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ABSTRACT

KEYWORDS: Common Data Bus, Data forwarding, Dual Issue

project work involves “Implementation of Dual Issue and Out Of Order Execution” for

the in-house RISC processor. This work involves improvising the Out Of Order execu-

tion of the processor by implementing a Common Data Bus for data Forwarding. Using

a Common Data Bus for data forwarding leads to improved clock frequency and simpler

structure, Compared to the existing architecture. Some phases of the processor were re-

designed to support data forwarding through common data bus.

To attain a higher degree of functional unit utilization, dual instruction issue has been

implemented. Necessary modifications were employed to convert the single issue machine

into a dual issue one. Significant changes have been incorporated in the issue phase, Write

back phase and Commit Phases in order to allow for dual issue.
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CHAPTER 1

INTRODUCTION

1.1 Overall Architecture

The overall architecture of the proposed in-house processor is as shown in Figure: 1.1.

Figure 1.1: Overall architecture



The proposed processor has quad-core architecture, with support for two levels of cache

hierarchy and a single on-chip DRAM. It implements cache coherency at L1 cache level,

with coherency bus. It has NVM Express based I/O Subsystem with a PCI Express inter-

face. The CPU core is designed based on Tomasulo algorithm. It supports dual instruction

issue and out of order execution. project work involves design related to CPU as high-

lighted in Figure: 1.1.

1.2 Contribution

Project work involves the following two tasks.

• Improvisation of Out Of Order Execution in the processor, by using a Common Data
Bus for data forwarding.

• Implementation of Dual Instruction Issue.

1.3 Need

Out Of Order Execution : In the existing architecture, there is no data forwarding

among the reservation stations. So, there is a need to redesign the Out of order execution

mechanism in the processor to facilitate data forwarding among the reservation stations.

This can be achieved by using a Common Data Bus in Write back phase in place of exist-

ing huge multiplexing logic. This also results in a simple and efficient design compared to

the existing design. Further, this also leads to reduced latency in data forwarding.

Dual Issue : By implementing dual instruction issue, higher degree of functional unit

utilization can be attained, which leads to improved performance of the processor.
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1.4 Outline

Chapter 2 presents background information regarding Super-scalar processor design and

Bluespec System Verilog. It describes the design methodology and implementation details

of the existing design of the processor. It also describes the limitations of the existing

design and scope for improvisation.

Chapter 3 describes the implementation of Out Of Order execution using Common Data

Bus for data forwarding and design modifications in various stages. It describes the setup

for verification and verification strategy. It also presents the design challenges and synthe-

sis results of modified design of single issue processor with Out Of Order execution ( with

CDB ).

Chapter 4 describes the implementation of dual instruction issue. It deals with verifica-

tion strategy and simulation results. It also presents the design challenges and Synthesis

results of dual issue processor.

Chapter 5 gives conclusion and possible directions for future work.
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CHAPTER 2

BACKGROUND

This chapter describes briefly about basic concepts of Superscalar processor design[1].

It also describes the basis concepts involved in building a design in Bluespec System Ver-

ilog (BSV)[2]. It then presents the details of the earlier design of the processor[3]. It also

presents the limitations of the existing design and scope for its improvisation.

2.1 SUPERSCALAR ARCHITECTURE

A superscalar CPU architecture exploits a form of parallelism called instruction level

parallelism within a single processor[4]. Superscalar describes a microprocessor design

that makes it possible for more than one instruction at a time to be executed during a single

clock cycle.

In a superscalar design, the processor or the instruction compiler is able to determine

whether an instruction can be carried out independently of other sequential instructions,

or whether it has a dependency on another instruction and must be executed in sequence

with it. The processor then uses multiple execution units to simultaneously carry out two

or more independent instructions at a time.



2.1.1 Dynamic Scheduling

Dynamic scheduling is a method in which the hardware determines which instructions

to execute, as opposed to a statically scheduled machine, in which the compiler determines

the order of execution. Dynamically scheduled machines can take advantage of parallelism

which would not be visible at compile time.

In essence, the processor executes instructions out of order. In Dynamic scheduling,

instructions don’t execute based on the order in which they appear, but rather on the avail-

ability of the source operands and required functional unit.

2.1.2 Tomasulo algorithm

Tomasulo algorithm [1] is a method of implementing dynamic scheduling. Tomasulo

algorithm uses register renaming to eliminate output and anti-dependencies, i.e. WAW and

WAR hazards.

Tomasulo algorithm implements register renaming through the use of what are called

reservation stations. Reservation stations are buffers which fetch and store instruction

operands as soon as they are available. Source operands point to either the register file

or to other reservation stations. Each reservation station corresponds to one instruction.

Once all source operands are available, the instruction is sent for execution, provided a

functional unit is also available. Once execution is complete, the result is buffered at the

reservation station. The reservation station then sends the result to the register file and

any other reservation station which is waiting on that result. WAW hazards are handled

since only the last instruction (in program order) actually writes to the registers. The other

5



results are buffered in other reservation stations and are eventually sent to any instructions

waiting for those results. WAR hazards are handled since reservation stations can get

source operands from either the register file or other reservation stations (in other words,

from another instruction). In Tomasulo algorithm, the control logic is distributed among

the reservation stations.

2.1.3 Speculative Execution

While out-of-order execution can lead to performance improvements, it can also lead to

some problems. When implementing branch prediction, a wrong prediction would result

in a flushed pipeline. However, when dealing with out-of-order execution, the problem

arises where an instruction which should not have been executed has already written its

results to the register file. One solution, of course, is to not allow instructions past a branch

to execute until the branch has been resolved. But this mitigates the effects of branch

prediction.

A better solution, and the one used in modern processors, is to require that instructions

be completed in order, in other words, instructions are issued in-order, executed out-of-

order, then committed to the register file in-order. Thus, to anything outside of it, the

microprocessor looks like it is executing instructions in-order; the first instruction that

comes in is the first that is completed.

In-order completion is accomplished by placing a reorder buffer right before writing to

the registers. The reorder buffer is an ordered buffer which holds the results of instructions

waiting to be committed. The buffer is ordered in program order, thus the top of the buffer

6



is the first instruction that should be committed. If an instruction completes, but earlier

instructions are still executing, the result is stored in the reorder buffer until all earlier

instructions have been committed.

When used in conjunction with dynamic branch prediction, the reorder buffer can be

used to perform speculative execution.In case of misprediction, the reorder buffer can

be flushed starting at the branch since no instructions past the branch have permanently

changed the state of the machine. The reorder buffer also allows for precise exception

handling since instructions are completed in order. Thus, if an exception occurs, a flag

is set,and when the instruction goes to commit, the flag is detected and the exception is

handled.

2.1.4 Multiple Instruction Issue

In multiple issue processor, the processor tries to issue more than one instruction per

cycle so as to keep all of the functional units busy. Instruction issue logic is the primary

challenge with multiple issue processor. Using dynamic scheduling, the CPU can issue

multiple instructions with dependencies and serialize them later using hazard detection

logic.

Tomasulo algorithm can be extended to support multiple instruction issue. The instruc-

tions are not issued to the reservation stations out of order, since this could lead to a viola-

tion of the program semantics. To gain the full advantage of dynamic scheduling we may

allow the pipeline to issue any combination of two instructions in a clock.

7



Extra logic is necessary to handle multiple instructions at once, including any possible

dependencies between the instructions.At the back end of the pipeline, the processor must

also be able to complete and commit multiple instructions per clock.

8



2.2 Bluespec System Verilog

2.2.1 Building a design in BSV

Figure: 2.1 illustrates the various steps involved in building a design in Bluespec System

Verilog[2].

Figure 2.1: Building a design in BSV
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• Designer writes a BSV program. It may optionally include Verilog, SystemVerilog,
VHDL,and C components.

• The BSV program is compiled into a Verilog or Bluesim specification. This step has
two distinct stages:

1. pre-elaboration - parsing and type checking

2. post-elaboration - code generation

• The compilation output is either linked into a simulation environment or processed
by a synthesis tool.

2.2.2 Rules

BSV does not have always blocks like Verilog. Instead, rules are used to describe all

behavior (how state evolves over time). Rules are made up of two components:

Rule Condition: a Boolean expression which determines if the rule body is allowed to

execute(“fire”).

Rule Body: a set of actions which describe the state updates that occur when the rule fires.

We can logically think of a rule’s execution as instantaneous, complete and ordered

w.r.t execution of all other rules.

Instantaneous:

• Conceptually, all the actions in the rule body occur at a single,common instant - there
is no sequencing of actions within a rule.

Complete:

• When fired, the entire rule body executes. There is no concept of “partial” execution
of a rule body.

Ordered:

• Each rule execution conceptually occurs either before or after every other rule exe-
cution, but never simultaneously.

10



Some constraints are imposed on rules. These constraints are:

• Each rule fires at most once within a clock.

• Certain pairs of rules, which we will call conflicting, cannot both fire in the same
clock.

2.2.3 Module hierarchy and Interfaces

In BSV, a module’s interface is an abstraction of its verilog port list. In BSV, the interface

declaration and module declaration are separate. So, a common interface can be used by

several modules, with out having to repeat the declaration in each of its implementation

modules.

An interface declaration specifies the methods provided by every module that provides

the interface,but does not specify the methods implementation. The implementation of

the interface methods can be different in each module that provides that interface. The

definition of the interface and its methods is contained in the providing module.

BSV classifies interface methods into three types:

• Value Methods: These are methods which return a value to the caller, and have
no“actions”(i.e., when these methods are called, there is no change of state, no side-
effect).

• Action Methods: These are methods which cause actions (state changes) to occur.
One may consider these as input methods, since they typically take data into the
module.

• Action Value Methods: These methods couple Action and Value methods, causing
an action (state change) to occur and they return a value to the caller.

Every module uses the interface(s) just below it in the hierarchy. Every module pro-

vides an interface to the module above it in the hierarchy.

11



2.3 EARLIER DESIGN OF PROCESSOR

The design of the existing processor [3] is based on the Tomasulo algorithm described in

section-2.1.2. It supports Out Of Order execution and precise exceptions. However, it has

limitations in the implementation methodologies for some phases of the design, leading to

the under-performance of the processor.

The instructions after being fetched are decoded and sent to the issue stage. The fetch

and decode phases are not modified in the new design. The following sections describes

the details of the earlier design starting from the Issue stage.

2.3.1 Issue Stage

The instruction after being decoded enters the issue phase. The block diagram of issue

stage showing its interface is as shown in figure -2.2.

Figure 2.2: Earlier design : Issue stage

12



In the issue phase the instruction is allotted the reservation station corresponding to the

functional unit which executes the instruction. The issue unit dispatches the instruction if

there is an empty slot in both the reservation station and the ROB.

Before dispatching the instruction, the issue stage fetches the operands. The operands

will first be checked for in the register file using their source addresses of the operands.

However, if the register file does not have the updated value of the operands, it contains the

ROB entry number (rob number) of instruction which updates the value later. The issue

stage sends this ROB number, if updated operands are not yet available.

Figure - 2.3 shows the operand fetching technique in the issue phase.

Figure 2.3: Earlier design : Operand Fetching

13



2.3.2 Execute and Write back stage

The instruction after being issued resides in the respective reservation station. In the

reservation station, if one or more operand values are not yet available, the reservation sta-

tion continuously scans the corresponding ROB entry by the rob number of that operand.In

bluespec implementation, this is accomplished through the method need forwarding.

As soon as the particular ROB entry receives a valid result, it will be forwarded to

the reservation station to update the operands through the method forward operand. Only

when all operands are available, the reservation station sends them to the functional unit for

execution. The results from the functional units are sent to the corresponding ROB entry

by its reservation station.Each reservation station updates the ROB individually through its

own methods. Figure - 2.4 illustrates the operation of Execute and Write back stage.

Figure 2.4: Earlier design : Execute and Write back stage

14



2.3.3 Commit Stage

In Commit stage, the results of the instruction execution are allowed to modify the state

of the processor. On completion of instruction execution, the results are stored in Reorder

buffer in the issue order i.e., in program order. The reorder buffer was implemented as

a circular queue. The results are written into the register file strictly in program order,

preserving the precise architectural state of processor in case of exceptions.

Another important task of the commit stage is to forward the results back to the reserva-

tion stations while committing an instruction. Each time an instruction is committed, the

data that is to be written into the register file is also forwarded to all the reservation stations

along with the rob number of the ROB entry which is being committed. The reservation

stations update operands of the instructions waiting for the committed data. This operand

forwarding mechanism during instruction commit is needed to ensure that all instructions

dependent on the committed instructions gets their operands. In bluespec implementation,

this is accomplished by the method forward while commit.

Figure -2.5 illustrates the operations in commit stage.

Figure 2.5: Earlier design : Commit stage
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2.3.4 Limitation of the design

As mentioned before, the existing processor has limitations in implementation method-

ologies for some phases of the design. They are listed below :

ISSUE PHASE:

• The Status of Reorder buffer is not checked for Operands in the issue stage during
Operand fetch.

• Only one instruction can be issued in a clock cycle ( No support for multiple issue).

WRITE BACK PHASE:

• No data forwarding among the reservation stations.

• Extra latency of one cycle in data forwarding.

• Huge multiplexing logic for write Phase ( CDB not present ).

COMMIT PHASE:

• Need data forwarding from ROB while Committing instructions.

• Huge logic for data forwarding from ROB to individual Reservation stations.

• Doesn’t Support Multiple instruction Commit.

2.3.5 Scope for Improvisation

To overcome most of the limitations of the existing design of the processor mentioned

earlier, a Common Data Bus need to be implemented, in place of huge Multiplexing logic,

for data forwarding among the reservation stations and to write the result in ROB. By using

a common Data bus the latency in data forwarding can be decreased and also the need for

forwarding the results while committing can be eliminated, as the results are forwarded

directly from the corresponding reservations station through the common data bus.

16



The existing design can be further modified to issue two instructions in a clock cycle,

so that the execution units are kept busy most of the time and are not under utilized. Also,

Some functional units can be duplicated to reduce stalls due to structural hazards.
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CHAPTER 3

OUT OF ORDER EXECUTION

This chapter describes the Implementation of Out Of Order execution with data for-

warding through Common data bus. It starts with Microarchitectural description followed

by implementation of Common Data Bus and modifications in various phases of the de-

sign. The Verification strategy, Design challenges and Synthesis results are dealt in the

later sections.

3.1 MICROARCHITECTURAL DESCRIPTION

The design is based off of Tomasulo algorithm[1]. Figure:3.1 shows the main compo-

nents and paths between the modules. The highlighted portions represents the functional

blocks of the processor, which I have modified for the new design.. The Issue unit takes

decoded instructions, reads the operands out of the register file and ROB, and issues the

instructions to an appropriate reservation station. This unit also does a write to the register

file that marks the destination register as a result that is currently being computed.

Each issued instruction is placed in a reservation station waiting for a specific type of ex-

ecution unit. These stations hold the operands (or tags corresponding to pending operands).

These operands listen to the common data bus (CDB) and update themselves when the re-

sults have been computed. Each cycle, each functional unit can take an instruction that has

all of its operands ready and begin executing it. Once the result of the instruction is ready,



it is stored in a result register for that functional unit.Each cycle, all of the result registers

from the functional units are inspected and, if available, a result is chosen to be broadcast

on the CDB. This broadcast updates instructions that depend on that result that are waiting

in various reservation stations. It also updates the corresponding ROB entry.

During commit, ROB updates the register file with the result, if the tag in the register file

matches the tag of the result.

Figure 3.1: Microarchitectural organization of single issue processor with CDB
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3.2 IMPLEMENTATION

3.2.1 Common Data Bus

To enable data forwarding among reservation stations a Common Data Bus need to be

implemented.

3.2.1.1 Design Decision: Choosing the Bus Structure

To implement the Common Data Bus, Various bus structures to choose from are as

follows.

1. AND-OR based Implementation.

2. Multiplexer based Implementation.

3. Tri-state based Implementation.

The bus structures based on Multiplexers and tri-states has been implemented and the

implementation with tri-states was found to be better in terms of performance.

Advantages of Tri-state bus:

• takes up fewer wires and smaller area foot print compared to the Multiplexer based
design.

• Delay and Power consumption are not high.
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3.2.1.2 Tri-state Bus Physical Structure

Figure 3.2 shows the operation of a tri-state buffer with a high true enable.

Figure 3.2: Operation of tristate buffer

A tristate buffer can be thought of as a non-inverting buffer with a switch on its output.

When the buffer is enabled, the output is driven by the non-inverting buffer. When the

buffer is disabled, the output is disconnected from the non-inverting buffer, and the output

is left floating or in the high-impedance logic state.

The bus implementation based on tri-state buffers is illustrated in figure 3.3.

Figure 3.3: Tristate bus Physical structure
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3.2.1.3 Implementation using Z BUS Library in Bluespec

BSV provides ZBus library which allows to implement and use tri-state buses [5]. Since

BSV does not support high impedance or undefined values internally, the library encap-

sulates the tri-state bus implementation in a module that can only be accessed through

predefined interfaces which do not allow direct access to internal signals .

ZBus consists of a series of clients hanging off a bus. The combination of the client and

the bus is provided by the ZBusDualIFC interface which consists of 2 sub-interfaces, the

client and the bus. The client sub-interface is provided by the ZBusClientIFC interface.

The bus sub-interface is provided by the ZBusBusIFC interface.

No manipulations are needed to be done on the bus side, this is all done internally. The

bus has to be built out of ZBusDualIFC and then drive values onto the bus and reads values

from the bus using the ZbusClientIFC. The mkZBus module constructor function takes

a list of ZBusBusIFC interfaces as arguments and creates a module which ties them all

together in a bus.

The ZBusClientIFC allows a BSV module to connect to the tri-state bus. It has the

following methods.

• drive method is used to drive a value onto the bus.

• get method allows each bus client to access the current value on the bus. If the bus is
in an invalid state (i.e., has a high-impedance value or an undefined value because it
is being driven by more than one client simultaneously), then the get method returns
0. In all other cases it returns the current value of the bus.

• fromBusValid method returns False if the bus is in invalid state, otherwise it returns
True.

22



By using the BSV library, Zbus interface has been implemented/provided in all reser-

vation stations and reorder buffer. The interfaces to all these modules are tied together to

facilitate data forwarding. Necessary modifications are made to the entire design to en-

sure correct functionality and improve performance. The working of various units and the

modifications made are described in detail in later sections.

3.2.1.4 Design Decision:Choosing the prioritization scheme

To avoid contention for driving the Z bus, prioritization of reservation stations has to be

implemented.Two types of prioritization schemes have been implemented.

• Fixed prioritization scheme.

• Round-robin arbitration Scheme.

Fixed prioritization scheme has simpler structure, but is leading to starvation of lower

priority reservation stations in some cases.

Round-robin scheme is a fair arbitration scheme with changing priorities. It has rel-

atively complex structure, but gives fair chance to all reservation stations. Hence round

robin arbitration has been chosen for the final implementation.

When multiple reservation stations are ready to drive Z bus in a given cycle, then the

reservation station with highest priority among them is allowed to drive the Z bus. The

other reservation stations wait for their chance to drive the bus in following cycles. Fixed

priorities are assigned to the reservation stations.
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3.2.2 Issue Phase

The Issue phase of the design is almost similar to the earlier design described in section-

2.3.1, except that the Operand fetch mechanism is modified in the new design.

3.2.2.1 Modified Operand fetch mechanism

In the earlier design, the Issue phase does not look in ROB for the updated operands if

they are not available in register. It simply sends the corresponding ROB entry number in

place of actual operands.

The operand fetch mechanism in the modified design is illustrated in figure: 3.4

(a) Earlier design (b) Modified design

Figure 3.4: Issue Stage- Modified Operand Fetch Mechanism
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In the modified design, the Issue unit first checks for the operands in the register file. If

the updated values are not available, the register file has the rob number of the instruction

which updates its value. Using this index, Issue unit checks the corresponding reorder

buffer entry. If the updated value is not available even in ROB, then it dispatches the

instruction with that rob number (instead of actual operand) to the reservation station. The

reservation station uses this to obtain the value when the results are forwarded on the

common data bus after execution.

3.2.2.2 Bluespec Implementation details

Figure :3.5 illustrates the bluespec implementation details of the modified issue phase.

Figure 3.5: Issue stage: Bluespec Implementation details
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The issue rule(rl issue) is responsible for getting an instruction from the decode Unit

and deciding which functional unit to issue the instruction to. This rule determines the

type of the instruction and reads the value of the operands from the Register File. It also

does a write to the main register file that updates the destination register to be a tag for the

result of this instruction.

In addition, the issue rule checks the result that is currently waiting in ROB for being

committed, if the updated value is not yet available in the register file. Each instruction is

also issued a tag which is an entry in ROB. This tag is given for renaming purposes. In the

end, the issue packet is queued into the appropriate Functional Units reservation station.

The issue rule(rl issue) fires only when the ROB has at least one free entry in ROB

and the Issue queue has decoded instruction. Issue rule reads from register file and ROB

for operands. It also writes into register file and ROB. The issue rule reads the state of

reservation station for free entries and writes to it. It also updates the stall signal which

represents the issue status of the instruction, which is read by the dequeue rule (rl dequeue)

to dequeue the issue queue.
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3.2.3 Execute and Write back Phase

The execution Core consists of the functional units and their associated reservation sta-

tions. Each functional unit has dedicated reservation station (distributed reservation sta-

tion scheme). The instructions waiting in the reservation station for source operands are

updated with the value when they are available on the common data bus.

In the earlier design, the values are updated only after they had been written in the ROB.

But in the modified design they are forwarded directly through the common data bus, hence

reducing the latency in data forwarding.

When all the source operands necessary for the operation are ready, it proceeds from the

reservation stations to the functional unit(in the order in which it was pushed into the reser-

vation station). The reservation station thus acts as a buffer between instruction schedule

and instruction issue, where in the Issue unit can schedule subsequent instructions, while

the current instruction waits in the reservation station for its operands.

The results from the functional units are driven on the common data bus along with

the corresponding rob number. The reorder buffer reads it from bus and updates the cor-

responding ROB entry (WRITE phase). Also the instructions waiting for the operands

in reservation station update their values by continuously sensing the common data bus

(Zbus). The implementation of the execute and write phase is as illustrated in Figure: 3.6.
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Figure 3.6: Execute and Write back Phase

All the functional units were modified so that the results are available at the output

until they are driven onto the common data bus. The design also has result registers. The

presence of result register divides the execution delay and the write-back delay into two

clock cycles, thereby eliminating a potential critical path. The results are held in the result

register until common data bus is available for broadcast.

3.2.3.1 Reservation Station

Distributed reservation station scheme is adopted for the design i.e., each execution unit

has its own reservation station. ZBus interface is provided for all reservation stations to

facilitate data forwarding through Z Bus. The reservation station holds the instructions to

be dispatched to the execution unit. All the reservation stations have similar organization

except for minor changes depending on the execution unit. The corresponding execution

unit is also instantiated as a sub module in reservation station.
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The detailed diagram of the reservation station with its interfaces is as shown in figure3.7

Figure 3.7: Reservation Station

The instructions issued are stored in FIFO manner in Reservation station buffer. Entries

in the buffer for an instruction may have the actual operands or the reorder buffer entry

number (rob number) of the instruction which updates the operand value. The reserva-

tion station dispatches the instruction to the execution unit only when actual operands are

available. So, the reservation station continuously senses the common data bus (ZBus) and

checks the rob number of the instructions which are being written on the bus and updates

the operands for the instruction in its buffer, if a match occurs.
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As mentioned, the presence of result registers ( implemented as FIFOs in Execution

units ) divides the execution delay and the write back delay into two clock cycles, thereby

eliminating a potential critical path.

The earlier design had two methods OperandForwarding and forwardOperand to fa-

cilitate operand forwarding from reorder buffer. In the modified design no forwarding of

operands is needed from reorder buffer as they are forwarded through Common Data Bus

in write phase (rule rl forwarding while write).

The reservation stations were modified so that the execution units are released only after

the result has been driven on CDB by the reservation station. Minor changes were made

also to the execution units.

The ZBus package was found to be not supporting tagged unions. Hence the entire

design was modified accordingly to avoid use of tagged unions wherever needed. The file

anupama types.bsv was also modified accordingly.
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3.2.3.2 Data Forwarding

Figure: 3.8 illustrates the data forwarding mechanism among the reservation stations

through Common Data Bus (CDB).

Figure 3.8: Data Forwarding

Whenever a reservation station gets a chance to drive result of instruction execution

on CDB, it puts the result on the bus along with the ROB number of the corresponding

instruction. All the reservation stations read the data on CDB for updating operands of

instructions waiting in their buffers. If a match occurs, the reservation station updates the

value of the operand with the data read from Common Data Bus (CDB).
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3.2.3.3 Bluespec Implementation details

The bluespec implementation details of Execute and Write back phase is as shown in

fig3.9.

Figure 3.9: Write back: bluespec implementation

Rules corresponding to execution unit writes into its result register. The rules corre-

sponding to Write back (rl drive zbus, rl forward while write) fires only when result reg-

ister of at least one execution unit has data to be sent on the bus. The rule drives data from

only one execution unit based on the priorities. So, the rule reads from the result register

of a reservation station and writes back / forwards to all the reservation stations. The rule

also writes into the corresponding entry in ROB.
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3.2.4 Commit Phase

The commit phase is similar to the earlier design, except that, there is no need to forward

results to reservation stations while committing an instruction. The results are forwarded

directly from the corresponding reservation through the Common Data Bus. So, there is

no need to forward the results while committing an instructions. The commit stage checks

for exceptions and updates the architectural state of the processor.

Figure 3.10 illustrates the operations in Commit stage.

Figure 3.10: Commit Phase

To maintain the in-order commit flow, only those instructions reaching the head of the

Reorder buffer are committed. Before committing the instruction at the head, first it checks

if any exceptions are raised. If any exceptions have been raised, the program counter is

reset to the new address pointing to the ISR,the PC and PSW are pushed on to the stack

and all the units including the remaining filled entries of the ROB are flushed.
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3.2.4.1 Bluespec Implementation details

Figure 3.11: Commit Phase: bluespec implementation

The bluespec implementation details of Commit phase is as shown in fig3.11. The

commit rule (rl commit) fires only when the head of the ROB has an instruction ready to

be committed. The rule reads from the head of the ROB and writes into the register file.

The Commit rule(rl commit) fires only when the processor is not handling an exception.

Each cycle, the Commit rule drains an entry from the ROB and checks the error code. If

the error code signals an exception, the commit rule will flag that the processor is now in

exception handling mode.
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3.3 VERIFICATION

3.3.1 Verification Setup

The set up for verification process is shown in fig: 3.12.

Figure 3.12: Verification Setup

Bluespec Compiler converts the design in BSV to synthesizable Verilog code. Questa

simulator was used to verify the various functionalities of the design.

The functionality of the design was verified using a test bench which provides a set of

instructions composed of various test scenarios to the main module. display statements
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were embedded/included in the code to monitor the functionality of the modules in various

clock cycles. The design was simulated using Questa simulator (Modelsim).

The test instructions in mnemonics form (assembly code) [6] are given to the ABACUS

assembler. The assembler gives the instructions in binary form. These are stored in a data

file and are used in the test bench for verifying the design.

3.3.2 Verification Strategy

The verification process mainly focused on verifying those functionalities of the proces-

sor, which were modified in the new design. They were considered as critical aspects for

the verification process.

So, the test scenarios were generated to verify the following aspects of the design.

• Fetching of operands from the Reorder Buffer in Issue stage.

• Data forwarding on Common Data Bus.

• Behavior in case of contention for Common data Bus.

• Bus arbitration.

• Release of Execution units.
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3.4 IMLPEMENTATION EVALUATION

3.4.1 Design Challenges

The data forwarding mechanism which was implemented as explained in section - 3.2.3.2

worked for most combinations of the instructions. But while verifying the data forwarding

operation, it was found to be not functioning properly. Some instructions were waiting in

their reservation stations forever as required operands were not forwarded to them through

Common Data Bus. The reason for this is illustrated in figure :3.13

Figure 3.13: Design Challenge : Data Forwarding

As shown in the figure above, if a reservation station writes the result of an instruction

execution (instruction-1) on CDB and if the Issue stage dispatches another instruction

(instruction-2) which is dependent on instruction-1 in same cock cycle, then instruction-2
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will not get the forwarded data from instruction-1. This is because, loading instruction-2

in reservation station buffer and the data forwarding from instruction-1 are done in the

same cycle.

In order to overcome this limitation, for the reservation station buffer entry, which contains

the last updated instruction, the data is forwarded both from the data available on the CDB

in the current clock cycle and also from the data forwarded on CDB in previous clock

cycle. For this purpose, a register is used, which holds the data forwarded on the bus in

last clock cycle. The data is forwarded to the tail of the buffer from both the Common Data

Bus and this register.

3.4.2 Bluespec Coding Details

Bluespec implementation of entire processor with modified mechanism for out of order

execution and data forwarding is as shown in fig 3.14

Figure 3.14: Single issue processor with CDB: bluespec implementation
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The bluespec implementation details of the earlier design of the processor (with out

CDB) are illustrated below in fig: 3.15.

Figure 3.15: Earlier design of the processor : bluespec implementation

From the bluespec implementation of the two processors represented in Figure: 3.14

and Figure: 3.15, the difference in the data forwarding mechanism can be observed.

In the earlier design the data is forwarded to reservation stations from ROB as indicated

in figure:3.15. But in the new design (Figure: 3.14) the data forwarding is done through

CDB and there is no data forwarding from ROB. Minor differences can also be observed

in the Issue rule.
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Files associated with the design:

Top Module:

Tomasulo.bsv - ( 1500 lines )

Reservation Stations:

rs arith.bsv - ( 800 lines )

rs memory.bsv - ( 700 lines )

rs branch.bsv - ( 500 lines )

rs floating.bsv - ( 650 lines )

3.4.3 Synthesis Report

The design has been synthesized using Xilinx ISE for Virtex 6 XC6VLX240T-FF1156.

All default settings were used. The design strategy was set to “optimization for speed”.

The slice utilization and timing summary are provided below.

Device Utilization Summary :

Selected Device: 6vlx240tff1156-1

Slice Logic Utilization:

Number of Slice Registers : 21049 out of 301440

Number of Slice LUTs : 33029 out of 150720

Number used as Logic : 32555 out of 150720

Number used as Memory : 474 out of 58400

Number used as RAM : 474
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Timing Summary :

Minimum period: 7.095 ns

Maximum Frequency: 140.944 MHz

Minimum input arrival time before clock: 5.706ns

Maximum output required time after clock: 4.471ns

Maximum combinational path delay: 3.198ns
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CHAPTER 4

DUAL ISSUE

This chapter describes the Implementation of Dual instruction issue in the single is-

sue processor with Out Of Order Execution (with CDB). It starts with Microarchitectural

description followed by implementation details of various phases of the design. The verifi-

cation strategy, Design challenges and Synthesis results are presented in the later sections.

4.1 MICROARCHTECTURAL DESCRIPTION

The performance of the processor can be improved further if it can issue multiple in-

structions in a clock cycle. Modifications are needed in all stages of the pipeline to convert

the existing single issue machine into a dual issue one. Major changes have to be incorpo-

rated in the Issue stage. The back end of the pipeline also need to be modified to support

forwarding results of two instructions on CDB simultaneously in same clock cycle and

also to commit two instructions in single clock cycle. The ALU is duplicated to reduce

structural hazards, which helps in issuing pair of arithmetic instructions in the same clock

cycle with out stalls.

Two instructions have to be fetched and decoded in single cycle. So,the decoder is du-

plicated to decode two instructions simultaneously. The fetch unit fetches two instructions

every clock cycle and feeds the decoders through buffers. The decoded instructions goes to

the issue stage, where required operands are fetched and all the dependencies between two



instructions are handled before dispatching the issue packets to the corresponding reserva-

tion stations. The Architecture of the dual issue processor is shown in the figure -4.1.

Figure 4.1: Microarchitectural organization of Dual issue processor

As mentioned before, the design need to be modified in almost all stages of an instruction

execution cycle. The design methodology and implementation details of various phases of

instruction execution for the dual issue processor are explained in the subsequent sections.

43



4.2 IMPLEMENTATION

4.2.1 Issue Stage

The functionality of the issue stage can be divided into three tasks. They are :

1. Operand Fetch (OF).

2. Issue Packet Formation (IPF).

3. Dispatch of Issue Packets (DIP).

For dual issue, the above tasks cannot be treated independently for the two instructions

as the instructions can be dependent on each other. So in the issue stage, the two instruc-

tions have to be treated together, exploring possible parallelism in the tasks for reducing

performance degradation due to longer data path due to complex logic.

Figure 4.2 illustrates the implementation of issue stage.

Figure 4.2: Issue stage of Dual Issue Processor
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The issue logic checks for availability of at least two empty slots in ROB to be alloted

for the two instructions being issued. If ROB has required slots, the issue stage proceeds

further. Otherwise, the issue operation is stalled until slots become available. The imple-

mentation details of the issue stage are explained in the following sections.

4.2.1.1 Operand Fetch - First Instruction

The required operands for the first instruction are fetched from register file or ROB. The

Operand fetch for the First instruction is done in the same way as a single issue machine.

Additionally, the destination registers of the first instruction are identified in the Operand

Fetch stage itself, as this information is needed for handling dependency, While fetching

operands for second instruction.

4.2.1.2 Operand Fetch - Second Instruction

While fetching operands for the second instruction, its dependence on first instruction

is handled before looking for operands in the register file and ROB. If the source operand

of the second instruction is same as one of the destination registers of the first instruction,

then the issue unit sends the ROB number alloted for the first instruction in place of the

actual operand for the second instruction. Hence, it reads its actual operand later from

Common Data Bus or Reorder Buffer, after completion of execution of first instruction.

Hence, the possible RAW hazard as a result of issuing two instructions simultaneously is

handled.
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4.2.1.3 Issue Packet Formation - First Instruction

The information / data to be sent to the corresponding reservation is formed as packets

in the issue stage. The issue packets contain information required for instruction execution

like the actual operands (or corresponding ROB number), PSW, ROB slot alloted ( tail

of ROB ) etc,. The information from the Operand fetch stage is used to form the issue

packets.

4.2.1.4 Issue Packet Formation - Second Instruction

The Issue packet formation for the second instruction is done in the same way as done

for the first instruction. Additionally, the information regarding ROB number alloted is

not the same in all cases. If the first instruction is a NOP, then no ROB slot is alloted for

the first instruction and hence the ROB number assigned for the second instruction will be

different ( (tail) of ROB instead of (tail+1) ). Some exceptional conditions like this need

to taken care while forming Issue packets for the second instruction.

4.2.1.5 Dispatch Of Issue Packets - First Instruction

Once the issue packets are formed, the packets are dispatched to the corresponding

reservation station, if it has free entries. If the reservation station has no free entries, then

the issue stage is stalled and waits until free entries are available. The OF and IPF for

the instruction are done in every cycle (to get latest updated values for operands) until the

Packets are dispatched to the corresponding reservation station. ROB number is alloted to

the instruction and the corresponding entry in ROB is tagged as alloted.
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The destination registers of the instruction are invalidated and tagged with the ROB

number of the instruction. However, if any destination register of the first instruction is

same as one of the destination registers of the second instruction, then the tagging ( with

ROB number of first instruction ) is not done to avoid multiple writes to the corresponding

register. Information from the Operand fetch phase of the second instruction is used for

handling this case.

4.2.1.6 Dispatch Of Issue Packets - Second Instruction

Dispatching the issue packets of the second instruction is done in the same cycle as the

first instruction, only if both instructions are of different kind. The exception for this is

the case when both instructions are Arithmetic. The Arithmetic unit and the corresponding

reservation station are duplicated. Hence, two arithmetic instructions can be issued in the

same cycle.

Also, the instruction issue has to be done in-Order, to maintain Program Order. Hence,

the issue packets of the second instruction are dispatched only if the first instruction is also

ready for dispatch or was dispatched in earlier clock cycle. ROB entry is alloted and the

destination registers are tagged with the ROB number of the instruction.

4.2.1.7 Bluespec Implementation Details

The bluespec implementation details of the issue stage in dual issue processor are illus-

trated in Figure :4.3
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Figure 4.3: Bluespec Implementation of Issue stage in Dual Issue Processor

The issue rule (rl issue) in dual issue processor is responsible for getting decoded in-

structions from the two Decoder units and deciding which functional units to issue the

instructions to. This rule determines the type of the instruction and reads the value of the

operands from the Register File after checking for dependency between two instructions.

It also does a write to the main register file that updates the destination register to be a tag

for the result of this instruction.

In addition, the issue rule checks the result that is currently waiting in ROB for being

committed, if the updated value is not yet available in the register file. Each instruction

is also issued a tag which is an entry in ROB. This tag is given for renaming purposes.

In the end, the issue packets are queued into the appropriate Functional Unit’s reservation

station.
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The issue rule (rl issue) fires only when the ROB has at least two free entry in ROB

and both the issue queues have decoded instructions. Issue rule reads from register file and

ROB for operands. It also writes into register file and ROB. The issue rule reads the state of

reservation station for free entries and writes to it. It checks the status of signals stall 1and

stall 2 to know the issue status of previous cycle. It also updates the signals stall 1 and

stall 2, at the end of the cycle, which represents the issue status of the two instructions

being issued. These signals are read by the dequeue rule (rl dequeue) to dequeue the issue

queues.

4.2.2 Execute and Write back

The Execute phase of the design doesn’t need significant modifications for supporting

dual issue. As mentioned earlier, the Arithmetic execution unit and corresponding reserva-

tion station is duplicated to support issuing two Arithmetic instructions in the same cycle.

The write-back phase of the design is modified to support writing results of two instruc-

tions in the same clock cycle. Hence the size of the common data bus is increased by

duplicating the existing common data bus. The data forwarding logic in reservation sta-

tions also need to be modified to update the reservation station buffers with results from

the two CDBs.

To avoid contention for the Common data Buses, the reservation stations are assigned

fixed priorities for each common data bus. The priorities assigned for two CDBs are in the

opposite order.
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4.2.2.1 Bluespec Implementation Details

The bluespec implementation details of Execute an Write-back phase is as shown in

figure- 4.4.

Figure 4.4: Bluespec Implementation of Write back stage in Dual Issue Processor

Each write back rule broadcasts one result out of the available ones in the various reser-

vation stations. The result from reservation station with highest priority is driven on CDB

1 by first write back rule and the next priority instruction on CDB 2 by the other write back

rule. The write back rules also update all the reservation stations and the corresponding

ROB entries.
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4.2.3 Commit Stage (Dual Commit)

The commit stage has to commit two instructions in single clock cycle. It checks if If the

oldest two instructions in the ROB are ready to be committed. Commit stage writes results

into the corresponding destination registers of the two instructions. The commit logic is

replicated for committing two instructions simultaneously in the same clock cycle. Not

many modifications are needed in the commit stage as all the dependencies are handled

in the issue itself. However, exceptions and branch mis-predictions have to be handled

properly.

If the first instruction has a branch mis-prediction or an exception, then the second

instruction is not committed. Also, if the first instruction is memory instruction (store op-

eration), then the second instruction is committed only after it finishes committing the first

instruction, because some memory instructions (store operation) take multiple cycles to

complete [7]. Hence, the commit stage has to ensure that exceptions like “ bus error”] are

not present before committing the second instruction. Also, the existing memory execu-

tion unit supports committing only single instruction at a time. Hence, dual commit is not

possible if the first instruction is a memory instruction.
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4.3 VERIFICATION

4.3.1 Verification Strategy

The strategy for verification is to generate the test cases which verifies the specific fea-

tures of dual issue processor. The test cases were generated to test the following critical

aspects of the design.

Issue Stage :

• Second instruction dependent on First instruction.

• Two instructions having same destination.

• Instructions for same reservation station.

• Handling of stalls in issue stage.

• Combination of different types of instructions.

Write back Stage :

• Contention for Common Data Bus ( CDB).

• Bus arbitration.

• Data forwarding from two buses.

• Combination of different types of instructions.

Commit Stage :

• Combination of different types of instructions.

• Handling exceptions.

• Handling branch mis predictions.
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4.3.2 Sample Test Cases and Results

One of the Sample test case for verifying the issue stage of dual issue processor and the

corresponding output of the Questa simulator are shown below.

Sample instructions :

• addu %r3, % r1, % r2

• or %r2, %r4, % r2

Output Of Questa Simulator :

• Fetching Operands for first Instruction : 00820c10

• OF-1st instruction : Fetched data from reg file: 1 for op2

• IPF-1st instruction: ARITHMETIC INSTRUCTION

• Fetching Operands for second Instruction : 0a050840

• OF-2nd instruction :op1 dependent on first instruction

• OF-2nd instruction : Fetched data from reg file: 4 for op2

• IPF-2nd instruction: ARITH INSTRUCTION

• DISPATCH-1: ARITHMETIC INSTRUCTION

• DISPATCH-1: same destination

• DISPATCH-2: ARITHMETIC INSTRUCTION

• DISPATCH-2: register: 2 tagged with ROB: 3

• Dequeuing instructions from buffers

As the second instruction is dependent on the first instruction, the corresponding operand

is assigned the ROB number of the first instruction. Also,as both the instructions have same

destination register, register invalidation (tagging with its ROB number) is not done for the

first instruction.
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4.4 IMPLEMENTATION EVALUATION

4.4.1 Design Challenges

Issue Stage:

1. For the case when first instruction has been issued and the second one is stalled, the

issue stage should be designed such that, the first instruction is not been issued again while

trying to issue the second instruction in later cycle. Also, dependency on first instruction

need not be taken into account while Fetching operands for the second instruction in the

later cycles as the corresponding registers and ROB were already tagged. To handle this,

two signals stall 1 and stall 2 are used, which hold the issue status of the two instructions

inn previous clock cycle.

• Stall 1 = True =>First instruction was not issued.

• Stall 1 = False =>First instruction was issued.

• Stall 2 = True =>Second instruction was not issued.

• Stall 2 = False =>Second instruction was issued.

The state machine describing the operation is as shown in figure 4.5

Figure 4.5: Handling Stalls (Issue stage) in Dual Issue Processor
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• i 12 : Both instructions can be issued.

• i 2 : Only Second instruction has to be issued.

2. For the case in which the first instruction is being issued and second instruction is

stalled, we should not check if both instructions have the same destination register fields,

while tagging the destination registers for first instruction in dispatch phase.

3. The decode queues which feed the issue stage should be dequeued simultaneously

only after completing the issue of both the instructions. If the two decode queues are de-

queued independently, the later instructions may get issued before issuing the instructions

preceding them.

The state machine representing this operation is show in figure 4.6.

Figure 4.6: Dequeuing Issue queues in Dual Issue Processor

• NO DQ : Issue Queue cannot be dequeued.

• DQ : Issue Queue can be dequeued.
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4.4.2 Bluespec coding Details

Bluespec implementation of entire dual issue processor with modified mechanism for

out of order execution and data forwarding is as shown in fig 4.7.

Figure 4.7: Bluespec Implementation of Dual Issue Processor
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The decode rule (rl decode) reads two instructions from the decode queues and decodes

the instructions. It puts the decoded instructions in issue queues. The state of issue queues

is read by issue rule (rl issue). The operation of rl issue was explained in earlier section.

Dual Write back is achieved through two different sets of rules for driving the two CDBs.

The Write back rules (rl forward while write) forwards the results from its CDB to all the

reservation stations.

Commit rule (rl commit) does the dual commit operation. If two instructions at the head

of the Re-order buffer have valid results, then rl commit updates the register file with the

results of both the instructions simultaneously.

Files associated with the design:

Top Module:

Tomasulo.bsv - ( 2600 lines )

Reservation Stations:

rs arith.bsv - ( 1200 lines )

rs memory.bsv - ( 1000 lines )

rs branch.bsv - ( 750 lines )

rs floating.bsv - ( 1050 lines )
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4.4.3 Synthesis Report

The design has been synthesized using Xilinx ISE for Virtex 6 XC6VLX240T-FF1156.

All default settings were used. The design strategy was set to “optimization for speed”.

The slice utilization and timing summary are provided below.

Device Utilization Summary :

Selected Device: 6vlx240tff1156-1

Slice Logic Utilization:

Number of Slice Registers : 26823 out of 301440

Number of Slice LUTs : 44411 out of 150720

Number used as Logic : 43937 out of 150720

Number used as Memory : 474 out of 58400

Number used as RAM : 474

Timing Summary :

Minimum period: 8.224 ns

Maximum Frequency: 121.594 MHz

Minimum input arrival time before clock: 6.217 ns

Maximum output required time after clock: 3.823 ns

Maximum combinational path delay: 3.481 ns
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CHAPTER 5

Conclusion and Future Work

The existing Out Of Order execution mechanism in the processor has been modified by

implementing the data forwarding among reservation stations through Common Data Bus.

The necessary modifications were made in some stages of the pipeline to support the data

forwarding through Common Data Bus. On synthesizing the Modified design on FPGA, it

gave improved clock frequency and less resource utilization compared to the earlier design.

In order to utilize the functional units effectively, Dual instruction issue has been imple-

mented. Modifications were made to the design to support dual instruction issue. All the

necessary modifications were made starting from decode stage to the commit stage of the

processor. The Arithmetic Execution unit was replicated to improve the performance by

reducing stalls due to structural hazards in the dual issue processor.

Possible Directions for Future Work: The existing design assumes that the fetch unit

fetches two instructions in a clock cycle. This work can be carried out further to imple-

ment fetching of two instructions from the memory in single clock cycle. The fetch stage,

cache controller and some other modules of the processor have to be redesigned to support

fetching multiple instructions in a clock cycle. The Memory execution unit has to be mod-

ified to support committing two memory instructions in same clock cycle. The Design can

be further modified to support even larger issue widths. However, the effect on clock fre-

quency and area utilization has to be taken into account while choosing the optimal issue

width.



Apart from the Arithmetic execution unit, some other functional units can be replicated

to improve the performance further. However, this results in increased area utilization and

power Consumption by the processor. Rigorous verification of the entire design has to be

carried out before implementing it on ASIC.
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