
Performance Of Transmission Control Protocol

(TCP) over wired cum wireless networks

A Project Report

submitted by

ABHISHEK NAMBALLA

EE11B002

in partial fulfillment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

2015

CERTIFICATE

This is to certify that the project titled Performance Of Transmission Con-

trol Protocol (TCP) over wired cum wireless networks, submitted by Ab-

hishek Namballa (EE11B002), to the Indian Institute of Technology, Madras,

for the award of the degree of Bachelor of Technology in Electrical Engi-

neering, is a bonafide record of the project work done by him in the Department

of Electrical Engineering, IIT Madras. The contents of this report, in full or in

parts, have not been submitted to any other Institute or University for the award

of any degree or diploma.

Dr. G Venkatesh
Visiting Faculty,
IIT Madras, Chennai, 600 036

Dr. Andrew Thangaraj
Associate Professor,
IIT Madras, Chennai, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

This work could not have been completed without the help from many people

around me. I would first like to thank my advisors Dr. G Venkatesh and Dr.

Andrew Thangaraj. I am extremely grateful to them for agreeing to take me

on as their student. The guidance and deep knowledge of the field have been

indispensable. I am also thankful to Mr. Praveen Kumar and Mrs. Bama

S from Sasken Communication Technologies Ltd. for giving me valuable

insights into the application of the work in the real world scenario.

i

ABSTRACT

The internet has grown manifold over the past couple of decades. In recent years

there has been a shift in how users access media content on the internet. There has

been a decisive shift from desktop and fixed line broadband users. Now, Mobile

devices are increasingly being used to access different kinds of online content and

digital media over poor quality wireless channels. In this thesis, we examine how

the introduction of heterogeneous networks having wireless and wired links can

seriously effect the QoS of media based services. Through network simulation, we

observe that there is a significant performance degradation across all parameters.

Simulations have been performed on Network Simulator 2 (NS2). Live packet

capture files have been used to simulate the typical network traffic scenarios. QoS

parameters such as jitter (for video), throughput (for file transfer) and delay/la-

tency (for online gaming applications) are evaluated for wireline and wireless chan-

nels. It is observed that there is a significant performance degradation across all

parameters.

One of the solutions proposed to deal with this degradation due to wireless is

Split TCP. This proposal has been around for quite some time now ([3], [1])

it has been gaining commercial interests only recently due to the proliferation of

data access from mobile devices.

In order to compare and contrast the improvement that Split TCP can offer,

MATLAB simulations using an analytical model given by [2] are performed. The

model gives confidence that Split TCP can be used to alleviate the problem of

heterogeneous networks and the improvement they offer over a traditional end to

end connection.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES v

ABBREVIATIONS vi

1 Introduction 1

2 Wireless Networks 3

2.1 Emergence of Wireless . 3

2.2 The Internet and the Protocol stack 4

2.3 Problems in Wireless Networks 6

2.3.1 Long Round Trip Times (RTT) 6

2.3.2 Random Losses . 6

2.3.3 Bandwidth Asymmetry 6

3 NS2 Simulations 8

3.1 Wireshark . 8

3.2 Python dpkt module . 9

3.3 Network Simulator (NS) 2 . 9

3.3.1 Generating Traffic in NS2 10

3.3.2 Simulations using NS2 10

3.3.3 File transfer . 12

3.3.4 Online gaming . 12

4 Split TCP 20

4.1 Motivation for Split TCP . 20

iii

4.2 Overview of Split TCP . 20

4.3 Analytical model for Split TCP 21

4.3.1 Assumptions and Parameters 23

4.3.2 Delay over a lossless link 23

4.3.3 Delay over a lossy links 26

5 Results and Conclusions 30

5.1 Interpreting plots from the NS2 simulations 30

5.2 Interpreting the MATLAB plots 32

5.3 Conclusion . 32

A MATLAB, Python and Tcl scripts 34

A.1 MATLAB scripts for the analytical model 34

A.1.1 Script for lossless case 34

A.1.2 Script for lossy case . 39

A.2 Python script to generate binary trace files from capture files . . 42

A.3 Tcl script for NS2 simulations 44

iv

LIST OF FIGURES

2.1 TCP/IP stack. Source: Internet 4

2.2 The 3 way handshake . 5

3.1 NS2 layout for a single wired link 11

3.2 NS2 layout for a wired cum wireless link 11

3.3 Video streaming application over a wired link - Jitter, Received packets

and Dropped packets at all nodes 14

3.4 Video streaming application over a wired cum wireless link - Jitter, Re-

ceived packets and Dropped packets at all nodes 15

3.5 File transfer application over a wired link - Throughput, Received pack-

ets and Dropped packets at all nodes 16

3.6 File transfer application over a wired cum wireless link - Throughput,

Received packets and Dropped packets at all nodes 17

3.7 Online gaming application over a wired link - End to end delay and

Jitter . 18

3.8 Online gaming application over a wired cum wireless link - End to end

delay and Jitter . 19

4.1 Network Model. Figure Source: [2] 22

4.2 File transfer using a splitting proxy. Figure Source: [2] 22

4.3 Latency vs. file sizes, with initial window size of 1 and 4, respectively.

I1 = 150 ms; I2 = 250 ms . 26

4.4 Latency vs. file sizes, in a lossy case. I1 = 150 ms; I2 = 250 ms. p =

0.001 . 28

4.5 NS2 Simulation for an end to end delay. I1 = 150 ms; I2 = 250 ms. p

= 0.001 . 29

v

ABBREVIATIONS

TCP Trasmission Control Protocol

RFC Request For Comments

ARQ Automatic Repeat Request

ECN Explicit Congestion Notification

QoS Quality Of Service

UDP User Datagram Protocol

CBR Constant Bit Rate

NS2 Network Simulator 2

FTP File Transfer Protocol

FEC Forward Error Control

vi

CHAPTER 1

Introduction

The last couple of decades have seen a tremendous growth in mobile communi-

cation and the wireless industry both in terms of technology and the number of

subscribers. There has been a decisive shift from the the fixed to mobile cellular

technology, especially since the turn of the century.

Chapter 1 captures this emergence of wireless networks and the changes it

brings along with it to the existing infrastructure and the protocols already in

place to deal with wired physical media. It also illustrates the problems the wireless

media poses. It is clear that there is a need to change the existing protocols to

improve performance. We focus on the transport layer in the protocol stack and

the changes that can be incorporated at this layer. In particular the Transmission

Control Protocol (TCP) has been considered.

In Chapter 2, in order to illustrate the performance of wired and wireless

networks, a simulation environment is set up. Explanations about the set up are

given in this chapter. Network Simulator 2 (NS2) which is a widely used network

simulation tool has been used for this purpose. Wireshark has been used for packet

capture from the live network.

In Chapter 3, simulations are performed on NS2 to illustrate the performance

of different kinds of applications such as file transfer, video streaming, gaming

etc on wired networks and the corresponding changes when simulated under the

wireless scenario. Quality of Service (QoS) parameters such as the Latency, Jitter

and Throughput are examined in the two cases.

Chapter 4 examines one the many solutions proposed to alleviate the problem

of the degradation of the performance of TCP when used in combination of wired

and wireless networks. It is called Split TCP. The basic idea here is that since

we have two completely different classes of subnetworks (wired and wireless), we

could split each TCP connection into two connections at the point where the two

sub-networks meet. An analytical model is used to illustrate the performance

improvement that a Split TCP offers in comparison to the traditional TCP.

Chapter 5, presents the results and conclusions from the simulations performed.

The plots generated are interpreted and the implications are explained. Based on

these, we discuss how Split TCP can be considered as a strong contender in the

way forward for revamping the network infrastructure to satiate the ever increasing

demands by users.

2

CHAPTER 2

Wireless Networks

2.1 Emergence of Wireless

Data communications has dramatically increased in popularity over the last

decade. The World Wide Web (WWW) has emerged as the main means for mil-

lions of users to exchange a wide variety of information. Companies, Universities,

Schools and millions of homes are connected and access the web daily for business

and leisure activities. Demands for connectivity at all times and at all places has

led to the rise of wireless networks. These new technologies pose several problems

to the communication protocols which were already in practice.

The wired media has been traditionally the physical media used to interconnect

computers. The common characteristics of these media are very low bit error rate,

fast transmission rates usually in the range of a few milliseconds and symmetry

in the bandwidth for forward and the return paths.

However in recent years the use of wireless physical media has become more

and more common in computer networks. In particular the explosion in the usage

of smartphones and other devices has led to a paradigm shift in the way in which

users access the media and data on the web. They need frugal infrastructure as

compared to the wired media and can support user mobility. It is possible to

provide users at remote locations with coverage using satellites and serve as an

emergency backup if the wired infrastructure is destroyed, or connect distant net-

work islands. These new media have quite different characteristics to the wired

network. These include higher propagation delay due to limited bandwidth avail-

ability. Wireless links are often noisy leading to a higher bit error rate. Further

there is bandwidth asymmetry on the forward and the return paths.

2.2 The Internet and the Protocol stack

The Internet is a connection of several hundred thousand computers all over the

world. To interoperate, several different protocols are necessary. These protocols

have been arranged in a protocol stack to standardise the different components

needed for inter-computer communications. A picture of this protocol stack is

shown in Figure 2.1.

Figure 2.1: TCP/IP stack. Source: Internet

In this thesis the focus is on the performance of the transport layer. This layer

generally only exists in end hosts of the Internet, not in the routers. Two types

of protocols are generally used in this layer - User Datagram Protocol and the

Transmission Control Protocol. The UDP is not a reliable protocol in terms of

packet delivery and used only in specific applications. The TCP on the other hand

is a reliable protocol which ensures end to end packet delivery and has mechanisms

to handle congestion in the medium.

The original TCP was given in [6]. A TCP connection is initiated after a

three-way handshake as explained shown in the figure below.

The sequence number ensures reliability to each packet. If the acknowledg-

ment (ACK) is not received within a certain amount of time, then the packet is

assumed to be lost (timeout) and is retransmitted. TCP’s acknowledgments are

4

Figure 2.2: The 3 way handshake

cumulative; this means that every acknowledgment sent indicates the highest in-

order sequence number received so far. The TCP receiver always acknowledges the

highest in-order sequence number received, even if new packets with a higher se-

quence number arrive. Acknowledgments for these out-of-order packets are called

duplicate acknowledgments (dupacks). Dupacks do not contain any information

on the packet that caused their transmission.

The original TCP version also includes a mechanism for flow control that

enables a slow receiver to stop a sender from transmitting too fast. Flow control is

achieved by the receiver’s advertised window in the TCP acknowledgment packets.

This window specifies the buffer size currently available at the receiver and the

sender is never allowed to transmit more data than the receiver can buffer.

The original version of TCP does not include any mechanisms for congestion

control and therefore it is no longer used in the current Internet after the congestion

collapse of first observed in October 1986. This led to the development of further

variants of TCP. Additionally there have been several versions that have been

proposed to deal with the newly emerging the non wireline networks. The next

section describes the problems that wireless networks face and the problems that

it poses to TCP.

5

2.3 Problems in Wireless Networks

As explained previously, in wired networks bit error rates are very low. Nearly

all TCP versions nowadays assume that packets losses are due to congestion. The

problem of TCP lies in performing congestion control in case of losses that are

not induced by network congestion. Consequently, when a packet is detected to

be lost, either by timeout or by multiple duplicated ACKs, TCP slows down the

sending rate by adjusting its congestion window. Wireless networks suffer from

several types of losses that are not related to congestion, making TCP not adapted

to this environment. The principal among them are listed below.

2.3.1 Long Round Trip Times (RTT)

Wireless networks exhibit longer latencies than wired networks.This affects TCP

throughput and increases the interactive delays as perceived by the user. It has

also been shown that under certain conditions some TCP versions are biased

against connections with longer RTTs.

2.3.2 Random Losses

Since TCP was designed for wired networks, the performance degrades for wire-

less networks. This is because, bit error rates (BER) on the order of 10−6 - 10−8 in

wired networks. BER are much higher in the wireless domain, usually on the order

of 10−3, and sometimes as high as 10−1. Many of the solutions aim at alleviating

this deficiency in TCP. This leads TCP to back off too much and not be able to

sustain a good throughput level.

2.3.3 Bandwidth Asymmetry

Generally network paths are symmetrical, meaning that the channel capacity

for the forward and the return path of a connection is roughly the same. However

6

some of the new technologies have a characteristic property that the forward and

return bandwidths are not the same. This causes a few problems with respect to

TCP -

(a) Slower rate of incoming acknowledgments

(b) Bursty data transmission

(c) Failure of Fast Retransmit

7

CHAPTER 3

NS2 Simulations

As has been described in the previous chapter, there are a multitude of problems

when wireless links are used instead of wired links. Inherently all wireless links

necessarily have a wired part and the unwired part. In the following simulations,

we use NS2, a widely used network simulation tool to demonstrate the effects

that wireless link can have on an end to end connection in terms of quality of

service that is offered. We shall look at the performance of applications such

as video streaming, file transfer (upload and download), online gaming etc. The

procedure followed and the challenges faced while implementing the simulations

have been discussed in the subsequent sections. The simulations use live traffic

data captured using Wireshark. The capture files are then processed using python

libraries. These are then converted into a format which are compatible with NS2.

The following sections elaborate the same in detail.

3.1 Wireshark

Wireshark is a free and open-source packet analyzer. It is used for network trou-

bleshooting, analysis, software and communications protocol development, and

education. Wireshark is very similar to tcpdump, but has a graphical front-end,

plus some integrated sorting and filtering options.

The packet sniffer observes messages being sent and received by applications and

protocols running on the computer. It receives a copy of packets that are sen-

t/received from/by application and protocols executing on the machine. It does

so with the help of a packet capture library. The packet capture library receives

a copy of every link-layer frame that is sent from or received by the computer.

Capturing all link-layer frames thus gives all messages sent/received from/by all

protocols and applications executing in the computer.

Wireshark allows us to monitor and capture packets on various interfaces like

ethernet (eth0), bluetooth and any other interfaces that the computer may have.

Superuser privileges are required to perform packet capture.

For the purpose of the simulations here, the eth0 interface has been chosen to for

the packet capture. Various applications such as file upload, video streaming etc

have been examined, the details of which have been discussed later.

3.2 Python dpkt module

The dpkt module is a fast, simple packet creation/parsing, with definitions for

the basic TCP/IP protocols. It is an ethernet packet decoding module. Even

though the NS2 provides a packet processing library, the reason for not using it

will be explained in the next section. It allows us to read the content of the packets

captured using a packet sniffer. Specifically we can extract the timestamps and

packet lengths from the captured frames.

3.3 Network Simulator (NS) 2

Network Simulator (Version 2), widely known as NS2, is an event- driven simula-

tion tool that is useful in studying the dynamic nature of communication networks.

Simulation of wired as well as wireless network functions and protocols (e.g., rout-

ing algorithms, TCP, UDP) can be done using NS2. In general, NS2 provides

users with a way of specifying such network protocols and simulating their corre-

sponding behaviors.

NS2 consists of two key languages: C++ and Object-oriented Tool Command

Language (OTcl). While the C++ defines the internal mechanism (i.e., a back-

end) of the simulation objects, the OTcl sets up simulation by assembling and

configuring the objects as well as scheduling discrete events (i.e., a frontend). The

C++ and the OTcl are linked together using TclCL.

9

3.3.1 Generating Traffic in NS2

After defining the topology, in order to make the traffic flow through them, we

need to define routing and agents. Two common applications that are used in

Ns are FTP and Telnet. Constant Bit Rate (CBR) reserves a constant amount

of bandwidth during the connection set up even when idle. The CBR service

was conceived to support applications such as voice and video, which require low

jitter (small time variations). It is possible to simulate other traffic applications

such as exponential on-off and Pareto on-off. The one that would be used in the

simulations is the one allowing us to generate traffic from trace files.

The trace file contains a series of inter-burst transmission intervals and payload

burst sizes. A traffic trace file is a pure binary file. A codeword in the binary

file consists of two 32-bits fields. The first field indicates inter-burst transmission

interval in microseconds, while the second is the payload size in bytes.

The Pcap library in NS2 provides the ability to capture link-layer frames in a

promiscuous fashion from network interface drivers (i.e. a copy is made for those

programs making use of libpcap). Since the frames are captured from the link

layer, and they have to be introduced in NS2 directly to the nodes, it is not possible

to use the TCP agents as is intended. Hence we have to resort to processing the

pcap files and creating the trace files in the binary format.

3.3.2 Simulations using NS2

We consider the following two (3.1 and 3.2) topologies for observing the QoS

parameters for different applications.

Now we observe how the performance of some of the most commonly used

applications is affected when used in a wireless environment.

Video streaming application

For video streaming application we preferably need the packets to stream with the

least amount of jitter. Packet inter-arrival jitter is important because it impacts

10

Figure 3.1: NS2 layout for a single wired link

Figure 3.2: NS2 layout for a wired cum wireless link

the buffering requirements for all downstream network and video devices, and ex-

treme jitter can lead to anything from lip-sync problems to the loss of packets

because of buffer overflow or underflow. Typical jitter values on a good transmis-

sion network are on the order of 1 5 milliseconds. Some video equipment will

begin having problems displaying video with as little as 10 ms of jitter and most

video equipment will have problems by the time there is 20 ms of introduced jitter.

Wired connection

The figures in 3.3 show the results of the simulation

11

Wired cum wireless connection

The figures in 3.4 show the results of the simulation

3.3.3 File transfer

For file transfer, we are mainly concerned with the throughput. In short through-

put is the rate of successful packet delivery in a network. It actually makes more

sense to calculate Goodput because the throughput calculation will also include

the packet headers etc.

Wired connection

The figure in 3.5 summarizes the results for the simulation

Wired cum wireless connection

The figure in 3.6 summarizes the results for the simulation

3.3.4 Online gaming

The main parameter of interest in such kinds of application is the latency or the

delay that each packet experiences. For a good overall experience the user should

have less delay for each packet. The parameters of delay for each packet and jitter

is examined.

Wired connection

The figure in 3.7 summarizes the results for the simulation

12

Wired cum wireless connection

The figure in 3.8 summarizes the results for the simulation

[5] describes many solutions that have been proposed as alternatives. The so-

lutions range from link layer solutions which aims to make the wireless link ‘look

like’ the wired links since it sits immediately on top of the physical layer. It is

usually implemented using Automatic Repeat Request(ARQ) or Forward Error

Correction (FEC). TCP versions which are aware of the link layer have been de-

veloped. Other solutions include modifications to the TCP protocol. TCP SACK

(Selective Acknowledgment), TCP FACK (Forward Acknowledgment), TCP Santa

Cruz, Explicit Congestion Notification, Explicit Loss Notifications are examples

of these. Some new protocols such as the Wireless Transmission Control Protocol

(WTCP).

In the next section one of the solutions called the Split TCP is examined.

It promises improvement in the overall performance by splitting the connection

into the wired part and the wireless part since they are essentially two different

subnetworks.

13

Figure 3.3: Video streaming application over a wired link - Jitter, Received packets and
Dropped packets at all nodes

14

Figure 3.4: Video streaming application over a wired cum wireless link - Jitter, Received
packets and Dropped packets at all nodes

15

Figure 3.5: File transfer application over a wired link - Throughput, Received packets
and Dropped packets at all nodes

16

Figure 3.6: File transfer application over a wired cum wireless link - Throughput, Re-
ceived packets and Dropped packets at all nodes

17

Figure 3.7: Online gaming application over a wired link - End to end delay and Jitter

18

Figure 3.8: Online gaming application over a wired cum wireless link - End to end delay
and Jitter 19

CHAPTER 4

Split TCP

4.1 Motivation for Split TCP

As has been seen, the throughput of TCP suffers when used over wireless net-

works and the cause behind this is that it wrongly attributes packet losses due to

congestion to link failures. Besides wireless networks are faced with the problems

that have been discussed in 2.3 . Furthermore, TCP suffers from the channel

capture effect. The concept of Split TCP was first developed in the paper [3].

The original proposition suggests splitting the long TCP connections into shorter

localized segments to alleviate the channel capture effect. The initial schme sug-

gested that the proxy buffer the packets it receives and acknowledge the same to

the reciever by sending a Local Acknowledgement (LACK). The end - end seman-

tics of TCP is still maintained. The proxy is responsible for sending the packets

over the next link at an appropriate rate. Upon the receipt of a LACK (from the

next proxy or from the final destination), a proxy will purge the packet from its

buffer. Since the end to end semantics are maintained, the source will not clear

a packet from its buffer unless it is acknowledged by a cumulative ACK from the

destination. Since the problem of congestion is essentially a local phenomenon,

specific to the environment, and reliability is an end to end problem, the Split

TCP essentially splits the functionality of congestion and reliable packet delivery.

4.2 Overview of Split TCP

The original implementation of Split TCP proposed in [3] is slightly different

from the version of TCP used in the analysis here in the fact that instead of

multiple proxy the implementation in [2] uses a single intelligent gateway. Hence

for the sake of completeness and consistency, the multiple proxy case is explained

first along with the usage of LACKs.

A proxy splits a TCP connection into multiple local segments. It buffers pack-

ets and delivers them to the next proxy or to the destination. Each proxy receives

packets from either the source or from the previous proxy, sends LACKs for each

packet to the sender (source or proxy) of that packet. The proxy buffers the

packet, and when possible, forwards the packet towards the destination, at a rate

proportional to the rate of arrival of LACKs from the next local segment. The

source keeps transmitting according to the rate of arrival of LACKs from the next

proxy, but purges a packet from its buffer only upon receipt of an end-to-end

ACK for that packet (note that this might be indicated in a cumulative ACK for

a plurality of packets) from the destination.

The transmission window has been split into two windows, the congestion

window and the end to end window. The congestion window would always be a

sub-window of the end-to-end window. While the congestion window changes in

accordance with the rate of arrival of LACKs from the next proxy, the end-to-end

window will change in accordance with the rate of arrival of the end-to-end ACKs

from the destination. The dynamics of both these windows vary as per the rules

that govern traditional TCP subject to the condition that the congestion window

stays within the end-to-end window. At each proxy, there would be a congestion

window which would govern the rate of sending between proxies. The end-to-end

ACKs would be infrequent, since the likelihood of proxy failure is possibly lesser.

4.3 Analytical model for Split TCP

The first analytical characterization of the Split TCP model was given by [7].

However since we are primarily interested in the latency calculations, we refer to

[2]. In effect we are shortening the TCP feedback loop. But this does not have

to come at the price of disturbing the end to end semantics. The analysis has

been performed on both the lossless and the lossy case (in the steady state). It

21

is observed that using a proxy results in a better utilization of the link capacity.

In addition the slower one dominates the performance and as this increases the

advantages of using a proxy decrease.

When an end-to-end connection is established, the proxy functions as a normal

router that forwards packets from the server to the client and vice versa. When

connection splitting is used, the proxy acknowledges to the server, the client ac-

knowledges to the proxy, and the proxy relays packets from the server to the

client. Same procedure is used for the other direction of the connection. The two

connections are inevitably coupled, but they keep separate sequence numbers and

queues, and the proxy does not relay out-of-order packets from one to the other

thus acting as a virtual source of the file. The following schematic illustrates this.

Figure 4.1: Network Model. Figure Source: [2]

Figure 4.2: File transfer using a splitting proxy. Figure Source: [2]

22

4.3.1 Assumptions and Parameters

The following assumptions are made about the parameters and their values -

• The file size M is assumed to be an integer multiple of the maximum segment
size MSS. The MSS is assumed to be 512 bytes.

• WSS and Wmax are the slow start threshold and maximum window size in
number of segments

• C1, Cp and C2 are the transmission rates of the server, proxy and the client

• The packet length is assumed to be constantD = MSS + h where h is the
length of the header and is typically equal to 40 bytes.

• The time taken to transmit the packet is µ1 = D/C1 , µp = D/Cp and
µ2 = D/C2 respectively by the server, proxy and the client.

• The packet processing delay is assumed to be tp. All the other delays are
ignored. Further we assume that the propagation delay is the same in both
directions in the link.

• I1 and I2 are the propagation delays on the server-proxy and proxy-client
links respectively.

• The transmission time of the ACK is assumed to be negligible.

• The TCP sender is assumed to be constrained only by the congestion window
and not the advertised window.

4.3.2 Delay over a lossless link

We assume that delayed ACK in implemented. The rate of the exponential

growth of the congestion window r = 1 +
1

b
. Hence the number of windows

required to cover a file size of M is given by Mx such that

Wss +
Mx − S − 1

b
< Wmax ≤ Wss +

Mx − S
b

(4.1)

where S is given by

wor
S−1 < Wss ≤ wor

S (4.2)

23

S + 1 is the window number at which ssthresh is reached if the file is big

enough i.e M >
∑S

i=1wor
i−1

Mx + 1 is the window at which the maximum window size id achieved if the

file is big enough.

The total number of windows required to transfer the file is given by K

min{k :
k∑

i=1

wor
i−1 ≥M} [k ≤ S] (4.3)

min{k :
S∑

i=1

wor
i−1 +

k∑
i=S+1

(Wss +
i− S − 1

b
) ≥M} [S < K ≤Mx] (4.4)

min{k :
S∑

i=1

wor
i−1 +

Mz∑
i=S+1

(Wss +
i− S − 1

b
) +

k∑
i=Mz+1

Wmax ≥M} [Mx < k]

(4.5)

Delay of end to end connection

The time it takes to transmit the kth window is a function of the packet transmis-

sion time at the sender given by tk(µ1)

wor
k−1µ1 [k ≤ S] (4.6)

(Wss +
k − S − 1

b
)µ1 [S < k ≤Mx] (4.7)

Wmaxµ1 [Mx < k] (4.8)

This expression assumes that there are at least b packets in a window so that the

receiver can immediately return an ACK upon receipt of the bth packet. The RTT

of the end-to-end connection is 2(I1 + I2). In order to handle both the cases of

server-proxy link faster than the proxy-client link, or vice versa, we define

Re = min(µ1, µp) + bmax(µ1, µp) + 2(I1 + I2) (4.9)

24

The latency of transmitting a file of M packets using an end to end connection is

given by

Te(M) = Mmax(µ1, µp) + I1 + I2 +min(µ1, µp) +
K−1∑
k=1

[Re − tk(max(µ1, µp))]
+

(4.10)

Delay of a split connection

When a proxy is used, the two links are coupled and are governed by the amount

of data that is being served to the proxy. The proxy cannot send packets that it

has not yet received and can hence be constrained. This can be caused by a much

larger initial window size and/or a much shorter RTT on the second connection.

When the proxy-client connection is unconstrained, it means that either µ1 < µp

and/or I1 ≤ I2. We assume the same initial size of the window on both links.

Also we assume that the parameters Wss and Wmax are the same. Define

R2 = bµp + 2I2 (4.11)

The latency of transmitting a file of M packets using a split connection where the

proxy is never constrained by unavailability of data is

Tp(M) = µ1 + I1 + tp +Mµp +
K′−1∑
k=1

[R2 − tk(µp)]
+ + I2 (4.12)

where K ′ can be calculated from 4.3.This equation reflects the initial delay for

the first packet to arrive at the proxy, the total transmission time at the proxy, stall

time and the time for the last packet to reach the client. The plot 4.3summarizes

the results of the simulation.

The constrained proxy case can be modeled using a fluid model but it is difficult

to obtain a closed form equation. Since the unconstrained case is valid for long

wireless connections where the losses can be significant and the total throughput

will be affected significantly when no proxy is used, the analysis is restricted to

25

this case.

Figure 4.3: Latency vs. file sizes, with initial window size of 1 and 4, respectively. I1
= 150 ms; I2 = 250 ms

4.3.3 Delay over a lossy links

The presence of losses makes it difficult to analyze. Hence the analysis is largely

restricted to the steady state which is strictly valid only in the case of infinite

source. In the presence of a finite source, the results are less accurate. Since we

consider the proxy-client link as a wireless link and the server-proxy as a wired

link, the losses on the wireless link are significantly higher on the wireless link and

by considering the server-proxy link as lossless, we can still get a fair idea of the

performance of the system. The throughput for TCP bulk transfer is given by [4]

26

λ(RTT, p) =

√
3

2bp

1

RTT
(4.13)

The above equation shows that the throughput of the connection is inversely

proportional to the RTT and root of the loss. If the losses are present only on the

proxy-client link, then the proxy effectively isolates that part of the connection

and reduces the RTT to recover from the losses. The loss on the proxy-client link

is taken to be p2. The latency of a file of size M segments on a lossy link is given

by

Te =
M∑
n=0

p(n)(Te(n) +
M − n

λ(RTT, p2)
)

=
M∑
n=0

p(n)Te(n) +
M −mloss

λ(2(I1 + I2), p2)
)

(4.14)

Here p(n) is the probability that n packets are successfully sent before the first

loss occurs.

mloss =
(1− (1− p2)M)(1− p2)

p2
+ 1 (4.15)

Te(.) is the end to end delay connection as given by 4.10 For an unconstrained

proxy connection the latency in the presence of losses on the proxy-client link is

given by

Tp =
M∑
n=0

p(n)(Tp(n) +
M −mloss

λ(2(I2), p2)
) (4.16)

Here it is assumed that I1 < I2 and µ1 < µ2. Figure 4.4 shows the results

of the simulation when losses are present on the proxy - client link. In figure 4.5

the results of the simulation carried out in NS2 are shown. It only shows the end

to end case since NS2 does not provide a module to model the TCP proxy as

required. It is possible to get a rough idea of the performance of the system when

losses are present on both the links. If we assume that the losses on both the links

27

Figure 4.4: Latency vs. file sizes, in a lossy case. I1 = 150 ms; I2 = 250 ms. p = 0.001

are independent of each other p1 and p2, then the overall probability of error in

the link is p = p1 + p2 − p1p2. For a stead state condition, the throughput on the

server-proxy link will be

λ(R1, p1) =

√
3

2bp1

1

R1

(4.17)

And the throughput on the proxy-client link will be

λ(R2, p2) =

√
3

2bp2

1

R2

(4.18)

Both of these are individually greater than the end to end case where the overall

delay will be dictated by the slower connection.

λ(R1 +R2, p) =

√
3

2bp

1

R2 +R1

(4.19)

28

Figure 4.5: NS2 Simulation for an end to end delay. I1 = 150 ms; I2 = 250 ms. p =
0.001

Therefore by breaking the server−client connection into parts that each has a

smaller loss rate and RTT, using the proxy achieves higher throughput and thus

lower latency.

29

CHAPTER 5

Results and Conclusions

5.1 Interpreting plots from the NS2 simulations

End to end wired link

For this a link of capacity 10 Mbps has been considered with and end to end delay

of 50ms. This is the delay in a typical LAN setting. In general wired links are

very reliable. The same has been observed in the 3D plots which show number

of packets that are dropped at each node. Even though here, the link has been

assumed lossless, the results will hold true even if we consider losses since the

BER is in the range of 10−6 to 10−8. So for the file sizes being considered the

assumption holds true. The second plot in figures 3.3 ,3.4,3.5 3.6 which shows the

number of packets received at the client nodes illustrates this point.

Wired cum wireless link

For this scenario, the wired part of the link is kept the same, but a wireless link

has been added to it through a router. The link is still ‘wired’ per say as far as the

NS2 script is concerned but it is characterized by high BER (10−3) and large delay

of 200 ms. This approximately gives us the wireless links characteristics that we

require. The capacity of this part of the link is 1 Mbps. So effectively the overall

link is constrained by this link atleast in the steady state.

Interpreting the plots

Plots (3.3 3.4),(3.5 3.6) and (3.7 3.8)show Jitter, throughput and delay measure-

ments for packets captured during video streaming, file transfer and online gaming

respectively.

The jitter of a packet stream is defined as the mean deviation of the difference

in packet spacing at the receiver compared to the sender. Since the UDP protocol

is generally used for video, the appropriate agents have been used in the simula-

tion(UDP agents).It can be seen that the jitter is quite low and constant as there

are no losses in the link. Comparing it with 3.4 it is clear that there is significant

jitter due to loss in packets. Also the peak as well as the average values are much

higher when used over a wireless link.

For file transfer a TCP agent has been used in both the scenarios. Various

capture files with varying number of packets have been simulated. The figures 3.5

and 3.6 show one of these cases. Figure 3.5 shows the throughput achieved over

the wired network. It is close to the ideal throughput graph. Comparing it with

figure 3.6 it is clear that the throughput suffers both in terms of the average value

and variation. Even though we are concerned mostly with the average value for an

application such as file transfer, the spikes point to the fact that losses introduced

by the wireless network causes the TCP sender to interpret them as congestion

and go to the congestion avoidance phase.

Online gaming requires low delay or latency for each packet. Large latency

will lead to a significant degradation in the user experience especially on mobile

platforms. Figure 3.7 shows the performance over wired link. This basically means

gaming on traditional PCs. As seen before it is characterized by low jitter and end

to end delay. The thing of interest to us is the wireless scenario which corresponds

to the gaming experience for mobile users. Again, there is significant end to end

delay and average jitter similar to what was observed in the previous cases.

Hence it is clear from the above discussion that for all applications the QoS is

significantly effected in presence of a wireless link. This can mainly be attributed

to the high BER and the delay in the link. Furthermore, wireless links are unpre-

dictable.

31

5.2 Interpreting the MATLAB plots

Figure 4.3 shows the results of simulating the analytical model presented by [2]

for two initial window sizes - 1 and 4. The end to end case corresponds to the

case where the intermediate node is modeled as a simple router. The proxy case is

when the intermediate node acts as a proxy which buffers packets and then sends

them on an independent TCP connections (given that it is not constrained by the

server - proxy link). It can be clearly seen that there is decrease in the latency

when a proxy is used. It is possible to counter the effects of not using a proxy

by using a larger initial window size to reduce the end to end latency as can be

seen when a initial window size of 4 has been used, but as has been noted in [2],

a significantly larger window size is required even for smaller file sizes.

Figure 4.4 shows the results when losses are considered on the proxy - client

link. Here too it can be seen that the latency of a proxy is less than that of and end

to end link. Figure 4.5 shows the results of an NS2 simulation for the end to end

delay. As has been explained earlier, NS2 does not provide us with a module to

model the TCP proxy. Hence only the end to end link case has been shown. It can

be seen that in the range 100 - 800 packets, the latency values match closely with

the simulation. The difference between the two plots may arise due to the fact

that while simulating in MATLAB, a constant packet length has been assumed

which does not hold true in a real setting. Hence there will be a difference in the

times taken to transmit each packet.

5.3 Conclusion

Hence using a proxy achieves the effect of localizing the losses to a particular link.

So using Split TCP is an effective way to alleviate the latency problem introduced

the wireless link. It has been observed though,([2]) that the gains quickly diminish

as the asymmetry between the two links increases, as is the case with the wireless

environment.

32

Hence if we need to deploy this in a practical environment, it is necessary

to optimize for each part separately. This has been personally observed during

my interactions with engineers at Sasken Communication Technologies Ltd

which is currently working on implementing a service intelligent gateway between

the wired and the wireless part. Although the basic schematic used in this case

is the same as explained earlier, the algorithms used for congestion control are

optimized to meet the demands of the wireless medium. Significant performance

gains have been observed by the usage of this proxy. But though Split TCP has

been conceptualized a long time back the advantages of using it in a commercial

setting are being realized only now due to large scale proliferation of smartphones

and smartdevices.

33

APPENDIX A

MATLAB, Python and Tcl scripts

A.1 MATLAB scripts for the analytical model

A.1.1 Script for lossless case

clear all;clc;

file_size = [];

delay_ETE = [];

delay_proxy = [];

%%

file_size1 = [];

delay_ETE1 = [];

delay_proxy1 = [];

%%

for j = 1:100

global M MSS Wo Wss Wmax C1 Cp C2 h D M1 Mp M2 tp I1 I2 b \\

r S Mx K Re Wo2 Wss2;

M = j*10; %File size in number of segments

MSS = 512; %Maximum segment size

Wo = 1;

Wo2 = 1; %Initial window size

Wss = 128; %Slow start threshold (in number of segments)

Wss2 = 128;

Wmax = 1000; %Maximum window size (in number of segments)

C1 = 10^6; %Server transmission rate (bps)

Cp = 10^6; %Proxy transmission rate

C2 = 10^6; %Client transmission rate

h = 40; %TCP/IP header size (typically 40 bytes)

D = MSS + h; %Packet length

M1 = D/C1; %Time taken by server to transmit one packet

Mp = D/Cp; %Time taken by proxy to transmit one packet

M2 = D/C2; %Time taken by client to transmit one packet

tp = 10^-6; %Packet processing delay at proxy (other processing\\

delays are ignored)

I1 = 100*(10^-3); %Server-proxy propogation delay

I2 = 150*(10^-3); %Proxy client propogation delay

b = 1; %ACK is generated once every b packets

r = 1+(1/b); %Rate at which the window grows

file_size = [file_size,M*200];

%Define S

S = 0;

while(~((Wo*(r^(S-1)) < Wss) && (Wss <= Wo*(r^S))))

S = S+1;

end

%

%Define Mx

Mx = 0;

while(~((Wmax > Wss + (Mx - S - 1)/b) && (Wmax <= Wss + (Mx - S)/b)))

Mx = Mx + 1;

end

%Define K = number of windows needed to transfer the file

35

K = 0;

sum = 0;

counter = 1;

while ((sum<=M)&&(counter<=S))

sum = sum + Wo*(r^(counter-1));

counter = counter + 1;

end

if (sum > M)

K = counter;

elseif ((sum<M) && (counter > S))

while((sum <=M) && (counter<=Mx))

sum = sum + (Wss + (counter - 1 -S)/b);

counter = counter + 1;

end

end

if (sum > M)

K = counter;

elseif ((sum < M) && (counter > Mx))

while(sum <= M)

sum = sum + Wmax;

counter = counter + 1;

end

end

K = counter;

%Define pkt transmission time for kth window

%Function defined

%END TO END DELAY CALCULATION OVER LOSSLESS LINKS

Re = min(M1,Mp) + b*max(M1,Mp) + 2*(I1 + I2);

%Latency as given by proposition 1 in the paper

sum = 0;

36

for x = 1:K-1

sum = sum + positive(x , Re, max(M1,Mp), S, Wo ,Wss,\\

Wmax, b, r ,Mx);

end

Latency1 = M*max(M1,Mp) + I1 + I2 + min(Mp,M1) + sum;

%

%DELAY OVER a SPLIT CONNECTION

R2 = b*Mp + 2*I2;

%Calculate K2 for the proxy. We consider the variation\\

%only in the initial

%congestion window size

K2 = 0;

sum = 0;

counter = 1;

while ((sum<=M)&&(counter<=S))

sum = sum + Wo2*(r^(counter-1));

counter = counter + 1;

end

if (sum > M)

K2 = counter;

elseif ((sum<M) && (counter > S))

while((sum <=M) && (counter<=Mx))

sum = sum + (Wss2 + (counter - 1 -S)/b);

counter = counter + 1;

end

end

if (sum > M)

K2 = counter;

elseif ((sum < M) && (counter > Mx))

while(sum <= M)

sum = sum + Wmax;

37

counter = counter + 1;

end

end

K2 = counter;

sum2 = 0;

for x = 1:K2-1

sum2 = sum2 + positive(x , R2, Mp, S, Wo \\

,Wss, Wmax, b, r ,Mx);

end

Latency2 = M1 + I1 + tp + M*Mp + sum2 + I2;

delay_ETE = [delay_ETE,Latency1];

delay_proxy = [delay_proxy, Latency2];

end

%%

figure(2)

a = plot (file_size1,delay_ETE1,’r--’);hold on;

b = plot (file_size1,delay_proxy1,’b--’);

c = plot (file_size,delay_ETE,’r’);

d = plot(file_size,delay_proxy,’b’);

xlabel(’File Size in Bytes’);

ylabel(’Latency in Seconds’);

title(’Latency vs File Size’);

legend ([a,b,c,d],’ETE mod Wo = 4’,’Proxy mod Wo = 4’,\\

’ETE mod Wo = 1’,’Proxy mod Wo = 1’);

Function ‘pkt tr time’

function [tk] = pkt_tr_time(delay,k ,Wo ,Wss, Wmax, b, S, r ,Mx)

if k<=S

tk = Wo*r^(k-1)*delay;

38

end

if (k>S)&&(k<=Mx)

tk = (Wss + (k-S-1)/b)*delay;

end

if k>Mx

tk = Wmax*delay;

end

end

Function ‘positive’

function [output] = positive(k ,Re, delay , S , Wo ,Wss, Wmax, b, r ,Mx)

y = (Re - pkt_tr_time(delay,k, Wo ,Wss, Wmax, b, S, r ,Mx));

if (y>0)

output = y;

else

output = 0;

end

end

A.1.2 Script for lossy case

clear all;clc;

segment_size = [];

delay_e2e = [];

delay_p = [];

%DELAY ANALYSIS OVER LOSSY LINKS

global M MSS Wo Wss Wmax C1 Cp C2 h D M1 Mp M2\\

tp I1 I2 b r S Mx K Re Wo2 Wss2;

for j = 1:10

%SERVER PROXY LINK LOSSLESS

39

M = j*100; %File size in number of segments

MSS = 512; %Maximum segment size

Wo = 1;

Wo2 = 1; %Initial window size

Wss = 128; %Slow start threshold (in number of segments)

Wss2 = 128;

Wmax = 1000; %Maximum window size (in number of segments)

C1 = 10^6; %Server transmission rate (bps)

Cp = 10^6; %Proxy transmission rate

C2 = 10^6; %Client transmission rate

h = 40; %TCP/IP header size (typically 40 bytes)

D = MSS + h; %Packet length

M1 = D/C1; %Time taken by server to transmit one packet

Mp = D/Cp; %Time taken by proxy to transmit one packet

M2 = D/C2; %Time taken by client to transmit one packet

tp = 10^-6; %Packet processing delay at proxy \\

%(other processing delays are ignored)

I1 = 50*(10^-3); %Server-proxy propogation delay

I2 = 100*(10^-3); %Proxy client propogation delay

b = 1; %ACK is generated once every b packets

r = 1+(1/b); %Rate at which the window grows

segment_size = [segment_size,M];

p = 0.001; %Probablity of error on the lossy link

lambda1 = sqrt(3/(2*b*p))/(2*(I1+I2));

mloss = (((1 - ((1-p)^M))*(1-p))/p) + 1;

%END to END delay

sum1 = 0;

40

for i = 1:M

sum1 = sum1 + errorprob(i,M,p)*latency_e2e(i);

end

Le2e_lossy = sum1 + (M-mloss)/lambda1;

delay_e2e = [delay_e2e,Le2e_lossy];

%PROXY DELAY

lambda2 = sqrt(3/(2*b*p))/(2*(I2));

sum2 = 0;

for i = 1:M

sum2 = sum2 + errorprob(i,M,p)*latency_p(i);

end

Lp_lossy = sum2 + (M-mloss)/lambda2;

delay_p = [delay_p,Lp_lossy];

end

figure(1)

a = plot(delay_p,segment_size,’r’);

hold on;

b = plot(delay_e2e,segment_size);

xlabel(’Latency in seconds’);

ylabel(’Packets transmitted’);

legend([a,b],’Latency Proxy’,’Latency ETE’);

title(’Packets transmitted vs Latency’);

The functions to calculate the end to end and delays in proxy have been de-

scribed in the previous section and can be used as a function in the above MATLAB

code.

Function ‘errorprob’

function [error] = errorprob(n,M,p)

if (n<M)

41

error = ((1-p)^n)*p;

elseif (n == M)

error = (1-p)^M;

end

end

A.2 Python script to generate binary trace files

from capture files

import dpkt

import b i n a s c i i

def padded hex (i , l) :

g i v e n i n t = i

g i v e n l e n = l

h e x r e s u l t = hex(g i v e n i n t) [2 :] # remove ’0 x ’ from \\

#beg inn ing o f s t r

num hex chars = len (h e x r e s u l t)

e x t r a z e r o s = ’ 0 ’ ∗ (g i v e n l e n − num hex chars) \\

may not g e t used . .

return (’ 0x ’ + h e x r e s u l t i f num hex chars == \\

g i v e n l e n else

’ ? ’ ∗ g i v e n l e n i f num hex chars > g i v e n l e n else

’ 0x ’ + e x t r a z e r o s + h e x r e s u l t i f num hex chars < \\

g i v e n l e n else

None)

f1 = open (’ v ideo 200 . pcap ’)

42

f i l ename = ’ v ideo 200 ’

pcap = dpkt . pcap . Reader (f 1)

f i l e s i z e = 0

timestamps = []

pk t l eng th s = []

for ts , buf in pcap :

timestamps . append (t s)

pk t l eng th s . append (len (buf))

i n t a r v = [0] ∗ (len (timestamps)−1)

pk t l eng th s n = [0] ∗ (len (timestamps)−1)

l = len (timestamps) − 1

for i in range (l) :

i n t a r v [i] = timestamps [i +1] − timestamps [i]

pk t l eng th s n [i] = pkt l eng th s [i]

f i l e s i z e += pkt l eng th s [i]

for i in range (l) :

i n t a r v [i] = int (i n t a r v [i]∗ (1000000))

print f i l e s i z e

#Write data to the f i l e

f 2 = open(f i l ename , ’wb ’)

h s i z e = 32

for i in range (l) :

a = padded hex (i n t a r v [i] , 8)

b = padded hex (pk t l eng th s n [i] , 8)

a2 = b i n a s c i i . a2b hex (a [2 :])

43

b2 = b i n a s c i i . a2b hex (b [2 :])

f 2 . wr i t e (a2)

f 2 . wr i t e (b2)

#To i n d i c a t e the end o f the f i l e s e t i n t e r a r r i v a l \\

#time to the maximum.\\

#Else i t j u s t i t e r a t e s through i t again .

a2 = b i n a s c i i . a2b hex (” f f f f f f f f ”)

b2 = b i n a s c i i . a2b hex (”000003 e8”)

f 2 . wr i t e (a2)

f 2 . wr i t e (b2)

f 1 . c l o s e ()

f 2 . c l o s e ()

A.3 Tcl script for NS2 simulations

Wired scenario

Filename: wired.tcl

#-------Event scheduler object creation--------#

set ns [new Simulator]

#----------creating trace objects----------------#

set nt [open test.tr w]

$ns trace-all $nt

#----------creating nam objects----------------#

set nf [open test2.nam w]

$ns namtrace-all $nf

#----------Setting color ID----------------#

$ns color 1 darkmagenta

$ns color 2 yellow

44

$ns color 3 blue

$ns color 4 green

$ns color 5 black

Configurational parameters

Agent/TCP set window_ 500 ;# max bound on window size

Agent/TCP set windowInit_ 1 ;# initial/reset value of cwnd

Agent/TCP set windowOption_ 1 ;# cong avoid algorithm (1: standard)

Agent/TCP set windowConstant_ 4 ;# used only when windowOption != 1

Agent/TCP set windowThresh_ 0.002 ;# used in computing averaged window

Agent/TCP set overhead_ 0 ;# !=0 adds random time between sends

Agent/TCP set ecn_ 0 ;# TCP should react to ecn bit

Agent/TCP set packetSize_ 512 ;# packet size used by sender (bytes)

Agent/TCP set bugFix_ true ;# see explanation

Agent/TCP set slow_start_restart_ true ;# see explanation

Agent/TCP set tcpTick_ 0.1 ;# timer granulatiry in sec (.1 is NONSTANDARD)

Agent/TCP set maxrto_ 64 ;# bound on RTO (seconds)

Agent/TCP set dupacks_ 0 ;# duplicate ACK counter

Agent/TCP set ack_ 0 ;# highest ACK received

Agent/TCP set cwnd_ 0 ;# congestion window (packets)

Agent/TCP set awnd_ 0 ;# averaged cwnd (experimental)

Agent/TCP set ssthresh_ 128 ;# slow-stat threshold (packets)

Agent/TCP set rtt_ 0 ;# rtt sample

Agent/TCP set srtt_ 0 ;# smoothed (averaged) rtt

Agent/TCP set rttvar_ 0 ;# mean deviation of rtt samples

Agent/TCP set backoff_ 0 ;# current RTO backoff factor

Agent/TCP set maxseq_ 0 ;# max (packet) seq number sent

#---------- Creating Network----------------#

set totalNodes 2

45

for {set i 0} {$i < $totalNodes} {incr i} {

set node_($i) [$ns node]

}

set server 0

set client 1

#---------- Creating Duplex Link----------------#

$ns duplex-link $node_($server) $node_($client) 10Mb 50ms DropTail

$ns duplex-link-op $node_($server) $node_($client) orient right

#------------Labelling----------------#

$ns at 0.0 "$node_($server) label Server"

$ns at 0.0 "$node_($client) label Client"

$ns at 0.0 "$node_($server) color blue"

$ns at 0.0 "$node_($client) color blue"

$node_($server) shape hexagon

$node_($client) shape hexagon

#------------Data Transfer between Nodes----------------#

Defining a transport agent for sending

set tcp [new Agent/TCP]

Attaching transport agent to sender node

$ns attach-agent $node_($server) $tcp

Defining a transport agent for receiving

set sink [new Agent/TCPSink]

Attaching transport agent to receiver node

$ns attach-agent $node_($client) $sink

#Connecting sending and receiving transport agents

46

$ns connect $tcp $sink

set tfile [new Tracefile]

#$tfile filename /tmp/example-trace

$tfile filename gaming_10000

set trace2 [new Application/Traffic/Trace]

$trace2 attach-tracefile $tfile

$trace2 attach-agent $tcp

Setting flow color

$tcp set fid_ 4

data packet generation starting time

$ns at 0.001 "$trace2 start"

data packet generation ending time

$ns at 600.0 "$trace2 stop"

#---------finish procedure--------#

proc finish {} {

global ns nf nt

$ns flush-trace

close $nf

close $nt

puts "running nam..."

exec nam test2.nam &

exit 0

}

#Calling finish procedure

47

$ns at 610.0 "finish"

$ns run

Wired cum wireless scenario

Filename: wireless.tcl

#-------Event scheduler object creation--------#

set ns [new Simulator]

#----------creating trace objects----------------#

set nt [open test.tr w]

$ns trace-all $nt

#----------creating nam objects----------------#

set nf [open test2.nam w]

$ns namtrace-all $nf

#----------Setting color ID----------------#

$ns color 1 darkmagenta

$ns color 2 yellow

$ns color 3 blue

$ns color 4 green

$ns color 5 black

Configurational parameters

Agent/TCP set window_ 500 ;# max bound on window size

Agent/TCP set windowInit_ 1 ;# initial/reset value of cwnd

Agent/TCP set windowOption_ 1 ;# cong avoid algorithm (1: standard)

Agent/TCP set windowConstant_ 4 ;# used only when windowOption != 1

Agent/TCP set windowThresh_ 0.002 ;# used in computing averaged window

Agent/TCP set overhead_ 0 ;# !=0 adds random time between sends

Agent/TCP set ecn_ 0 ;# TCP should react to ecn bit

Agent/TCP set packetSize_ 512 ;# packet size used by sender (bytes)

Agent/TCP set bugFix_ true ;# see explanation

Agent/TCP set slow_start_restart_ true ;# see explanation

Agent/TCP set tcpTick_ 0.1 ;# timer granulatiry in sec (.1 is NONSTANDARD)

48

Agent/TCP set maxrto_ 64 ;# bound on RTO (seconds)

Agent/TCP set dupacks_ 0 ;# duplicate ACK counter

Agent/TCP set ack_ 0 ;# highest ACK received

Agent/TCP set cwnd_ 0 ;# congestion window (packets)

Agent/TCP set awnd_ 0 ;# averaged cwnd (experimental)

Agent/TCP set ssthresh_ 128 ;# slow-stat threshold (packets)

Agent/TCP set rtt_ 0 ;# rtt sample

Agent/TCP set srtt_ 0 ;# smoothed (averaged) rtt

Agent/TCP set rttvar_ 0 ;# mean deviation of rtt samples

Agent/TCP set backoff_ 0 ;# current RTO backoff factor

Agent/TCP set maxseq_ 0 ;# max (packet) seq number sent

#---------- Creating Network----------------#

set totalNodes 3

for {set i 0} {$i < $totalNodes} {incr i} {

set node_($i) [$ns node]

}

set server 0

set router 1

set client 2

#---------- Creating Duplex Link----------------#

$ns duplex-link $node_($server) $node_($router) 1Mb 150ms DropTail

$ns duplex-link $node_($router) $node_($client) 1Mb 250ms DropTail

$ns duplex-link-op $node_($server) $node_($router) orient right

$ns duplex-link-op $node_($router) $node_($client) orient right

#------------Labelling----------------#

$ns at 0.0 "$node_($server) label Server"

$ns at 0.0 "$node_($router) label Router"

49

$ns at 0.0 "$node_($client) label Client"

$ns at 0.0 "$node_($server) color blue"

$ns at 0.0 "$node_($client) color blue"

$node_($server) shape hexagon

$node_($client) shape hexagon

#------------Introduce loss model--------------------#

create a random variable that follows the uniform distribution

set loss_random_variable [new RandomVariable/Uniform]

$loss_random_variable set min_ 0

$loss_random_variable set max_ 100

set loss_module2 [new ErrorModel]

$loss_module2 drop-target [new Agent/Null]

$loss_module2 set rate_ 0.1

$loss_module2 ranvar $loss_random_variable

set loss_module [new ErrorModel]

$loss_module drop-target [new Agent/Null]

$loss_module set rate_ 0.0001

$loss_module ranvar $loss_random_variable

#$ns lossmodel $loss_module $node_($server) $node_($router)

$ns lossmodel $loss_module2 $node_($router) $node_($client)

#------------Data Transfer between Nodes----------------#

Defining a transport agent for sending

set tcp [new Agent/TCP]

50

Attaching transport agent to sender node

$ns attach-agent $node_($server) $tcp

Defining a transport agent for receiving

set sink [new Agent/TCPSink]

Attaching transport agent to receiver node

$ns attach-agent $node_($client) $sink

#Connecting sending and receiving transport agents

$ns connect $tcp $sink

set tfile [new Tracefile]

#$tfile filename /tmp/example-trace

$tfile filename video_1

set trace2 [new Application/Traffic/Trace]

$trace2 attach-tracefile $tfile

$trace2 attach-agent $tcp

Setting flow color

$tcp set fid_ 4

data packet generation starting time

$ns at 0.001 "$trace2 start"

data packet generation ending time

$ns at 40.0 "$trace2 stop"

#---------finish procedure--------#

51

proc finish {} {

global ns nf nt

$ns flush-trace

close $nf

close $nt

puts "running nam..."

exec nam test2.nam &

exit 0

}

#Calling finish procedure

$ns at 41.0 "finish"

$ns run

52

REFERENCES

[1] Ajay Bakre and B. R. Badrinath. I-tcp: Indirect tcp for mobile hosts. pages
136–143, 1995.

[2] Navid Ehsan and Mingyan Liu. Modeling tcp performance with proxies. In In-
ternational Workshop On Wired/Wireless Internet Communications (WWIC),
in Conjunction with International Conference on Internet Computing (IC02,
pages 961–975, 2004.

[3] Swastik Kopparty, Srikanth V. Krishnamurthy, Michalis Faloutsos, and
Satish K. Tripathi. Split tcp for mobile ad hoc networks. In in Proceedings
of the IEEE Global Communications Conference (GLOBECOM 2002, pages
138–142, 2002.

[4] T. V. Lakshman and Upamanyu Madhow. The performance of tcp/ip for
networks with high bandwidth-delay products and random loss, 1997.

[5] Kostas Pentikousis. Tcp in wired-cum-wireless environments. Fourth Quarter,
3:2–14, 2000.

[6] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STAN-
DARD), September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[7] Ananth I. Sundararaj and Dan Duchamp. Analytical characterization of the
throughput of a split tcp connection.

53

