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CHAPTER 1

Introduction to Low gain controller Design

1.1 Introduction

The design of a low gain controller typically involves forming a set of feedback laws

that are parametrized by a scalar ε. The controller helps to stabilize linear systems un-

der input saturation. The input saturation can be avoided by decreasing the value of the

low-gain parameter ε.

There are currently three methods to design low-gain controllers each of which will be

discussed in the following sections.The first method proposed was the eigenstructure

assignment method. This method is considerably lengthy but results in a matrix poly-

nomial that is parametrized in terms of ε . The Riccati equation approach results in a

direction solution but it is required to decide the value of the low-gain parameter as an

input. The recent parametric Lyapunov equation approach however seems to have the

best of both methods and results in a function of ε.

The set of feedback laws represented by a gain matrix (F (ε)), approaches zero as

the parameter ε tends to zero and hence the name low-gain.



CHAPTER 2

Mathematical Preliminaries

Throughout our discussion we consider the following system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

2.1 Asymptotically Null Controllable with Bounded Con-

trols

The above system is said to be ANCBC if

1. The pair (A,B) is stabilizable.

2. The matrix A has it’s eigenvalues in the closed left-half s-plane.

2.2 Controllable canonical form

A matrix pair (A,B) is said to be in the controllable canonical form if they are of the

following form



A =



0 1 · · · 0

...
... . . . ...

0 0 · · · 1

−an −an−1 · · · −a1


, B =



0

...

0

b



2.3 Matrix Equations

The following is the Riccati equation that is to be solved for X

ATX +XA−XBR−1BTX +Q = 0

The following is the Lyapunov equation that is to be solved for X

AX +XAT +Q = 0

3



CHAPTER 3

Designing a Low-Gain Controller

Low-gain was primarily conceived to avoid some of the problems encountered during

high-gain feedback. Low-gain feedback has achieved several objectives that high-gain

feedback failed to achieve. Some of these include the control of linear systems sub-

ject to input magnitude/rate saturation((Z.Lin, 1997) and (Z.Lin, 1998b)),semi-global

stabilization of minimum phase input-output linearizable nonlinear systems((Z.Lin and

A.Saberi, 1993)

In this chapter we discuss three different methods to design a low-gain controller

3.1 Eigenstructure assignment

Consider a system of the form

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

We now design a low gain controller for the above system in three steps.

1. We find non singular matrices Ts and T1 such that A and B are transformed into the
block diagonal control canonical form, i.e the diagonal elements are of the control
canonical form. Let us call the diagonal elements as Ai and Bi respectively.

2. For each Ai and Bi let Fi ∈ R1×ni be the state feedback gain such that
λ(Ai +BiFi(ε)) = −ε+ λ(Ai) ∈ C−, ε ∈ (0, 1], i = 1, 2, . . . l



3. We now define a matrix K(ε) where the diagonal elements of this matrix are Fi.
F (ε) = T1K(ε)T−1s

F (ε) = T1


F1(ε) 0 · · · 0 0
0 F2(ε) · · · 0 0
...

... . . . ...
...

0 0 · · · Fl(ε) 0
0 0 · · · 0 0

T−1s

The control law is u = F (ε)x.

3.2 Algebraic Riccati equation method

The ARE based method is carried out in two steps

1. We solve the following Riccati equation for a positive definite solution P (ε),
ATP + PA− PBBTP +Q(ε) = 0, ε ∈ (0, 1].
where Q(ε) is a positive definite matrix for all ε ∈ (0, 1] and satisfies
limε→0Q(ε) = 0.

2. Now we construct the control law as
u = F (ε)x,
where F (ε) = −BTP (ε).

3.3 Lyapunov equation method

The Lyapunov equation method is a very recent development((Zhou et al., 2008)) that

has the benefits of both Eigenstructure assignment and the Riccati equation method. We

will briefly discuss the derivation of this method.

5



Consider the linear system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

We define the following cost function

J(u) =
∫∞
t=0

uT (t)Ru(t)dt where R > 0.

The following is a result from (Zheng, 2002)

If (A,B) is stabilizable. Then J(u) is minimized with

u∗(t) = −R−1BTPx(t)

where P is the solution of the ARE

(A+ γ
2
)TP + P (A+ γ

2
)− PBR−1BTP = 0.

This is the ARE corresponding to the "Minimal energy control with guaranteed conver-

gence rate" problem (MECGCR). The solution to this problem is u∗(t) where P is the

solution to the Riccati equation above. Now pre-multiply and post-multiply the above

Riccati equation with P−1 to obtain the following Lyapunov equation where W = P−1

W (A+ λ
2
I)T + (A+ λ

2
I)W = BR−1BT , ε ∈ (0, 1]

We now iterate the steps of the Lyapunov equation method.We solve for the control

law as follows

1. Solve the following Lyapunov equation for W (ε)
W (A+ ε

2
I)T + (A+ ε

2
I)W = BBT , ε ∈ (0, 1]

2. We find the matrix P (ε)
P (ε) = W−1(ε)

3. Finally the control law is obtained as
u = F (ε)x

where F (ε) = −BTP (ε).

6



3.4 An application

In this section we solve an example with the three methods explained above. We recall

that in order to use a low-gain controller, the system in question must be ANCBC.

Consider the following example

A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0


, B =



0

0

0

1



3.4.1 Eigenstructure assignment

1. In order to apply the method we first compute A+BF (ε). Let us parametrize
F (ε) = [a b c d].
Then,

A+BF (ε) =


0 1 0 0
0 0 1 0
0 0 0 1

−1 + a b −2 + c d



2. Now we compute the characteristic equation of the matrix

3. For the RHS of the equation we first compute the eigenvalues of A which are
{−j,−j, j, j}

4. Now we construct a polynomial with the roots as λ(A)− ε

7



5. Finally we equate the polynomials obtained above and compare the degree of λ
to obtain the vector F.
The obtained control law is as follows
u = −[ε4 + 2ε2, 4ε3 + 4ε, 6ε2, 4ε]x

3.4.2 Lyapunov equation method

1. First we calculate A+ ε
2
I which is

ε
2

1 0 0
0 ε

2
1 0

0 0 ε
2

1
−1 0 −2 ε

2


2. Then we solve the following equation in Mathematica

W (A+ ε
2
I)T + (A+ ε

2
I)W = BBT

to obtain W (ε) as

4(5ε2+4)
ε3(ε2+4)

3 − 2(5ε2+4)
ε2(ε2+4)

3

4(ε4−ε2−4)
ε3(ε2+4)

3
−ε4+10ε2+24

ε2(ε2+4)
3

− 2(5ε2+4)
ε2(ε2+4)

3

2(3ε4+6ε2+8)
ε3(ε2+4)

3 −3ε4+6ε2+8

ε2(ε2+4)
3

ε6−2ε4−12ε2−16
ε3(ε2+4)

3

4(ε4−ε2−4)
ε3(ε2+4)

3 −3ε4+6ε2+8

ε2(ε2+4)
3

2(ε6+4ε4+10ε2+8)
ε3(ε2+4)

3 − ε6+4ε4+10ε2+8

ε2(ε2+4)
3

−ε4+10ε2+24

ε2(ε2+4)
3

ε6−2ε4−12ε2−16
ε3(ε2+4)

3 − ε6+4ε4+10ε2+8

ε2(ε2+4)
3

ε8+8ε6+30ε4+44ε2+16

ε3(ε2+4)
3


3. The inverse P (ε) is as follows

ε
(
ε6 + 4ε4 + 6ε2 + 4

)
ε2
(
3ε4 + 8ε2 + 6

)
ε
(
3ε4 + 6ε2 + 4

)
ε2
(
ε2 + 2

)
ε2
(
3ε4 + 8ε2 + 6

)
2ε
(
5ε4 + 8ε2 + 2

)
ε2
(
11ε2 + 10

)
4ε
(
ε2 + 1

)
ε
(
3ε4 + 6ε2 + 4

)
ε2
(
11ε2 + 10

)
2ε
(
7ε2 + 2

)
6ε2

ε2
(
ε2 + 2

)
4ε
(
ε2 + 1

)
6ε2 4ε


4. Finally we calculate u = −BTP as u = −[ε4 + 2ε2, 4ε3 + 4ε, 6ε2, 4ε]x

8



3.4.3 Riccati equation method

1. In order to apply the Riccati equation method we need to use a Q(ε) such that Q
is positive definite.

2. We consider the simplest positive definite matrix Q = εI

3. After solving the Riccati equation for P with ε = 0.1 we obtain
u = −BTP = −[0.0488 1.3062 0.6727 1.2022]x

4. An interesting point to note is that, since there is no unique Q(ε) the control law
obtained in this method is different from the previously discussed methods

9



CHAPTER 4

Simulations

The following are the results of applying low-gain control on the system discussed ear-

lier.

4.1 Eigenstructure assignment and Lyapunov equation

method

Let us again consider the previous example

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm where

A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0


, B =



0

0

0

1


We recall that we derived the input as follows

u = −[ε4 + 2ε2, 4ε3 + 4ε, 6ε2, 4ε]x

for both the Eigenstructure assignment method as well as the Lyapunov equation method.

On applying the above feedback to the system we observe the following results. We can



observe that the required input u(t) decreases with decreasing ε while the state values

x(t) increase and take much longer to stabilize. Thus the low-gain controller helps in

dealing with input saturation by reducing the value of ε.

11
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Riccati equation Method
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CHAPTER 5

Consensus of Multi-Agent Systems

5.1 Introduction

Consensus of multi-agent systems primarily an agreement problem of multiple agents

that are required to achieve a common goal while not violating constraints. Consensus

was first introduced in (Fax and Murray, 2004) and (Olfati-Saber and Murray, 2004).

There are several applications of consensus((Cao et al., 2013)).The most common ap-

plication we know of are military applications. Tanks or airships are required to move

in formations in several situations. There are several approaches to this problem such as

the leader-referenced technique or the center-referenced technique or even the neighbor-

referenced technique. Each method has it’s challenges, the most common of which are

establishing and maintaining communication among the agents and ensuring collision

avoidance.



5.2 Unified cooperative control of multiple agents on a

sphere for different spherical patterns

5.2.1 Introduction

The co-operative control of agents on a sphere is achieved by the usage of state depen-

dent repulsion coefficients to simulate the forces of attraction and repulsion between the

agents. Control laws are designed to achieve one of three configurations: rendezvous,

uniform deployment, formation using both first and second order models.

5.2.2 Problem description

We consider n agents moving in an N-dimensional Euclidean space. We wish to con-

strain the motion of the agents to the sphere SN−1 while achieving one of our 3 desired

configurations. We denote the position of the agent i with respect to the origin as xi. The

radius of the sphere is r. Since the agent never leaves the sphere’s surface we require

that xi ≡ r.

5.2.3 Agents on a sphere

The 3 configurations of multiple agents on a sphere are defined as follows, where x is

the position vector of the agent :

1. Rendezvous
The agents are said to rendezvous if

17



limt→∞
∥∥xi − xj∥∥ = 0, limt→∞ ẋi = 0 i, j = 1, 2, . . . n

We define the average position vector of the agents as follows

x := 1
n

n∑
i=1

xi

2. Deployment
The agents are said to deploy if
limt→∞ x = 0, limt→∞ ẋi = 0 i = 1, 2, . . . n

3. Local Formation
The agents are said to deploy locally if
limt→∞‖x‖ = ro, limt→∞ẋi = 0 i = 1, 2, . . . n

5.2.4 Control Laws

The goal of the following control laws is to ensure that the agents do not leave the

surface of the sphere i.e xi ≡ r while also ensuring that the velocity vector is always

perpendicular to the position vector, i.e 〈ẋi, xi〉 ≡ 0 In this section we will summarize

the first and second order laws and briefly discuss the design.

First Order Model

ẋi = ui, i = 1, 2...n

Here ui is the control input for agent i. Since the agent is always on the surface of the

sphere ui is always perpendicular to xi

〈ui, xi〉 ≡ 0

18



Second Order Model

Taking into account Lagrangian dynamics the following law is proposed:

ẍi = τi, i = 1, 2...n

where we define τi as follows:

τi = −‖ẋi‖
2

r2
xi − kvẋi + ui

where kv is a damping constant. The above control law ensures that if the agent lies on

the sphere initially, then it constrained to lie on the sphere for all t > 0, i.e.,

‖x‖ ≡ r, 〈ẋi, xi〉 ≡ 0

Proof: Let us define v := ‖x‖2−r2
2
∈ R, then we obtain v̇ = 〈ẋi, xi〉

Let us now evaluate v̈. From the definition of τi, we obtain

〈ẍi, xi〉 = −‖ẋi‖
2‖xi‖2
r2

− kv〈ẋi, xi〉

We know that v(0) = 0, v̇(0) = 0. Substituting these in the above expression we ascer-

tain that v ≡ 0 which implies that the agent never leaves the surface of the sphere.

We can interpret the first term in τi as a centrifugal force, the second term as a linear

damping and ui as the force on agent i due to all other agents.

Control laws for both Models

We define the vector

dij = xj − 〈xi,xj〉r2
xi.

This vector is analogous to distance between agents i and j. Similarly we define a force

vector as follows:

fij = (ka − kr
‖xi−xj‖2

)dij .

We now define the control input ui as follows:

19



ui =
∑
wijfij where j ∈ Neighbours of i andwij > 0 when j ∈ Neighbours of i,

else wij = 0 and wii = 0

5.2.5 Simulation results

Depending on the values of ka and kr we achieve either rendevouz or uniform deploy-

ment or formation (local deployment).

Rendevouz

First let us see the case of Rendevouz, this occurs only when the attraction coefficient

ka is non-zero and the repulsion coefficient kr is zero. Below is the obtained final

configuration when ka is 1 and kr is zero. The radius of the sphere r = 1. The resulting

final radius of the position vector of convergence is unity as expected.

20



Figure 5.1: Rendevouz case for 5 agents, ka = 1, kr = 0

Deployment

In case of Deployment the agents repel each other and finally end up in such a way

that the radius of the final average vector is zero. This happens is 2 cases. When ka is

zero and kr > 0. Below is the obtained configuration for the kr = 1. The obtained final

radius of the average vector is 4.0901e-07 and is approximately zero.

21



Figure 5.2: Deployment case for 5 agents, ka = 0, kr = 1

However there is one more case where deployment occurs. This is when κ :=
√
kr/ka ≥ 2r.

Below is the case for ka = 1, kr = 5 The radius of the average vector is 6.133e-09.

22



Figure 5.3: Deployment case for 5 agents, ka = 1, kr = 5

Local Deployment

When κ < 2r then the agents deploy locally. The following case is for ka = 1 and

kr = 1. The radius of the average vector is 0.7657.

23



Figure 5.4: Deployment case for 5 agents, ka = 1, kr = 1

24
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