
CONSTRUCTION OF CAPACITY ACHIEVING

PROTOGRAPH CODES

A Project Report

submitted by

JAYANTH RAMESH

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2015

THESIS CERTIFICATE

This is to certify that the thesis titled CONSTRUCTION OF CAPACITY ACHIEV-

ING PROTOGRAPH CODES, submitted by Jayanth Ramesh, to the Indian Institute

of Technology, Madras, for the award of the degree of Bachelor of Technology, is a

bona fide record of the research work done by him under our supervision. The con-

tents of this thesis, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Andrew Thangaraj
Research Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 21st May 2015

ACKNOWLEDGEMENTS

I am extremely grateful to my B.Tech Project advisor Prof. Andrew Thangaraj, De-

partment of Electrical Engineering, IIT Madras for the help and guidance that he had

extended to me, without which I could not have completed this project. I would like

to thank Surajkumar Harikumar and Manikandan Srinivasan for being with me not just

during the course of the project, but through the ups and downs in my life at the insti-

tute. I am thankful to all my laboratory partners and laboratory supervisors for their

kind co-operation. I take this opportunity to thank all the department faculty members

for their help and support. I wish to express my gratitude to one and all who have

been involved directly or indirectly with this project. Finally, I would like to thank my

parents, my sister and my family members for their unrelenting support throughout the

course of the project.

i

ABSTRACT

KEYWORDS: Protograph ; Density Evolution; Heuristics for Protograph Con-

struction; Bounds on Threshold;

The main focus of this project is to come up with simple ways of constructing proto-

graph codes which have thresholds close to capacity. The concept of protographs as

Generalized LDPC codes is explained. The basic properties of the evolution of erasure

probabilities along different edges in a protograph in a BEC are presented. Closed form

upper bounds on the threshold of protographs are proposed, which are used to construct

optimal small sized protograph codes. Using ideas from these upper bounds and ob-

served features of good protographs, a heuristic algorithm for the construction of good

protograph codes is introduced.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 INTRODUCTION 1

1.1 Graphical Representation and Matrix Representation 1

1.2 Copy-Permute Operation to generate Protograph LDPC code 2

2 Density Evolution for Protograph Codes 4

2.1 Properties of Density Evolution Functions 5

3 Closed Form Bounds on Threshold of Protographs 8

3.1 Preliminary Work . 8

3.2 1-term closed form bound . 9

3.3 N-term closed form bound . 11

3.4 Design of Protograph based on Closed Form Bound 12

3.4.1 Designing a 1 x 2 protograph 12

3.4.2 Designing a 2 x 3 protograph 14

4 Heuristics for Construction of Capacity Achieving Protograph Codes 18

4.1 Commonly Observed Features of Good Protographs 18

4.2 The Heuristic Algorithm . 19

4.2.1 Creating a Dominant Bit Node and Making the Graph Sparse 19

4.2.2 Reducing the Dominant Column 20

iii

4.3 Justification of the Heuristic . 21

4.3.1 Presence of Dominant Column 21

4.3.2 Preserving Connectivity 21

4.3.3 Sparsity of Protograph . 22

4.3.4 Avoiding Repetition . 22

4.3.5 Equality of Check Node Degrees 22

4.3.6 3 x (M-1) Difference Rule 23

4.4 Improving Protograph Threshold using Heuristic 23

4.4.1 Example 1 . 23

4.4.2 Example 2 . 24

4.4.3 Example 3 . 25

4.4.4 Example 4 . 26

4.5 Construction of Good Protograph Codes using the Heuristic 27

4.5.1 Example 1 . 27

4.5.2 Example 2 . 28

4.5.3 Example 3 . 29

4.5.4 Example 4 . 30

4.5.5 Example 5 . 33

4.5.6 Example 6 . 34

5 Conclusion and Future Work 37

5.1 Conclusion . 37

5.2 Suggestions for Future Work . 38

5.3 Summary . 38

A Matlab Codes 39

A.1 Code for Computing Threshold of Protograph 39

A.2 Code for Protograph Construction based on the Heuristic 42

LIST OF TABLES

4.1 Threshold of protographs generated by code 35

v

LIST OF FIGURES

1.1 Protograph corresponding to the base matrix H1. 2

1.2 Graphical Representation of a sample Protograph 3

1.3 Derived Graph corresponding to the protograph in 1.2 3

2.1 Evolution of Edge Erasure Probability with Iteration 7

3.1 Best 1� 2 protograph using Closed Form Bound 14

3.2 Edge Erasure Probability Evolution for best 1� 2 code at ε ε� . . 14

3.3 Best 2� 3 protograph using Closed Form Bound 17

3.4 Edge Erasure Probability Evolution for best 2� 3 code at ε ε� . . 17

vi

ABBREVIATIONS

AWGN Additive White Gaussian Noise

BEC Binary Erasure Channel

BI-AWGN Binary Input-Additive White Gaussian Noise

BSC Binary Symmetric Channel

DE Density Evolution

GLDPC Generalized Low-Denstiy Parity-Check

LDPC Low-Denstiy Parity-Check

vii

NOTATION

C Capacity of a code
C Set of check nodes of a protograph
cj jth Check node in a protograph
dji Number of edges between variable node vi and check node cj
E Set of edges in a protograph
ekij kth edge between variable node vi and check node cj
eij Any of the edge between variable node vi and check node cj
ε Probability of Erasure in a BEC channel
ε� Erasure Threshold for a Protograph Code
fij Density evolution function for edge eij
H The parity check matrix of a protograph code
V Set of variable nodes of a protograph
vi ith variable node in a protograph
R Rate of a protograph code
xij Probability of erasure for message sent from a bit node to check node
x Vector of erasure probabilities of all edges
yij Probability of erasure for message sent from a check node to bit node

viii

CHAPTER 1

INTRODUCTION

LDPC codes have emerged as one of the top contenders for near channel capacity error

correction. They are described by their sparse parity check matrix, which are efficiently

represented as bipartite graphs known as Tanner Graphs. Protographs refer to a new

class of generalized LDPC codes, that are derived from a base template. This template

is called the protograph, from which the LDPC Tanner graph is constructed using the

copy and permute operation (Thorpe, 2003).

1.1 Graphical Representation and Matrix Representa-

tion

A protograph can be any Tanner graph, which typically consists of relatively small

number of nodes. A protograph can be represented by G � pV Y C,Eq, where V

represents the set of variable/bit nodes, C represents the set of check nodes and E

represents the set of edges in the protograph. Each edge e P E connects a variable node

v P V to a check node c P C. In general, we consider the number of variable/bit nodes

to be N and the number of check nodes to be M . The kth edge connected between

variable node vi and check node cj is denoted by epkqij .

It is convenient to represent a protograph by a M �N matrix H , where each entry

Hpj, iq denotes the number of edges dji between variable node vi and check node cj .

The matrix corresponding to the graphical representation is

H1 �
�
�4 2 3

2 1 2

�

 (1.1)

The corresponding graphical representation of the sample protograph is given by

Figure 1.1: Protograph corresponding to the base matrix H1.

1.2 Copy-Permute Operation to generate Protograph LDPC

code

The copy-permute operation as the name suggests, consists of two major steps (Thorpe,

2003). The first step involves copying the base protograph a given number of times (say

T). The second step involves permuting the edges of the same kind, that is permuting

the endpoints of each edge among the T variable and T check nodes connected to the

set of T edges, which are copied from the same edge in the protograph. The derived

graph will have NT variable nodes and MT check nodes. This graph obtained after the

copy-permute operation is called as derived graph, denoted by G1. The design rate of

the protograph is given by R � 1� M
N

.

A property of the protograph codes is that any local neighbourhood of a node in the

derived graph (G1) is completely specified by the protograph (G).

Consider the following protograph

2

Figure 1.2: Graphical Representation of a sample Protograph

The derived graph obtained after copying the protograph two times and permuting

the edges of the same type is shown below.

Figure 1.3: Derived Graph corresponding to the protograph in 1.2

3

CHAPTER 2

Density Evolution for Protograph Codes

We use the standard message passing decoder over a Binary Erasure Channel BEC(ε).

In the case of the socket ensemble, density evolution tracks one probability of erasure.

The protograph imposes a structure on the neighbourhood of each node. So, we need to

track the erasure probability for each edge-type in the protograph separately.

Since every edge between vi and cj has the same neighbourhood, erasure probabili-

ties of parallel edges connecting vi to cj evolve the same way. Let xplqij be the probability

that an erasure is sent from vi to cj along any of the parallel edges connecting them.

Similarly, let yplqij be the probability that an erasure is sent from cj to vi along any of the

parallel edges connecting them. To keep the notation simple, we will denote by eij a

representative edge between vi and cj , and refer to it as an edge type. Let Npviq and

Npcjq denote the neighbors of the nodes vi and cj , repectively.

The density evolution recursion (Richardson and Urbanke, 2001) over BECpεq is

given by

x
p0q
ij � ε,

y
pl�1q
ij � 1� p1� x

plq
ij qdji�1

¹
kPNpcjqzvi

p1� x
plq
kj qdjk , (2.1)

x
pl�1q
ij � ε pypl�1q

ij qdji�1
¹

kPNpviqzcj

pypl�1q
ik qdki

for every pair pi, jq for which an edge eij exists. From the above equations, we can

obtain a recursion of the form

x
p0q
ij � ε

x
pl�1q
ij � εfij

�
x
plq
11 , . . . , x

plq
MN

	
, (2.2)

for every edge type eij . The functions fij are polynomials in a subset of the vari-

ables txiju, 1 ¤ i ¤ N , 1 ¤ j ¤ M , and their properties play a crucial role in the

convergence of the iteration. The function fij can be written as

fijpxq �
�
�1� p1� x

plq
ij qdji�1

¹
kPNpcjqzvi

p1� x
plq
kj qdjk

�

dji�1

¹
kPNpviqzcj

�
�1� p1� x

plq
ik qdki�1

¹
k1PNpckqzvi

p1� x
plq
k1kqdkk1

�

dki

, (2.3)

where expressions for ypl�1q
ij and ypl�1q

ik from (2.1) have been used and x denotes the

vector of arguments for fij .

The threshold of density evolution, denoted by ε�, is the supremum over ε for which

erasure probability on each edge of the protograph tends to zero, as l Ñ 8. In notation,

ε� � suptε : x
plq
ij Ñ 0 for all eiju. (2.4)

For ε ¡ ε�, there is some xplqij that converges to a non-zero value as l Ñ 8.

2.1 Properties of Density Evolution Functions

In this section, we describe some of the basic properties of the coupled DE recursion

relations, which are useful for determining bounds on the threshold of the protograph.

The first lemma is about monotonicity of the DE functions as in the case of LDPC

codes (Richardson and Urbanke, 2008).

Lemma 1. DE functions fijpxq are monotonically increasing with each variable xmn, 1 ¤
m ¤M, 1 ¤ n ¤ N .

Proof. If Bfij{Bxmn � 0, then the above result is trivially true as fij has no dependence

on xmn. Otherwise fij is of the form

fijpxq � p1� p1� xmnqk1gmnpxqqk2 � hmnpxq

5

where Bgmn{Bxmn � Bhmn{Bxmn � 0. Consider xmn1 , xmn2 as the components of x1

and x2, such that xmn1 ¡ xmn2 . Now, we consider

p1� xmn1q p1� xmn2q
fijpx1q � p1� p1� xmn1qk1gmnpxqqk2 � hmnpxq ¡

p1� p1� xmn2qk1gmnpxqqk2 � hmnpxq � fijpx2q

Thus, without the loss of generality, fijpxq is monotonically increasing in each variable.

Lemma 2. For all pi, jq, xpl�1q
ij ¤ x

plq
ij , i.e the sequence

!
x
plq
ij

)l�8

l�1
is decreasing.

Proof. We prove this lemma by using induction. We have fij ¤ 1 @ 1 ¤ i ¤ N, 1 ¤
j ¤ M . Given ε 1, we have xp1qij x

p0q
ij . Now let us assume that, @pi, jq x

pk�1q
ij

x
pkq
ij . Now,

x
pk�2q
ij � εfijpxpk�1q

11 , . . . , x
pk�1q
MN q

By using the previous lemma, fij are monotonically increasing functions with each

variable. Therefore

εfijpxpk�1q
11 , . . . , x

pk�1q
MN q ¤ εfijpxpkq11 , . . . , x

pkq
MNq

x
pk�2q
ij ¤ x

pk�1q
ij

Without any loss of generality, @pi, jq, xpk�2q
ij ¤ x

pk�1q
ij . By the Principle of Mathemat-

ical Induction, xpl�1q
ij ¤ x

plq
ij , @ l ¥ 1. Therefore the sequence

!
x
plq
ij

)l�8

l�1
is decreas-

ing.

Before moving on to the next lemma, we consider an important lemma from math-

ematics literature (Yeh, 2006), which is relevant to DE equations.

Lemma 3. If a sequence of real numbers is decreasing and bounded below, then its

infimum is the limit.

Proof. Consider a decreasing sequence tanu, which is bounded below.

6

Since tanu is non-empty, and bounded below, we have by the Greatest Lower Bound

Property of real numbers, s � inf tanu exists and is finite. Now for every ε ¡ 0, there

exits N such that, aN s � ε, otherwise s � ε is the lower bound, which contradicts

the fact that s is the infimum. As tanu is decreasing, if n ¡ N , we have |an � s| ¤
|aN � s| ε, which implies that tanunÑ8 � s � inf tanu.

Using the above lemma, the following result can be shown.

Lemma 4. For any 0 ¤ ε 1, the sequence
!
x
plq
ij

)l�8

l�1
converges.

Proof. We know that the sequence
!
x
plq
ij

)l�8

l�1
is monotonically decreasing. Also, for

each l ¥ 1, 0 ¤ x
plq
ij ¤ ε. By monotone convergence theorem stated in the previous

lemma, a sequence that is monotonic and bounded converges. Therefore, the given

sequence converges always.

To illustrate these properties graphically, the evolution of erasure probabilities of

different edges with iteration of the protograph H2 is shown below.

H2 �
�
�4 2 2

2 1 2

�

 (2.5)

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Iteration

E
dg

e
E

ra
su

re
 P

ro
ba

bi
lit

y

Figure 2.1: Evolution of Edge Erasure Probability with Iteration

7

CHAPTER 3

Closed Form Bounds on Threshold of Protographs

The threshold of a protograph code determines the ability of the coding scheme to de-

code errors when the message is transmitted in a BEC. The Density Evolution equation

form a set of coupled equations and are difficult to analyse and hence be useful from the

perspective of designing a code. Upper bounds on the threshold of protograph help us

in gaining an understanding into the goodness of a protograph without much computa-

tion. In this chapter, we look at some closed form expression for bounds on threshold of

protographs, that give insights about their design and guide the heuristic for improving

the protograph threshold presented in the next chapter.

3.1 Preliminary Work

Before going into the closed form bounds, we shall first look at some simple bounds

on the threshold of the protographs as given in (Srinivasan, 2015). We have the fol-

lowing useful results for bounds on threshold of protograph codes, which provide the

framework for the closed form bounds presented in the next section.

Lemma 5. If there exists a function gpxq such that gpxq ¤ fijpxq, @ i P V, j P C, x P
p0, 1s, then an upper bound on threshold is

ε� ¤ ε�g � min
x�0

x

gpxq (3.1)

where ε�g can be interpreted as the threshold for the single edge type density evolution

with recursion function gp�q and fijpxq � fijpx, . . . , xq, that is, all the MN variables

are replaced by the single variable x.

The above lemma is useful in the sense that, it reduces the problem of getting an up-

per bound on the threshold of a protograph into a single variable optimization, thereby

reducing computation. The following lemma (Srinivasan, 2015) shows the existence of

a function gpxq in terms of the DE function for some specific conditions on the check

node degrees and bit node degrees on the protograph.

Lemma 6. (Single Edge Bound) If there exists an edge eîj in the protograph that satis-

fies the conditions:

• Highest check node degree - dpcĵq ¥ dpcjq
• Dominant Column - dkî ¥ dki, @ k P C, i P V

then the threshold has an upper bound

ε� ¤ ε�
îj
� min

x�0

x

fîjpxq
(3.2)

The dominant column. is defined as the column î, which satisfies djî ¥ dji @ 1 ¤
i ¤ N for every j.

It can be inferred from the structure of DE equations that fij is of the form
±N

i�1p1�
p1� xqpiqqi . In the coming section, we show how to loosen the above form of equation

to get a closed form expression for the upper bound on the threshold of protograph,

explicitly in terms of the protograph parameters.

3.2 1-term closed form bound

Consider the a minimization of the form

W1 � min
x�0

x

p1� p1� xqpqq (3.3)

with only 1 term in the denominator.

Lemma 7. (1-TCF Bound) The one variable minimization is upper bounded by

W1 ¤
�
pq e�pq�1q

�
2pq � 1q
pq

�q�1
��1

(3.4)

when q ¡ 1

9

Proof. The basic inequality we use to prove this is

?
x ln

1

x
¤ 1� x ¤ e�x; x P p0, 1s (3.5)

We show that the function in W1 can be upper bounded

p1� xqp ¤ e�px

1� p1� xqp ¥ 1� e�px ¥
?
e�px ln

1

e�px

1� p1� xqp ¥ ppxq e�px{2

p1� p1� xqpqq ¥ pqxq e�pqx{2

x

p1� p1� xqpqq ¤ x

pqxq e�pqx{2
(3.6)

So, we can upper bound the minimization as

W1 � min
x�0

x

p1� p1� xqpqq ¤ min
x�0

1

ppqxq�1 e�pqx{2q (3.7)

We can rewrite this as

W1 ¤ 1

maxx�0 ppqxq�1 e�pqx{2q �
1

J
(3.8)

We can perform the maximization for J by performing

dJ

dx
� 0 ùñ x �

�
2pq � 1q
pq

�
; q ¡ 1 (3.9)

Substituting this into 3.8, we obtain

W1 ¤
�
pq e�pq�1q

�
2pq � 1q
pq

�q�1
��1

(3.10)

which proves the lemma.

10

3.3 N-term closed form bound

We can similarly obtain an upper bound for N product terms in the denominator.

WN � min
x�0

x±N
i�1 p1� p1� xqpiqqi (3.11)

Lemma 8. (N-TCF Bound) The one variable minimization is upper bounded by

WN ¤
��¹

pqii

	
e�q1

�
2q1

p1

�q1
��1

(3.12)

where q1 � ° qi � 1, and p1 � ° pi qi

Proof. The proof proceeds in a manner very similar to the previous one. We can use

the inequality on each of the product terms individually. Using (3.6)

x

p1� p1� xqpiqqi ¤
x

pqii x
qi e�piqix{2

, i � 1, . . . , N (3.13)

So we have

x±N
i�1 p1� p1� xqpiqqi ¤

��¹
pqii

	
xq

1

e�p1x{2
	�1

(3.14)

The minima will also follow this inequality, yielding

WN ¤ 1

maxx�0 pp
±
pqii qxq1 e�p1x{2q �

1

J2
(3.15)

We can perform the maximization for J2 by setting

dJ2
dx

� 0 ùñ x �
�

2q1

p1

�
; q1 ¡ 1 (3.16)

where the condition q1 ¡ 1 is obviously satisfied for N ¡ 1. Substituting this into 3.15,

we obtain

WN ¤
��¹

pqii

	
e�q1

�
2q1

p1

�q1
��1

(3.17)

which proves the lemma.

11

A special case of this which we use later is the 2-TCF bound, given by

min
x�0

x

p1� p1� xqp1qq1 p1� p1� xqp2qq2 ¤�
pq11 pq22 e�pq1�q2�1q

�
2pq1 � q2 � 1q
p1q1 � p2q2

�q1�q2�1
��1

(3.18)

We can use the all-edge and single edge bound with these expressions to obtain

looser upper bounds on threshold. While these upper bound values are not very tight,

they help us understand the properties of high threshold protographs, and guide our

heuristic for improving protograph thersholds.

3.4 Design of Protograph based on Closed Form Bound

The objective of protograph design is to find protographs with maximum threshold.

Since we don’t have a closed form expression for the actual threshold, we try find the

parameters of the protograph to maximize the upper bound. We now use the closed

form bounds obtained to help design optimal protographs of small size.

Also, the single edge bound is a closer bound than the others, hence we consider

only those protographs with a dominant column in our design. We provide an intuitive

justification for why a dominant column yields high threshold protographs in Section

4.3. We restrict our attention only to these protographs.

3.4.1 Designing a 1 x 2 protograph

Consider the general 1 � 2 protograph matrix given by HA1 � ra, bs. In order for this

to be a valid protogrpah (with non-trivial threshold), the protograph entries must satisfy

a ¥ 2, b ¥ 2. Without loss of generality, we can assume a ¥ b, which forms a dominant

bit node. The Single-Edge Upper Bound, as given by Lemma 6 is

ε� ¤ ε�
1̂1
� min

x�0

x

p1� p1� xqa�b�1qa�1 (3.19)

12

We now apply the 1-TCF bound in Lemma 7 to ε�
1̂1

giving

ε� ¤ ε�
1̂1
¤
�
pqe�pq�1q

�
2pq � 1q
pq

�q�1
��1

(3.20)

where p � a� b� 1, q � a� 1. This is a valid bound only if q ¡ 1, a ¡ 2.

Any protograph of the form ra, bs has an upper bound of this form. The design

criterion is to find the values of a, b which maximize the 1-TCF bound. This amounts

to finding

pp, qq � arg min
p,q

pqe�pq�1q

�
2pq � 1q
pq

�q�1

� arg min
p,q

pe�pq�1q

�
2pq � 1q

q

�q�1

� arg min
p,q

logppq � pq � 1q � pq � 1q log

�
2pq � 1q

q

� arg min

p,q
Jpp, qq

It is evident that for a given q � a�1, Jpp, qq is minimum when b � p�q is minimum.

Since b ¡ 1, b � 2 is the best choice.

Now consider

BJpp, qq
Bq � �1� log 2� log

�
1� 1

q

� 1

q
(3.21)

which is negative for q ¡ 1. So Jpp, qq is a decreasing function of q. Since q ¡ 1, the

minimum is attained when q � 2, a � 3. Note that a � 2, b � 2 is a valid protograph,

but doesn’t satisfy our bound conditions, so it is not considered.

Hence the best 1 � 2 protograph, as given by our design method is HA1 � r3, 2s.
The threshold of this protograph is ε� � 0.4448.

13

Figure 3.1: Best 1� 2 protograph using Closed Form Bound

The following figure shows the evolution of erasure probability along the different

edges.

0 2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration Number

E
dg

e
E

rr
or

 P
ro

ba
bi

lit
y

Figure 3.2: Edge Erasure Probability Evolution for best 1� 2 code at ε ε�

3.4.2 Designing a 2 x 3 protograph

Consider a general 2� 3 protograph matrix given by

HA2 �
�
�a b c

d e f

�

 (3.22)

We consider the first column of the HA2 matrix as the dominant column. Without loss

of generality, we can assume a ¥ b. The single edge upper bound as given by Lemma

14

6 is

ε� ¤ ε�
1̂1
� min

x�0

x

p1� p1� xqa�b�c�1qa�1 p1� p1� xqd�e�f�1qd (3.23)

We now apply the 2-TCF bound in Lemma 8 to the above equation to get

ε� ¤ ε�
1̂1
�
�
pq11 pq22 e�pq1�q2�1q

�
2pq1 � q2 � 1q
p1q1 � p2q2

�q1�q2�1
��1

(3.24)

where p1 � a� b� c� 1, q1 � a� 1, p2 � d� e� f � 1 and q2 � d.

Our aim here is to find the values of p1, q1, p2, q2 which maximize the 2-TCF bound.

Therefore, we have

pp1, q1, p2, q2q � arg min
p1,q1,p2,q2

�
pq11 pq22 e�pq1�q2�1q

�
2pq1 � q2 � 1q
p1q1 � p2q2

�q1�q2�1
�

� arg min
p,q

q1 logpp1q � q2 logpp2q � pq1 � q2 � 1q �

pq1 � q2 � 1q log

�
2pq1 � q2 � 1q
p1q1 � p2q2

� arg min

p,q
Jpp1, q1, p2, q2q

For minimizing Jpp1, q1, p2, q2q, we enumerate the partial derivatives of J with re-

spect to p1, q1, p2 and q2 to zero.

BJpp1, q1, p2, q2q
Bp1 � q1

p1
� pq1 � q2 � 1qq1

p1q1 � p2q2
(3.25)

Setting the above partial derivative to zero results in

1

p1
�
�
q1 � q2 � 1

p1q1 � p2q2

� 0 (3.26)

Similarly, BJ
Bp2

results in
1

p2
�
�
q1 � q2 � 1

p1q1 � p2q2

� 0 (3.27)

Solving the above two equations results in

p1 � p2 (3.28)

15

This condition means that the check node degrees of both the check nodes in the proto-

graph are equal.

Using p1 � p2, we have

BJpp1, q1, p2, q2q
Bq1 � log

�
2pq1 � q2 � 1q

q1 � q2

� q1 � q2 � 1

q1 � q2

� �1� logp2q � log

�
1� 1

q1 � q2

� 1

q1 � q2
(3.29)

which is negative for q1�q2 ¡ 1. So Jpp1, q1, p2, q2q is a decreasing function in q1�q2.

This implies that, q1 � q2 should be as less as possible and in this case it is equal to 2.

Using the above results, we get the following conditions on the optimal protograph.

• a ¥ b ¥ c and d ¥ e ¥ f , for the first column to be dominant as assumed initailly

• a� b� c � d� e� f , which follows from p1 � p2

• b� c� e� f ¥ 5, for a valid protograph without degree 2 cycles

• a� b � 3, for a higher closed form bound arising from q1 � q2 ¡ 1

Since all the constraints cannot be satisfied at once, we choose to relax the con-

straints as little as possible without violating the dominant column condition and induc-

ing degree two cycles. In this case, we relax the check node degree equality constraint.

The above set of conditions yield the following protograph.

HA2 �
�
�2 2 1

1 1 1

�

 (3.30)

Hence the best 2�3 protograph by our design is given byHA2 above with a threshold

ε� � 0.5947.

16

Figure 3.3: Best 2� 3 protograph using Closed Form Bound

The following figure shows the evolution of erasure probability along the different

edges.

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iteration Number

E
dg

e
E

rr
or

 P
ro

ba
bi

lit
y

Figure 3.4: Edge Erasure Probability Evolution for best 2� 3 code at ε ε�

17

CHAPTER 4

Heuristics for Construction of Capacity Achieving

Protograph Codes

This chapter describes in detail the process of construction of capacity achieving proto-

graph codes based on the observed characteristics of good protographs, and also justi-

fies why those characteristics contribute to a higher erasure threshold for the protograph

code in the BEC channel.

4.1 Commonly Observed Features of Good Protographs

Let us examine some of the protographs that have erasure threshold in a BEC channel

close to capacity.

Consider the following 3� 6 protgraph

H3 �

�
����

2 2 1 1 1 0

4 0 1 0 1 1

3 0 1 1 0 1

�
���
; ε� � 0.4803, C � 0.5

(4.1)

An optimized 4� 8 protograph given in (Pradhan et al., 2013)

H4 �

�
�������

1 2 2 3 4 1 1 0

0 1 0 0 5 0 0 1

1 0 0 0 3 0 4 1

1 0 1 0 6 1 0 0

�
������

; ε� � 0.479, C � 0.5

(4.2)

An optimized 8� 16 protograph given in (Pradhan et al., 2013)

H5 �

�
�������������������

1 2 0 0 1 0 0 4 0 0 0 0 0 0 0 1

0 1 0 0 0 1 0 0 2 2 1 0 0 0 1 1

0 3 1 2 1 0 0 0 4 0 0 3 2 2 0 3

0 5 0 0 0 0 1 1 0 0 1 0 0 1 0 0

1 3 1 1 1 2 0 0 1 0 0 0 0 0 0 0

1 5 0 0 0 3 1 0 0 0 1 0 0 0 0 0

0 4 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 5 0 0 0 0 0 0 0 1 0 0 1 0 1 0

�
������������������

; ε� � 0.4876, C � 0.5

(4.3)

The above protographs have threshold close to capacity. One striking feature com-

mon to these protographs is they have one column/bit node, the number of edges con-

nected to which are significantly larger than the corresponding number of edges con-

nected to the other columns/bit nodes. If we exclude this column from the protograph

matrix, we see that the rest of the matrix is sparse with many entries being 0. These ob-

servation form the basis for the heuristic proposed for construction of capacity achieving

protographs in the next section.

4.2 The Heuristic Algorithm

The heuristic consists of two major steps, which results in a improvement of the thresh-

old of a given protograph code (H). The basic intuition follows from the major ob-

servations about the characteristics of good protograph codes made above. The first

step involves creating a dominant bit node/column, as defined in the previous section,

followed by reducing the entries of the protograph, which results in a sparser graph.

4.2.1 Creating a Dominant Bit Node and Making the Graph Sparse

The column with the highest weight in the H-matrix is identified. For each row in

the matrix, entries from the other column are pushed into the dominant column. A

19

dominant column creates a bundle of edges (corresponding to this bit node), whose

erasure probability go to zero much faster than all the others. This can be observed

in the DE plots. Since the erasure probability (for edges in the dominant column) are

already very small (this happens because the dominant column edges are connected to

multiple check nodes resulting in easier decoding), it allows the other edges to converge

faster, hence speeding up the DE. Such protographs intuitively should give a higher

value of threshold. A few points to be noted here are

• Pushing entries (edges) is done by reducing the H-entry in a given row, and
adding the difference to the dominant column entry for the row. This preserves
the degree of the check node.

• If an entry is the only one in it’s row / column (only edge connecting the bit /
check node), then it is left undisturbed.

• If the reduction of a matrix entry causes the graph to become disconnected (there
no longer exists a single path connecting all nodes), then such a reduction is
avoided.

• The step is terminated when any edge push causes the graph to become discon-
nected or induces degree two cycles or when the rest of the matrix becomes rel-
atively sparse (that is each column degree other than dominant column is around
3-4).

• Repeating columns are avoided as much as possible. For instance, if the column
to be reduced has r3, 2s1, and an existing column is r2, 2s1, preference is given to
the combination r3, 1s1 over r2, 2s1.

4.2.2 Reducing the Dominant Column

This is the second step in the heuristic. The entries of the dominant column are reduced

to make the graph sparse, while at the same time ensuring that the dominant column

continues to remain so.

• All the check node degrees are computed first. Let the check node degrees be
sorted in descending order and C1 represent the check node of highest degree and
CM denote the check node with the least degree. If two check nodes have the
same degree, then the check node with a higher entry in the dominant column is
given precedence.

• The dominant column entry in C1 are reduced to make the overall degree equal
to (or just larger than) the degree of C2.

• The dominant column entries in C1 and C2 together are reduced, to make their
degree equal to (or just larger than) the degree of C3.

20

• Once all the check node degrees are approximately equal, the entries in the domi-
nant columns are reduced till the difference in the degree of the dominant and the
second highest bit node degree column is about 3� pM � 1q.

4.3 Justification of the Heuristic

In this section, we try to reason out the various steps in our heuristic algorithm for

improving the threshold of a given protograph.

4.3.1 Presence of Dominant Column

The first major step in the heuristic is to induce a dominant column in the protograph.

The Density Evolution function corresponding to these edges have relatively smaller

value compared to the other edges, owing to the higher value of the exponents. From

2.1, we have

x
pl�1q
ij � ε pypl�1q

ij qdji�1
¹

kPNpviqzcj

pypl�1q
ik qdki

y
pl�1q
ij � 1� p1� x

plq
ij qdji�1

¹
kPNpcjqzvi

p1� x
plq
kj qdjk (4.4)

Let j represent the dominant column. Then, the values of values of dji and djk are

higher then the corresponding edges of other columns, resulting in smaller values for

xij in subsequent iterations. This results in an earlier convergence of probability of

erasure to zero for the edges present in dominant column. Intutively, the dominant

column edges are connected to a large number of check nodes, which results in earlier

convergence of erasure probabilities along these edges. This convergence induces the

probability of erasure to go to zero in other edges, thereby resulting in a protograph

code having a higher threshold for a BEC.

4.3.2 Preserving Connectivity

Another important point to be kept in mind while running the heuristic is to ensure

that the connectivity of the graph isn’t disturbed. This is because, if any step causes

21

the graph to become disconnected, then it would result in two or more isolated graphs,

thereby reducing the number of checks performed on the received bits, making error

correction difficult, which leads to lower threshold.

4.3.3 Sparsity of Protograph

The concept of sparsity can also be explained using the ideas from the construction of

the 2 � 3 protograph code. We had to minimize Jpp1, q1, p2, q2q, which we observed

was a decreasing function of q1 � q2, for given optimal values of p1 and p2. We can

extend this again, using the N-TCF bound to show that Jpp1, q1, p2, q2, . . . , pn, qnq is

a decreasing function of q1 � q2 � . . . � qn for given optimal values of p1, p2, . . . , pn.

Therefore, for good thresholds, we need Σn
i�1 qi to be minimum. This would force the

dominant column entries in the protograph to be as low as possible, which would in-turn

force the other entries of the protograph to be as little as possible. This throws light on

the observation made about sparsity in good protographs in the last section.

4.3.4 Avoiding Repetition

It is also better to avoid repetitive columns as much as possible because, if there is

repetition, it is possible to find non-repetitive columns which are more sparse than the

repetitive case. This is because repetition adds more edges, without changing the con-

nectivity state. For example, r2, 1s1 and r2, 1s1 can be reduced to r2, 1s and r1, 1s1 with-

out affecting the connectivity of the graph and at the same time making the graph more

sparse.

4.3.5 Equality of Check Node Degrees

We mentioned about ensuring that the check node degrees of the different check nodes

are equal or close to one another. The justification for this can be traced to the construc-

tion of 2�3 protograph using the closed form bounds discussed in the previous chapter.

We found that, for a 2 � 3 protograph, the threshold maximizing code had check node

degrees equal or nearly equal as in equation 3.28. It is also easy to see that in general,

for a protograph withM checknodes, using the N-TCF bound from Lemma 8 discussed

22

in chapter 3, we will reach the condition of check node degree equality using the partial

derivative technique as described in section 3.4.2.

4.3.6 3 x (M-1) Difference Rule

It was also stated in the heuristic that the algorithm must be terminated when the dif-

ference in the degrees of the dominant column and the column with the second highest

degree (number of edges connected to a bit node is defined as degree of the bit node)

becomes around 3 � pM � 1q. This is because, it is observed that, for good threshold

protographs, the sparse part has at most one, two or three edges between a given vari-

able node and check node, which results in the dominant column having about 3 edges

connected to each check node on an average. Therefore, the number of edges connected

to the dominant bit node is about 3�M on an average, whereM is the number of check

nodes in the protograph. The bit node with the next highest degree has about 3 edges

connected to it. Therefore, the difference in the degree is about 3 � pM � 1q. For

instance, the optimized 8 � 16 protograph in 4.3 has this difference equal to 20 while

3� pM � 1q is equal to 21.

4.4 Improving Protograph Threshold using Heuristic

Now we apply the heuristic to existing graphs and show the resulting protographs and

their thresholds. Note that the final matrix is not unique, and different choices in each

step, yield different results. However, all the resulting matrices have better thresholds

after each step.

4.4.1 Example 1

Consider the following matrix .

H6 �
�
�5 2 1

4 1 2

�

; ε� � 0.4794 (4.5)

23

H6 is a rate-1{3 code. The BEC threshold of the graph is ε� � 0.4794. The high-

est achievable BEC threshold for all rate-1{3 codes is 0.6667 (Shannon Limit). The

following matrices are constructed based on the heuristic.

HP
6 �

�
�5 2 1

5 1 1

�

; ε� � 0.4989

HR
6 �

�
�2 2 1

3 1 1

�

; ε� � 0.5713 (4.6)

HP
6 is obtained by the push operation, and column 1 is made the dominant column.

The check node degrees are the same as the original graph, and any further pushes

causes a loss of connectivity or degree-2 cycles. HR
6 is obtained by reducing the entries

in the dominant column. The check node degrees are 7, 8 respectively. We reduce

5 Ñ 4 in accordance with the heuristic. The highest bit-node degree is now 9, and

the next highest is 3, we can reduce the entries uniformly till the difference is around

3M � 3 � 3. The BEC threshold of the graphs at each stage are shown next to the

matrices. This demonstrates a 0.0919 increase in threshold through simple deterministic

steps.

4.4.2 Example 2

Consider the 3� 6 matrix H7 reported in Liva et al. (2007). This has a BEC threshold .

H7 �

�
����

1 2 2 1 1 0

3 1 1 0 1 1

2 1 1 1 0 1

�
���
; ε� � 0.4395

(4.7)

We now apply our heuristic to the above protograph to get.

HP
7 � HR

7 �

�
����

2 2 1 1 1 0

4 0 1 0 1 1

3 0 1 1 0 1

�
���
; ε� � 0.4803 (4.8)

24

HP
8 is obtained by the push operations, and a dominant column is created. Note that

converting the column r1, 1, 1s1 Ñ r1, 1, 0s1 would create a redundant column, and so

is avoided. The dominant bit node degree is 9, and the next highest bit-node-degree

is 3, with the difference being equal to 3M � 3 � 6. So the reduction step yields the

result HR
7 � HP

7 , with a BEC threshold as shown. Since the original graph already has

degree-2 cycles, and since the cycles cannot be broken by our heuristic, this code will

have slow block error threshold decay.

4.4.3 Example 3

In this example, we apply the heuristic to a protograph of a slightly larger 4 � 8 size.

Consider

H8 �

�
�������

2 2 0 1 1 0 0 2

4 0 0 1 0 1 1 1

3 0 1 1 2 1 0 0

2 1 2 0 0 1 2 0

�
������

; ε� � 0.4208

(4.9)

Application of the heuristic results in

HP
8 �

�
�������

4 1 0 1 1 0 0 1

4 0 0 1 0 1 1 1

3 0 1 1 2 1 0 0

3 1 2 0 0 0 2 0

�
������

; ε� � 0.4513

HR
8 �

�
�������

3 1 0 1 1 0 0 1

3 0 0 1 0 1 1 1

3 0 1 1 2 1 0 0

3 1 2 0 0 0 2 0

�
������

; ε� � 0.4519

(4.10)

HP
8 is obtained by pushing entries to the dominant column preserving the check

node degrees, leading to the creation of a dominant first column. HR
8 is obtained by

25

reducing the entries of the dominant column, till the 3 � pM � 1q rule is satisfied. We

see that HR
8 has the degree difference of the dominant and second dominant as 10 ,

which is quite close to the 3M � 3 � 9.

4.4.4 Example 4

Consider the 4� 8 protograph matrix H9. The Shannon Limit for a rate-1/2 code is 0.5,

so this already quite close.

H9 �

�
�������

1 3 2 3 4 1 1 0

0 1 0 0 5 0 0 1

1 0 0 0 4 0 4 1

1 0 1 0 6 1 0 0

�
������

; ε� � 0.4785

(4.11)

We now apply our heuristic to the above protograph in the following steps.

HP1
9 �

�
�������

0 3 2 3 6 1 0 0

0 1 0 0 5 0 0 1

1 0 0 0 4 0 4 1

1 0 1 0 6 1 0 0

�
������

; ε� � 0.4789

HP2
9 �

�
�������

0 2 2 3 7 1 0 0

0 1 0 0 5 0 0 1

1 0 0 0 4 0 4 1

1 0 1 0 6 1 0 0

�
������

; ε� � 0.4803

HR
9 �

�
�������

0 2 2 3 3 1 0 0

0 1 0 0 5 0 0 1

1 0 0 0 4 0 4 1

1 0 1 0 6 1 0 0

�
������

; ε� � 0.4807

(4.12)

HP1
9 andHP2

9 is obtained from the push operation of the heuristic andHR
9 is obtained

using the reduce operation. Here, we couldn’t further reduce the entries in dominant

26

column to make the check nodes approximately equal, hence we don’t move on to the

next step of enforcing the 3 � pM � 1q rule. We improved an already good threshold

graph using the simple steps in the heuristic.

The heuristic gives a resulting graph whose threshold is usually higher than the

base graph. Protograph matrices which are already very sparse, or exhibit the char-

acteristics of a "good" matrix (which already exhibit the dominant column and sparse

properties our heuristic seeks to induce), the improvement is milder. Even in this case,

the threshold is atleast as high, and in most cases the heuristic gives a higher threshold

protograph.

4.5 Construction of Good Protograph Codes using the

Heuristic

In the previous section, we described a heuristic which takes an existing protograph

matrix and returns a protograph with a higher BEC threshold. Protographs with high

thresholds can possibly be made better by the heuristic. In this section, we tackle the

problem of protograph construction.

We choose an arbitrary starting matrix and apply our heuristic to get a higher thresh-

old protorgraph. Some of the smaller examples were done by hand, and we wrote a

script which implements the heuristic.

4.5.1 Example 1

We consider a general starting point matrix as the one with all the entries as the same.

Consider the 2� 3 rate-1/3 protograph H9 with all entries as 3.

H10 �
�
�3 3 3

3 3 3

�

; ε� � 0.4035

(4.13)

27

Applying the first step of heuristic results in

HP
10 �

�
�7 1 1

6 2 1

�

; ε� � 0.4570

Applying the second step of heuristic results in

HR
10 �

�
�3 1 1

2 2 1

�

; ε� � 0.5713 (4.14)

We see that HR
10 � HR

6 , which we obtained for H6. The Shannon Limit on threshold

for rate-1/3 codes is 0.6667

4.5.2 Example 2

Consider now the 2� 4 rate-1/2 protograph H11 with all entries as 3.

H11 �
�
�3 3 3 3

3 3 3 3

�

; ε� � 0.3075

(4.15)

Applying the first step of heuristic results in

HP
11 �

�
�8 2 1 1

9 1 2 1

�

; ε� � 0.3721

The application of second step of heuristic leads to

HR
11 �

�
�2 2 1 1

3 1 1 1

�

; ε� � 0.4505 (4.16)

The Shannon Limit on threshold for rate-1/2 codes is 0.5.

28

4.5.3 Example 3

Consider now the 4� 8 rate-1/2 protograph H12 with all entries as 3.

H12 �

�
�������

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

�
������

; ε� � 0.1953

(4.17)

Applying our heuristic results in the following

HP1
12 �

�
�������

11 0 1 2 1 3 3 3

14 0 0 0 1 3 3 3

11 1 1 1 1 3 3 3

13 1 1 0 0 3 3 3

�
������

; ε� � 0.2345

HP2
12 �

�
�������

18 0 1 2 1 1 1 0

20 0 0 0 1 1 0 2

18 1 1 1 1 0 1 1

22 1 1 0 0 0 0 0

�
������

; ε� � 0.2675

HR
12 �

�
�������

3 1 1 2 0 1 1 0

3 0 0 0 1 1 0 2

2 1 0 1 1 1 1 1

5 1 1 0 0 0 0 0

�
������

; ε� � 0.4783 (4.18)

Here HP1
12 and HP2

12 denote the matrices obtained after the push operation, and HR
12

denotes the matrix obtained after the reduce operation.

Let us also consider an example, where we impose a structure on the sparse part of

the protograph matrix. Starting with the same all 3-matrix as before, we have

29

HP1
13 �

�
�������

12 3 0 0 0 3 3 3

12 0 3 0 0 3 3 3

12 0 0 3 0 3 3 3

12 0 0 0 3 3 3 3

�
������

; ε� � 0.2325

HP2
13 �

�
�������

20 3 0 0 0 1 0 0

19 0 3 0 0 1 1 0

19 0 0 3 0 0 1 1

20 0 0 0 3 0 0 1

�
������

; ε� � 0.2670

HR
13 �

�
�������

4 3 0 0 0 1 0 0

3 0 3 0 0 1 1 0

3 0 0 3 0 0 1 1

4 0 0 0 3 0 0 1

�
������

; ε� � 0.4544 (4.19)

We can see that restriction on the sparse part of the matrix reduces the number of possi-

ble graphs that can be reached from a given starting matrix and applying the heuristics.

Therefore, it is possible that in such cases, we could miss out on some good protographs.

4.5.4 Example 4

We now show the construction of a 8 � 16 protograph. As in the previous sections, we

start with

H14 �

�
�������������������

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

�
������������������

; ε� � 0.1174

30

The application of the heuristic results in

HP1
14 �

�
�������������������

24 3 0 0 0 0 0 0 0 3 3 3 3 3 3 3

24 0 3 0 0 0 0 0 0 3 3 3 3 3 3 3

24 0 0 3 0 0 0 0 0 3 3 3 3 3 3 3

24 0 0 0 3 0 0 0 0 3 3 3 3 3 3 3

24 0 0 0 0 3 0 0 0 3 3 3 3 3 3 3

24 0 0 0 0 0 3 0 0 3 3 3 3 3 3 3

24 0 0 0 0 0 0 3 0 3 3 3 3 3 3 3

24 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3

�
������������������

; ε� � 0.1497

HP2
14 �

�
�������������������

43 3 0 0 0 0 0 0 0 1 0 0 0 1 0 0

43 0 3 0 0 0 0 0 0 1 1 0 0 0 0 0

43 0 0 3 0 0 0 0 0 0 0 0 0 1 0 1

43 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0

43 0 0 0 0 3 0 0 0 0 0 1 0 0 0 1

44 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0

43 0 0 0 0 0 0 3 0 0 0 0 1 0 0 1

43 0 0 0 0 0 0 0 3 0 0 0 1 0 1 0

�
������������������

; ε� � 0.1733

HR
14 �

�
�������������������

3 3 0 0 0 0 0 0 0 1 0 0 0 1 0 0

3 0 3 0 0 0 0 0 0 1 1 0 0 0 0 0

3 0 0 3 0 0 0 0 0 0 0 0 0 1 0 1

3 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0

3 0 0 0 0 3 0 0 0 0 0 1 0 0 0 1

4 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 0 1 0 0 1

3 0 0 0 0 0 0 0 3 0 0 0 1 0 1 0

�
������������������

; ε� � 0.4826

(4.20)

The above protgraph has a good threshold for a code with capacity C � 0.5

Let us consider a example, where significant structure is imposed on the sparse

portion of the matrix. We again have the same starting matrix. The heuristic yields

31

HP1
15 �

�
�������������������

24 3 0 0 0 0 0 0 0 3 3 3 3 3 3 3

24 0 3 0 0 0 0 0 0 3 3 3 3 3 3 3

24 0 0 3 0 0 0 0 0 3 3 3 3 3 3 3

24 0 0 0 3 0 0 0 0 3 3 3 3 3 3 3

24 0 0 0 0 3 0 0 0 3 3 3 3 3 3 3

24 0 0 0 0 0 3 0 0 3 3 3 3 3 3 3

24 0 0 0 0 0 0 3 0 3 3 3 3 3 3 3

24 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3

�
������������������

; ε� � 0.1497

HP2
15 �

�
�������������������

43 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0

43 0 3 0 0 0 0 0 0 1 1 0 0 0 0 0

43 0 0 3 0 0 0 0 0 1 1 1 0 0 0 0

43 0 0 0 3 0 0 0 0 0 0 1 1 0 0 0

43 0 0 0 0 3 0 0 0 0 0 1 1 1 0 0

44 0 0 0 0 0 3 0 0 0 0 0 0 1 1 0

43 0 0 0 0 0 0 3 0 0 0 0 0 1 1 1

43 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1

�
������������������

; ε� � 0.1726

HR
15 �

�
�������������������

3 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0

3 0 3 0 0 0 0 0 0 1 1 0 0 0 0 0

3 0 0 3 0 0 0 0 0 1 1 1 0 0 0 0

3 0 0 0 3 0 0 0 0 0 0 1 1 0 0 0

3 0 0 0 0 3 0 0 0 0 0 1 1 1 0 0

3 0 0 0 0 0 3 0 0 0 0 0 0 1 1 0

3 0 0 0 0 0 0 3 0 0 0 0 0 1 1 1

3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1

�
������������������

; ε� � 0.4806

(4.21)

Here, we see that, despite enforcing conditions on the sparse matrix, we were still

able to end up with a protograph with good threshold in a few simple steps.

In the next example, let us see the construction of a 10 � 20 protograph, where we

have a different starting matrix.

32

4.5.5 Example 5

Consider the starting matrix

H16 �

�
�������������������������

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

�
������������������������

; ε� � 0.1171

Applying our heuristic on the above protograph results in

HP
16 �

�
�������������������������

0 45 0 0 0 0 1 0 0 3 0 1 0 0 0 0 0 0 0 0

1 43 2 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1

0 46 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0

0 43 0 0 1 0 1 0 1 0 0 0 1 0 2 0 0 1 0 0

0 46 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0

0 43 0 2 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0

0 46 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

1 46 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 43 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1

0 44 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0

�
������������������������

; ε� � 0.1716

33

HR1
16 �

�
�������������������������

0 5 0 0 0 0 1 0 0 3 0 1 0 0 0 0 0 0 0 0

1 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1

0 6 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0

0 3 0 0 1 0 1 0 1 0 0 0 1 0 2 0 0 1 0 0

0 6 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0

0 3 0 2 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0

0 6 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

1 6 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 3 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1

0 4 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0

�
������������������������

; ε� � 0.4792

HR2
16 �

�
�������������������������

0 4 0 0 0 0 1 0 0 3 0 1 0 0 0 0 0 0 0 0

1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1

0 4 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0

0 2 0 0 1 0 1 0 1 0 0 0 1 0 2 0 0 1 0 0

0 4 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0

0 2 0 2 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0

0 4 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

1 4 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 2 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1

0 3 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0

�
������������������������

; ε� � 0.4853

(4.22)

4.5.6 Example 6

In this section, we present a few protographs generated by the matlab code we wrote

to implement our heuristic algorithm. For every column, a random column is gener-

ated such that the subtraction of the two would yield a bit-node, whose degree varies

between two and four and the subtracted entries are pushed to the dominant column.

The columns are generated such that there is no repetition and no degree 2 cycles. The

reduction step is then carried out till the 3M-3 difference rule is met. Many of the pro-

tographs generated this way had reasonably high thresholds (0.465 for 0.5 capacity).

34

Thresholds of Protographs-Code Generated

Protograph size Matrix Threshold

4� 8 H17 0.4787

4� 8 H18 0.4771

8� 16 H19 0.4713

8� 16 H20 0.4642

9� 18 H21 0.4664

9� 18 H22 0.4630

Table 4.1: Threshold of protographs generated by code

H17 �

�
�������

3 0 1 2 1 1 1 0

3 0 0 0 1 1 0 2

2 1 1 1 1 0 1 1

5 1 1 0 0 0 0 0

�
������

;

H18 �

�
�������

5 0 1 0 0 1 0 0

2 1 0 2 1 0 1 1

2 0 2 1 1 0 1 0

2 1 0 0 1 1 0 2

�
������

;

H19 �

�
�������������������

4 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1

6 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0

4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2

3 2 1 1 0 0 0 0 0 0 0 0 0 1 0 0

4 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0

2 0 0 1 0 2 0 1 1 0 0 0 1 1 0 0

1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0

4 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0

�
������������������

;

35

H20 �

�
�������������������

4 1 0 0 0 2 0 0 0 0 0 0 1 1 1 0

4 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1

4 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0

6 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

2 0 1 0 1 0 1 0 2 1 0 1 0 1 1 0

4 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1

4 0 1 1 0 0 1 2 0 0 0 0 0 0 0 0

4 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0

�
������������������

;

H21 �

�
����������������������

4 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1

2 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0

1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0

4 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1

3 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0

1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0

2 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0

3 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

�
���������������������

;

H22 �

�
����������������������

5 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0

4 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0

3 0 0 0 0 0 0 0 2 0 1 0 0 1 0 0 1 0

3 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

3 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0

3 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1

3 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

5 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 1 2 1 0 0 1 0 0 0 1 1 0 1

�
���������������������

; (4.23)

It is important to note that the heuristic provides simple guidelines for construction

of good protographs. We could end up in different resultant protographs from the same

starting matrix, because there exist many possible ways of coming up with the dominant

column and making the graph sparse. Also, there could be protographs, which do not

obey all the properties stated in the heuristic and still have good threshold.

36

CHAPTER 5

Conclusion and Future Work

In the final chapter, we conclude by describing the progress made towards our goal

of understanding the properties of capacity achieving protograph codes and their con-

struction. We also suggest possible pathways for future research that can build up on

our current work.

5.1 Conclusion

The aim of the thesis has been construction of capacity achieving protograph codes. In

the first chapter, we introduced protograph codes, using which LDPC codes are gen-

erated by the copy-permute operation. In the subsequent chapters, we presented some

basic properties of the Density Evolution curves, based on which we came up with some

simple closed upper form bounds on protograph thresholds, which helped us in under-

standing and designing good protograph codes. We used these closed form bounds to

construct optimal small sized protographs. Using ideas from these closed form bounds

and observed properties of good protographs, we came up with a heuristic to improve

the threshold of a given protograph code, which we extended for construction of good

protograph codes from a generic protograph (like an all-three protograph matrix) as the

starting point.

The heuristic algorithm was motivated by the common features observed in good

threshold protographs. They act as a guideline for construction of good protographs,

but there could be protographs with good threshold which don’t follow all the prop-

erties stated in the heuristic (say, the dominant column property). Nevertheless, the

protographs generated using the heuristic have generally very good thresholds (around

0.47-0.48 for C=0.5). We showed examples of protographs constructed using our heuris-

tic for different protograph sizes, which were observed to have good thresholds for a

BEC.

5.2 Suggestions for Future Work

The heuristic algorithm proposed in our work is based on the observed properties of

good protograph codes. While the justification of the steps followed in heuristic have a

mathematical basis, rigorous mathematical analysis could be done to further strengthen

the arguments.

Another possible line of work could be in characterizing the sparse portion of the

matrix of capacity achieving protograph codes. Analysis could be done on how a change

in the degree of a variable node in the sparse region of a protograh affects the threshold

of the protograph.

Future research could also be along the lines of observing the performance of the

codes generated by the heuristic algorithm on other channels like the BI-AWGN chan-

nel, Gaussian channel or the BSC channel, which can give a better sense of the gener-

alizability of the algorithm.

5.3 Summary

To sum up, we have come up with simple closed form upper bounds for protograph

thresholds. We proposed a simple heuristic algorithm that allows us to improve the

threshold of a given protograph and also construct good protographs with thresholds

close to capacity using a few simple steps.

38

APPENDIX A

Matlab Codes

A.1 Code for Computing Threshold of Protograph

The following code computes the threshold of a protograph. It has three components.

The first snippet given below performs the iterative DE on a protograph for a given

threshold.

1

% P e r f o r m s t h e i t e r a t i v e d e n s i t y e v o l u t i o n on a p r o t o g r a p h f o r a

g i v e n

3 % t h r e s h o l d

5 f u n c t i o n [x , xmat , s t a t u s , conv] = p r o t o _ d e _ i t e r (A, eps , N i t e r)

7 [m, n]= s i z e (A) ;

xmat= z e r o s (N i t e r ,m∗n) ;

9 x= z e r o s (1 ,m∗n) ;

y= z e r o s (1 ,m∗n) ;

11 x (:) = eps ;

xmat (1 , :) =x ;

13 f o r k =2: N i t e r

x_o ld =x ;

15 f o r i =1 :m

x1=x ((i �1)∗n + 1 : (i) ∗n) ;

17 x2=(1�x1) . ^A(i , :) ;

y ((i �1)∗n + 1 : (i) ∗n) =1�(p rod (x2) . / (1 � x1)) ;

19 end

21 f o r j =1 : n

y1=y (j : n : end) ;

23 y2=y1 . ^ (A (: , j) ’) ;

y3= eps ∗ (p rod (y2)) . / y1 ;

25 y3 (y1 ==0) =0;

x (j : n : end) =y3 ;

27 end

xmat (k , :) =x ;

29

i f i s e m p t y (f i n d (x >10^�15))

31 %i f sum (f i n d (x <10^�12)) > 1

conv=k ;

33 s t a t u s =1;

r e t u r n ;

35 end

end

37 s t a t u s =0;

conv= N i t e r ;

39 end

The second part computes the threshold of a given protograph

1

%F u n c t i o n t o f i n d t h e t h r e s h o l d o f a g i v e n p r o t o g r a p h by c h e c k i n g f o r

3 %c o n v e r g e n c e t o z e r o o f t h e e r a s u r e p r o b a b i l i t i e s

5 f u n c t i o n [eps]= p r o t o _ t h r e s h _ b e c _ b r u t e (A)

s t e p = 0 . 0 1 ;

7 N i t e r =2000;

c o u n t =0 ;

9

f o r eps =0: s t e p : 1

11 [x , xmat , s t a t u s , c o m p l e t e]= p r o t o _ d e _ i t e r (A, eps , N i t e r) ;

i f s t a t u s ==0

13 b r e a k

end

15 end

w h i l e count <10

17 s t e p = s t e p / 2 ;

i f s t a t u s ~= 0

19 eps = eps + s t e p ;

e l s e

21 eps = eps�s t e p ;

end

23 [x , xmat , s t a t u s , c o m p l e t e]= p r o t o _ d e _ i t e r (A, eps , N i t e r) ;

40

c o u n t = c o u n t +1 ;

25 end

i f s t a t u s == 1

27 eps = eps + s t e p ;

end

29 end

The following function plots the DE equations for the given protograph, when prob-

ability of erasure is less than threshold, to give an idea of the evolution of DE equations.

1

% F i n d i n g t h e t h r e s h o l d and p l o t t i n g t h e DE c u r v e s

3

A= [0 4 1 0 0 0 1 0 0 2 0 1 0 0 0 0 ;

5 2 4 1 0 1 0 1 0 0 0 0 0 0 0 0 0 ;

0 4 0 1 0 1 0 0 0 0 1 0 0 1 0 0 ;

7 0 4 0 0 1 0 1 0 1 0 0 0 1 0 1 0 ;

0 4 0 0 0 0 0 1 0 0 0 0 1 1 1 2 ;

9 0 3 0 2 0 0 0 1 1 0 2 0 0 0 0 0 ;

0 4 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ;

11 1 3 0 0 2 0 0 0 1 0 0 0 1 0 0 0] ;

13 [M,N]= s i z e (A) ;

N i t e r =2000;

15

eps = p r o t o _ t h r e s h _ b e c _ b r u t e (A)

17

epsp = eps / 8 ;

19 [x , xmat , s t a t u s , c o m p l e t e]= p r o t o _ d e _ i t e r (A, epsp , N i t e r) ; %P l o t DE when

e r a s u r e l e s s t h a n t h r e s h o l d

21 xmat=xmat (1 : comple te , :) ’ ;

f i g u r e ; %P l o t t i n g t h e DE f u n c t i o n s

23 ho ld on ;

f o r i =1 : s i z e (xmat , 1)

25 j = i �1;

27 a1= f l o o r (j /N) +1;

a2=mod (j ,N) +1;

41

29 i f A(a1 , a2) ~=0

p3= s e m i l o g y (1 : comple te , xmat (i , :) , ’ b ’) ; %P l o t DE on ly f o r

v a l i d edges

31 end

end

33

yl im ([0 , epsp ∗ 1 . 1]) ;

35 x l a b e l (’ I t e r a t i o n Number ’) ;

y l a b e l (’ Edge E r r o r P r o b a b i l i t y ’) ;

A.2 Code for Protograph Construction based on the Heuris-

tic

1 H i n i t = [4 , 1 , 0 , 3 , 3 , 1 , 1 , 2 ;

5 , 0 , 1 , 0 , 1 , 0 , 0 , 0 ;

3 4 , 0 , 1 , 0 , 0 , 1 , 4 , 0 ;

6 , 1 , 0 , 0 , 0 , 1 , 0 , 1] ; %S t a r t i n g P r o t o g r a p h M at r i x

5

%p r o t o _ t h r e s h _ b e c _ b r u t e (H)

7 [M,N]= s i z e (H i n i t) ;

9 al lowed_sum = [2] ;

d e s i r e d _ s u m = 2 : 3 ;

11 nox =1;

H= H i n i t ;

13 t h r e s h = p r o t o _ t h r e s h _ b e c _ b r u t e (H) %Compute p r o t o g r a p h t h r e s h o l d

t h r e s h _ b e s t = t h r e s h ;

15 Hbes t = H i n i t ;

a l l i n d e x =1;

17 a l l t h r e s h = z e r o s (1 , 2 0 0) ;

w h i l e t h r e s h < 0 .485

19 H= H i n i t ;

j ={ z e r o s (1 ,M) } ;

21 l =1 ;

f o r i =2 :N

23 f l a g =0;

42

k =0;

25 i f mod (k , 1 0 0) ==1

k

27 end

z=H (: , i) ’ ;

29 i f (sum (f i n d (a l lowed_sum ==sum (z))) | | (l e n g t h (f i n d (z ~=0))

==1)) && (sum (z) ==2) %Check f o r Degree 2 column

l = l +1 ;

31 j { l }= z ;

v =2;

33 l i n i t = l ;

w h i l e v<= l i n i t

35 jnew=mod (j {v}+z , 2) ; %To e n s u r e no d e g r e e two c y c l e

i f sum (jnew) ==2

37 l = l +1 ;

j { l }= jnew ;

39 end

v=v +1;

41 end

c o n t i n u e ;

43 end

% The f o l l o w i n g p e r f o r m s

45 % G e n e r a t i n g t h e random column and a r r i v i n g a t a 2�4 d e g r e e

b i t n o d e

% Push ing t h e e n t r i e s t o t h e dominant column

47 w h i l e ~ f l a g

x1= rand (1 , l e n g t h (z)) . ∗z ;

49 x1= round (x1) ;

sx1=sum (x1) ;

51 p=z�x1 ;

t = f i n d (p ~=0) ;

53

i f sum (f i n d (d e s i r e d _ s u m ==sum (z)�sx1)) | | ((l e n g t h (t) ==1)

&& sum (f i n d (p (t) ==3 :4))) %

55 i f ~(l e n g t h (t) ==1 && p (t) ==2)

jma t = r e s h a p e (c e l l 2 m a t (j) ,M, []) ’ ;

57 check =any ((jmat�r epmat (p , l , 1)) ’) ;

i f ~sum (f i n d (check ==0))

59 i f (sum (p) ==2)

l = l +1 ;

43

61 j { l }=p ;

v =2;

63 l i n i t = l ;

w h i l e v<= l i n i t

65 jnew=mod (j {v}+p , 2) ;

i f sum (jnew) ==2

67 l = l +1 ;

j { l }= jnew ;

69 end

v=v +1;

71 end

end

73 H (: , i) =p ’ ;

H (: , 1) =H (: , 1) +x1 ’ ;

75 f l a g =1;

end

77 end

end

79 end

end

81

% Reducing t h e e n t r i e s i n t h e dominant column i n a c c o r d a n c e wi th

t h e

83 % 3M�3 r u l e

f =H (: , 1) ;

85 [va l0 , i n d e x]= s o r t (sum (H’) , ’ de scend ’) ;

v a l 0 = va l0 ’ ;

87 v a l =H(index , 1) ;

s o r t e d _ c o l s u m = s o r t (sum (H) , ’ descend ’) ;

89 f i n e r = f i n d (s o r t e d _ c o l s u m (1) == s o r t e d _ c o l s u m) ;

colsum= s o r t e d _ c o l s u m (1)�s o r t e d _ c o l s u m (max (f i n e r) +1) ; %

D i f f e r e n c e i n max and second max d e g r e e b i t node

91 l =1 ;

w h i l e colsum > N + r a n d i ([�3 , 3] , 1 , 1) && sum (f i n d (~ (v a l ==0)))

93 l = l +1 ;

i f mod (l , 1 0 0) ==1

95 l

end

97

i 0 =1 ;

44

99 i 1 = f i n d (v a l 0 (i 0) == v a l 0) ;

i f l e n g t h (i 1) >= M % A l l check node d e g r e e same

101 b r e a k ;

end

103 i 2 =max (i 1) +1 ; %Next l o w r s t check node d e g r e e

t =(v a l 0 (i 0)�v a l 0 (i 2)) ;

105 %R e d u c t i o n s t e p

i f t >= min (v a l (i 1)) %I f check node d i f f e r e n c e g r e a t e r

t h a n l e a s t e n t r y i n l a r g e r check node row

107 d i f f =min (v a l (i 1)) ;

colsum=colsum�l e n g t h (i 1) ∗ d i f f ;

109 v a l 0 (i 1) = v a l 0 (i 1)�r epmat (d i f f , l e n g t h (i 1) , 1) ;

v a l (i 1) = v a l (i 1)�r epmat (d i f f , l e n g t h (i 1) , 1) ;

111 b r e a k ;

e l s e

113 d i f f =(v a l 0 (i 0)�v a l 0 (i 2)) ;

colsum=colsum�l e n g t h (i 1) ∗ d i f f ;

115 v a l 0 (i 1) = v a l 0 (i 1)�r epmat (d i f f , l e n g t h (i 1) , 1) ;

v a l (i 1) = v a l (i 1)�r epmat (d i f f , l e n g t h (i 1) , 1) ;

117 end

end

119 new1=min (round ((colsum�N) /M) , min (v a l)) ; %Implement 3M�3 r u l e

i f new1 > 0

121 v a l = va l�r epmat (new1 ,M, 1) ;

end

123 g1= r a n d i ([0 3] , 1 , 1) ;

v a l (1) = v a l (1) +g1 ;

125 i f g1

v a l (2) = v a l (2) + r a n d i ([0 1] , 1 , 1) ;

127 end

H(index , 1) = v a l ;

129 nox=nox+1

t h r e s h = p r o t o _ t h r e s h _ b e c _ b r u t e (H)

131 i f t h r e s h > t h r e s h _ b e s t

t h r e s h _ b e s t = t h r e s h ;

133 Hbes t =H;

end

135 end

45

REFERENCES

1. Liva, Gianluigi, and M.Chiani, Protograph ldpc codes design based on exit analysis.

In Global Telecommunications Conference, 2007. GLOBECOM ’07. IEEE. 2007.

2. Pradhan, A. K., A. Subramanian, and A. Thangaraj (2013). Deterministic con-

structions for large girth protograph LDPC codes. CoRR, abs/1301.6301. URL

http://arxiv.org/abs/1301.6301.

3. Richardson, T. and R. Urbanke (2001). The capacity of low-density parity-check

codes under message-passing decoding. Information Theory, IEEE Transactions on,

47(2), 599–618. ISSN 0018-9448.

4. Richardson, T. and R. Urbanke, Modern Coding Theory. Cambridge University Press,

2008.

5. Srinivasan, M. (2015). Design and analysis of high-performance protograph based

ldpc codes.

6. Thorpe, J. (2003). Low-density parity-check (ldpc) codes constructed from pro-

tographs. IPN progress report, 42(154), 42–154.

7. Yeh, J. J., Real Analysis: Theory Of Measure And Integration. World Scientific Pub-

lishing Co. Pte. Ltd, 2006.

46

http://arxiv.org/abs/1301.6301

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	Graphical Representation and Matrix Representation
	Copy-Permute Operation to generate Protograph LDPC code

	Density Evolution for Protograph Codes
	Properties of Density Evolution Functions

	Closed Form Bounds on Threshold of Protographs
	Preliminary Work
	1-term closed form bound
	N-term closed form bound
	Design of Protograph based on Closed Form Bound
	Designing a 1 x 2 protograph
	Designing a 2 x 3 protograph

	Heuristics for Construction of Capacity Achieving Protograph Codes
	Commonly Observed Features of Good Protographs
	The Heuristic Algorithm
	Creating a Dominant Bit Node and Making the Graph Sparse
	Reducing the Dominant Column

	Justification of the Heuristic
	Presence of Dominant Column
	Preserving Connectivity
	Sparsity of Protograph
	Avoiding Repetition
	Equality of Check Node Degrees
	3 x (M-1) Difference Rule

	Improving Protograph Threshold using Heuristic
	Example 1
	Example 2
	Example 3
	Example 4

	Construction of Good Protograph Codes using the Heuristic
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Conclusion and Future Work
	Conclusion
	Suggestions for Future Work
	Summary

	Matlab Codes
	Code for Computing Threshold of Protograph
	Code for Protograph Construction based on the Heuristic

