+ (∇×H)
n+ 1

2
z − Jn+

1
2

P (3.17)
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where,

A1 =
ε0εr
∆t

+
α3L

2
+
α3R

2
+ α2K +

σn+
1
2

2

A2 =
α3L

2
+
α3R

2
+ α2K

A3 =
ε0εr
∆t
− σn+

1
2

2

3.4 Simulations and Results

3.4.1 Simulation method

The simulation is done in 2D FDTD. In 2D, there are two modes present. Here,

only the TMZ mode has been presented. For each time step, the Hx, Hy fields are

updated first using equation (3.3). Then Ez field is updated using equation (3.17).

Since, the coefficients α3R and α2K depend on |Ez|2 these are updated at every

time step. The carrier concentration N and the conductivities are also updated at

every time step. Since update equation (3.16) for JP requires electric field at the

same time step, equation (3.17) is updated without using JP first. Then, the total

electric field and JP are found by using equation (3.16) in an iterative loop. It has

been found that only 3-4 iteration loops are required in general. Therefore, the

iterations do not add much to the computation costs.

Refractive index change due to Kerr effect is given by,

∆nkerr = n,2I
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This change is added to the refractive index profile of the simulated structure

before entering the iteration loop for including plasma dispersion effect.

Refractive index change due to Plasma Dispersion effect is given by equation

(3.15).

The conductivity used in update equation (3.17) is given by,

σ = σ0 + σTPA + σFCA

Here, σ0 is conductivity due to inherent losses, which is assumed to be negli-

gible for Silicon waveguides.

3.4.2 Simulation Setup And Parameters

The compound FDTD method is used to simulate an SOI waveguide of dimen-

sions (450nm× 200nm). The simulation is done for 2D FDTD using the method

used in (some reference). Here, the core index is taken as n=3.043, while the

SiO2 index is taken as n=1.45. The rest of the parameters used in the simulation

are given in Table 2.1.

The simulation region is terminated using Gedney’s CPML(4).

The material parameters used in the simulations are the same as in (3).

Table 3.1: Parameter values used in the simulations in CFDTD
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Parameter Value Units

λ 1.49 µm

Emax 6.1971× 108 V/m

FWHM 200 fs

nSiO2 1.5 -

nair 1.0 −

nSi 3.043 −

∆x 20 nm

∆y 20 nm

∆t 23.57 as

lx 100 µm

ly 1.6 µm

n,2 7× 10−18 m2/W

βTPA 9× 10−3 m/GW

τkerr 0 s

τr 0.8 ns

ωR 15.6 THz

γR 106 GHz

εR 76.10× 10−21 m2/V 2

3.4.3 Results

35



Figure 3.2: Refractive index profile used in the simulation

Figure 3.3: Change in carrier concentration
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Figure 3.4: Conductivity change due to FCA

Figure 3.5: Conductivity change due to TPA
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Figure 3.6: Refractive index change due Kerr effect

Figure 3.7: Refractive index change due to plasma dispersion effect
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CHAPTER 4

Conclusions

4.1 Summary

Semi-vectorial, Full-Vectorial mode solvers have been developed for straight and

bent waveguides with isotropic materials. The mode solvers have also been adopted

for uniaxially anisotropic waveguides.

In the second part, An FDTD method for 3rd order non-linear materials has

been given and the results have been shown. This method has also been imple-

mented using OpenCL on GPU. The running times have not been compared but it

has been observed that OpenCL code gives faster results.

4.2 Future Works

The mode solvers have been implemented for uniaxially anisotropic materials.

Therefore, the UPML can be implemented to see and try if the mode solver can

be improved. Other methods of finding modes can be compared with this mode

solver to compare and improve the performances.

Due to straightforward formulation of finite difference equations, various in-

terfaces and boundary conditions can be analyzed and inserted in the eigenvalue

equations. Further analysis of the numerical error in the mode solver can help in

improving the performance of the mode solver.



The compound FDTD method is currently implemented for third order non-

linearity. In the future, second order non-linearity can be implemented and the

FDTD method can be appropriately adjusted for non-linear materials likeLiNbO3.

The FDTD method can be accelerated using GPU languages like CUDA and

OpenCL. When the sparse linear algebra libraries get developed for these lan-

guages, it will be possible to implement the mode solver in GPU.
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