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ABSTRACT

Energy distribution companies around the world are shifting from manual meters to

smart meters which will give them continuous updates about the customer’s electricity

usage habits and the behavior of electrical energy in the network. The collected meter

measurements from all the components may be used to identify the Connectivity Model

of the distribution network up to a certain accuracy, which is an adjacency matrix show-

ing the child-parent relationship between the various meters. When the connectivity

model cannot be reconstructed from the meter data, we try to get a matrix which has the

same row space as the connectivity model.

This thesis presents the various methods used to infer the connectivity model of

power distribution network. Simulations have been performed on synthetic data as well

as semi-synthetic data to understand the various methods and to compare the accuracy

and efficiency of these methods with respect to scaling for large networks. Apart from

traditional deterministic methods, heuristic approach like Randomized algorithms is ex-

plored. The results are also tested in a Hadoop based system to understand scalability.
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CHAPTER 1

INTRODUCTION

This chapter describes the various components of a power distribution system which are

considered in this thesis, how these are interconnected, and the connectivity model that

we aim to infer from smart meter measurements. The need for connectivity model is

also described.

1.1 Power Distribution Network

Majority of Electrical Energy is generated in substations which are miles away from the

consumers. The transmission network is responsible for bringing the energy closer to

the consumers. The distribution system is the final stage in delivery of electrical energy

and is responsible for transferring power from the transmission system to individual

customers.

The distribution substation is the first component in the distribution network. It

transfers power from the transmission network to the distribution network. Its input

voltage is typically of the order of 100kV. A substation typically serves thousands of

customers. One or more 3-phase feeders are connected to each substation. The feeders

typically have voltage between 4kV to 33kV depending on the size, density and power

requirements in the region. Distribution transformers (DTs) are connected to the feeders

and transfer power to 1-10 customers. Depending on the location, transformers can

be single phase (Northern America) or 3 phase (Australia). This thesis deals with a

north American type distribution network in which the DTs tap to one line of the 3



phase feeders and hence are single phase. Also, the 3 phases of a feeder are considered

independent. That is, a particular feeder reading is the sum of all its three phases. In its

operational state, the distribution network forms a tree structure with the customers as

the leaf nodes. Fig. 1.1 shows the radial structure of the distribution network. SS is the

distribution substation, F-1 and F-2 are the two 3-phase feeders and DT-1 and DT-2 are

the single phase transformers. The consumer meters (C1- Cn) are the leaf nodes.

Figure 1.1: Radial distribution network.

1.2 The Connectivity Model

The interconnection between various elements in a network is given by its connectivity

mode (Arya et al., 2012)l. As already stated above, the three primary elements in the

distribution system are the feeder, the DT and the customers. The connectivity model
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should represent the parent-child relationship between the various components in the

network. Consider the network shown in Fig. 1.2 (a). The network consists of a feeder

(F-1), two distribution transformers (DT-1 and DT-2) and three consumers. Fig. 1.2 (b)

is the tree structured connectivity model which we aim to achieve.

Figure 1.2: A sample distribution network (a) and its connectivity model (b)

The connectivity model is generally denoted in the form of an adjacency matrix or

a constraint matrix. For the network shown in Fig. 1.2 (a), if Mi is the meter reading

of the ith meter, then by conservation of energy, the following relations hold incase of a

lossless error-free network:

M1 = M2 +M3 (1.1)

M2 = M4 +M5 (1.2)

M3 = M6 (1.3)
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A below shows these relationships in the matrix form.

A =


−1 1 1 0 0 0

0 −1 0 1 1 0

0 0 −1 0 0 1



We seek to infer the connectivity model using the smart meter readings from all the

elements in the distribution network.

1.3 Need for Connectivity Model

• Power companies use Automated Distribution Management systems to schedule
operation and maintenance of distribution network. These systems need the con-
nectivity model as one of the input.

• Connectivity models are required for performing accurate power-flow calcula-
tions which in turn are important for efficient delivery of electrical power.

• In case of catastrophes, connectivity model can be used to identify consumers
affected by grid failure and this will lead to efficient allocation of manpower.

• Connectivity models can be used for detecting thefts in distribution network.
These models are also used for energy auditing.

1.4 Contribution

As described above, the connectivity model is an important piece of information for

efficient and theft proof functioning of the power distribution network. Moreover the

connectivity model might change because of natural calamities or repairs. Existing

methods depend on signal injection techniques which rely on power line communication

require enhanced hardware (Caird, 2010). These solutions are impractical and expensive
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since they require dedicated hardware. Alternately, companies send their representatives

to manually map parts of the network, which is again wastage of manpower. This thesis

discusses alternate solutions to the problem of inferring the connectivity model. Even

if we aren’t able to extract the exact model and instead get an estimate of the rows of

the constraint matrix, we can use similar techniques to perform de-noising and fault

analysis.
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CHAPTER 2

PRE-REQUISITES

This chapter provides a short tutorial on the various mathematical preliminaries required

to understand this work.

2.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix factorization technique ubiquitous

in machine learning, signal processing, statistics etc. The SVD of an m × n matrix A

is a factorization of the form A = U
∑

Vᵀ , where U is an m × m orthogonal matrix

of left singular vectors,
∑

is an m× n diagonal matrix of singular values, and Vᵀ is an

n× n orthogonal matrix of right singular vectors. SVD can be understood as a method

of transforming correlated variables into uncorrelated variables or a method to find out

the direction in which most of the variance of the data is concentrated and hence reduce

the dimensionality of the data by concentrating only on high variance directions (Baker,

2005). As an illustration, consider the matrix

A =


−1 1 1 0 0 0

0 −1 0 1 1 0

0 0 −1 0 0 1


On performing the SVD of A, we obtain three matrices, U, S, V ᵀ. The matrix S contains

the singular values of A. Since we have only three independent variables, there are only

3 non zero singular values. We can verify that the product of U, S and V ᵀ gives us A



again. In our experiments, we have used SVD algorithm provided by Linear Algebra

PACKage (LAPACK).

U =


−0.7370 0.3280 −0.5910

0.5910 0.7370 −0.3280

0.3280 −0.5910 −0.7370



S =


2.0608 0 0 0 0 0

0 1.5984 0 0 0 0

0 0 1.0946 0 0 0



V ᵀ =



0.3576 −0.2052 0.5400 0.4022 0.4022 0.4636

−0.6444 −0.2559 −0.2403 0.4686 0.4686 −0.1495

−0.5168 0.5749 0.1334 −0.0664 −0.0664 0.6130

0.2868 0.4611 −0.2997 0.7343 −0.2657 −0.0747

0.2868 0.4611 −0.2997 −0.2657 0.7343 −0.0747

0.1592 −0.3697 −0.6733 −0.0664 −0.0664 0.6130



2.2 Principal Component Analysis

Principal Component Analysis is a technique which involves a linear transformation to

reduce the dimensionality of dataset containing possibly correlated variables into set of

values of linearly uncorrelated variables, while retaining as much variance as possible.

Thus, PCA gives a basis which is a linear combination of the existing basis and which

best re-expresses the data.
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2.2.1 Solving PCA using eigenvector decomposition (Shlens, 2014)

Let X be our data set which is an m× n matrix, where m is the number of features and

n is the number of samples. We aim to find out directions which leads to uncorrelated

data and transform our data to those directions. Hence, our transformed data should

have a diagonal covariance matrix. Our goal is to find an orthonormal matrix Q such

that the covariance matrix of Y = QX is a diagonal matrix. That is,

CY =
1

n
Y Y ᵀ (2.1)

is a diagonal matrix. In this case, the rows of Q will be called the principal components.

CY =
1

n
QXXᵀQᵀ (2.2)

CY = QCXQ
ᵀ (2.3)

Any symmetric matrix A can be written as A = EDEᵀ , where D is a diagonal matrix

and E is a matrix of eigenvectors of A. If we select the matrix Q as an eigenvector

matrix of SX , then, Q ≡ Eᵀ and Q−1 = Qᵀ. Substituting the decomposed value of CX

as described above, we have,

CY = Q(QᵀDQ)Qᵀ (2.4)

CY = (QQᵀ)D(QQᵀ) (2.5)

CY = D (2.6)
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Since this choice of Q transforms the original data into uncorrelated data, Q is the

linear transformation we were looking for originally. Summarizing the results of PCA

on a matrix X as

1. The principal component of X are the eigenvectors of CX = 1
n
XXᵀ

2. The ith diagonal value of CY is the variance of X along qi, where qi is the ith row
of Q.

2.3 Randomized Method to find SVD of a matrix

Randomized algorithms for finding out SVD of a matrix A proceed in two major steps

(Halko et al., 2009).

• Compute an approximation of the range of A using randomized techniques. That
is, find a matrix P with r(< m,n) orthonormal columns and A ≈ P Pᵀ A.

• Construct a matrix B = Pᵀ A having smaller number of columns than A. Now,
compute the SVD of B by standard methods, and thus B = S

∑
Vᵀ.

Since A ≈ P Pᵀ A = P (S
∑

Vᵀ), we have computed an approximate SVD of A
≈ U

∑
Vᵀ where U = P S.

Estimating the range of matrix A is the tricky step in this algorithm. We take a

collection random vectors ω1,ω2 ... and examine the subspace formed by the action of

A on each of these random vectors. If we form an n × l Gaussian random matrix Ω,

compute Y = A Ω, and take the QR decomposition of Y, Q R = Y, then Q is an m × l

matrix whose columns are an orthonormal basis for the range of Y.

2.3.1 Randomized SVD Algorithm

• Draw an n× k Gaussian random matrix Ω.

• Form the m× k sample matrix Y = A Ω.

9



• Form an m× k orthonormal matrix P such that Y = P R.

• Form the k × n matrix B = Q A

• Compute SVD of the smaller matrix B using existing packages like LAPACK’s
SVD: B = Û

∑
V

• Form the matrix U = P Û
where, X represents the complex conjugate of a matrix X.

(Halko et al., 2009) have proved strong bounds on the accuracy of randomized SVD

when the singular values decays rapidly, which is the case in our application.
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CHAPTER 3

PROBLEM FORMULATION AND SOLUTION

Our aim is to obtain the tree connectivity model of distribution network using the meter

readings. Since the meter readings will have some measurement error because of sensor

noise, we first consider the error free case and then apply our solution for different

noise levels. This thesis presents two different approaches for doing the same. One is

formulating a problem similar to subset sum problem and other is identifying the model

using SVD or PCA. The second approach is studied in detail and experiments have been

carried on synthetic as well as semi synthetic data using the same. In this study, we also

try to identify the number of independent meter readings (consumer meter readings)

using the meter data alone.

3.1 Modified Subset-sum problem

Consider ideal meters and an ideal network in which there are no losses. Applying

conservation of energy at any DT, its meter reading will be the sum of the consumer

meters. Similarly, the meter reading of any feeder will be the sum of all the independent

components under it.

In the subset-sum problem, we are given a finite set S ⊂ N and a target t ∈ N. The

problem asks whether there exists a subset S’ ∈ S such that sum of the S’ adds up to

t. The subset-sum problem is NP-complete (Cormen et al., 2001). (Arya et al., 2013)

have defined a modified version of this problem which factors in the decimal values of

the meter readings called the Leaf connectivity(LC) problem. Leaf connectivity problem



takes as input a time series of load measurements from a set of leaf meters l and a non-

leaf meter s and determines the subset l′ ∈ l of leaf meters present in the subtree rooted

at s. This is represented as l′ = LC(s, l).

Let n be the total number of leaf meters and m be the time for which the mea-

surements are taken. Let sk and Lkj denote the loads measured by the non-leaf me-

ter s and leaf meter j in the interval k respectively, 1 ≤ k ≤ m, 1 ≤ j ≤ n. Now let

A = [Lkj]m×ndenote the matrix of all leaf meter measurements and b = [sj]m×1 denote

the vector of source meter measurements. Each row of A corresponds to one time series

measurement and each column of A corresponds to load measurements from one meter

over multiple time intervals. Our aim is to identify the subset of leaf meters l′ ∈ l present

in the subtree rooted at s. We define an indicator variable x(j) such that x(j) = 1 if leaf

is in the subtree rooted at s, otherwise x(j) = 0.

Let X = [xj]n×1. Using conservation of energy

b = AX + e (3.1)

where e = [εk]m×1 is the error in the meter readings. The leaf connectivity problem is

to determine the unknown binary vector X ∈ {0, 1}n given A, b, and unknown e. The

LC(s, l) problem is called with each DT and Feeder meter reading as s and all the meter

readings l. This will give us the set of leaf meters under the given DT or feeder. The

matrix A, also known as the data matrix, is a collection of time series of meter readings

arranged in different rows. Each column represents the reading for a particular meter.

We can pose an 0-1 Integer linear programming (ILP) with zero objective function.

min 0ᵀX

s.t. AX = b

xj ∈ {0, 1}, 1 ≤ j ≤ n

(3.2)

12



As an illustration, consider the meter readings shown in Table 3.1 corresponding to

the network in Fig. 1.2.

time M1 M2 M3 M4 M5 M6
1 5.4 3 2.4 1.6 1.4 2.4
2 4.8 3.2 1.6 1.7 1.5 1.6
3 5.1 3.1 2 2.1 1.0 2.0

Table 3.1: Meter readings for three time instants for the network shown in Fig. 1.2

Here, M1 is the feeder meter, M2 and M3 are the DT meters and M4,M5 and M6

are the customer meters. For the above data, if we call different instances of LC(s,l)

we can get full connectivity information of the network. Table 3.2 shows the different

instances of LC problem which will give us full connectivity information. ILP solver

from MATLAB was used to solve the above equation. If the number of readings is much

less than the number of leaf meter readings, then the solution to the above optimization

equation isn’t unique.

s l (leaf nodes) Connectivity Information Obtained
M1 M4,M5,M6 Customer Feeder
M2 M4,M5,M6 Customer DT
M3 M4,M5,M6 Customer DT
M1 M2,M3 DT Feeder

Table 3.2: Instances of leaf connectivity problem

Incase of noisy measurements (Arya et al., 2013) proposes two approaches, with

and without sparsity based regularization. Moreover the regularization can be L1 or L2.

minX ‖ b− AX ‖1
xj ∈ {0, 1}n / xj ∈ [0, 1]n

(3.3)
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minX ‖ b− AX ‖22
xj ∈ {0, 1}n / xj ∈ [0, 1]n

(3.4)

minX λ
∑

j xj+ ‖ b− AX ‖1
xj ∈ {0, 1}n / xj ∈ [0, 1]n

(3.5)

minX λ
∑

j xj+ ‖ b− AX ‖22
xj ∈ {0, 1}n / xj ∈ [0, 1]n

(3.6)

Equation 3.3 and 3.4 are without sparsity based regularization, while 3.5 and 3.6 are

with sparsity based regularization.

3.2 Model identification using SVD/PCA

In the previous formulation, apart from the meter data, we need more information like

whether a given reading is from the consumer or the transformer. Also, we need the

number of consumers in the network. This information is not always available. Hence

we formulate another problem to infer the network.

Let x(t) : n × 1 be a vector of true meter measurements(error free) for a time

instant. Let A be the connectivity model for the tree structured distribution network. As

described in the subset sum problem formulation, only n−m of these meter readings are

independent, so the connectivity model is an n×m matrix. The term constraint model

is also used interchangeably with connectivity model in data reconciliation literature.

So, the following relation holds:

Ax(t) = 0 (3.7)

14



Since, the connectivity model is constant with time unless the structure of the network

changes, if X : n×N is a collection of meter reading for N time samples, then extending

3.1, we have

AX = 0 (3.8)

If we compare this formulation with the LC(s, l) formulation, we observe that the roles

of A and X matrix are switched. In this formulation, the A is the constraint matrix and

X is the data matrix. Since the vectors x(t) span an n−m dimensional subspace of Rn,

the row space of A is an m dimensional subspace of Rn using Rank-nullity theorem.

Moreover, these two subspaces are orthogonal to each other. Let us represent the vector

space spanned by x(t) as Vx and the orthogonal subspace spanned by Row space of A

as V ⊥x . So, our problem reduces to finding m linearly independent vectors in the row

space of A. The covariance matrix of the meter data is given by

SX =
1

N
XXT (3.9)

We can write the SVD of the scaled matrix as

svd(
X√
N

) = U1S1V
ᵀ
1 + U2S2V

ᵀ
2 (3.10)

where, U1 are the orthogonal vectors corresponding to the n−m largest eigenvalues of

SX while U2 are the orthogonal eigenvectors corresponding to the remaining m eigen-

values of SX . As stated earlier, the eigenvectors corresponding to U2 are orthogonal to

X and hence gives an estimate of rows of A matrix. That is, an estimate of A matrix is

Â = Uᵀ
2 (3.11)

The estimate of constraint matrix obtained is optimal in the least square sense. The

estimate of the constraint matrix derived using PCA can differ from the true constraint

15



matrix form (that we desire) by a rotation matrix. As the sample size goes to infinity,

the estimated and true constraint matrices are related as

Â = RA (3.12)

where R is some non-singular matrix.

3.2.1 Comparing Estimated model with original model

Since the estimated constraint matrix and the true constraint matrix differ by a constraint

matrix, only the row spaces of the true and estimated constraint matrices can be com-

pared. The criterion used to measure similarity between the two row spaces as given in

(Narasimhan and Shah, 2008) and (Narasimhan and Bhatt, 2015)are used. These are:

• the subspace angle between the row subspaces of the estimated and true constraint
matrices.

• the sum of orthogonal distances of the row vectors of the estimated constraint
matrix from the subspace defined by the rows of the true constraint matrix denoted
by α, where,

α =
∑
i

αi (3.13)

where
αi =‖ Âi − ÂiA

ᵀ(AAᵀ)−1A ‖ (3.14)

where Âi are the rows of the estimated constraint matrix.

• Element by element comparison between the regression matrix relating the de-
pendent and independent variables of the original and estimated matrix.
The meter readings are divided into dependent and independent variables. The
leaf measurements are the independent readings. The number of dependent vari-
ables should be chosen equal to the number of constraints. The constraint given
in equation 3.7 is rewritten as

ADxD + AIxI = 0 (3.15)
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where, AD and AI are the sub-matrices of A corresponding to dependent and
independent variables, respectively. the regression matrix relating the dependent
variables to the independent variables can be obtained as

xD = −A−1D AIxI = RxI (3.16)

Similarly, the estimated regression matrix can be obtained from the estimated
constraint matrix as

R̂ = −Â−1D ÂI (3.17)

An element by element comparison can be made between R and R̂ .

It has been observed that the subspace angle is not a very reliable quantity to com-

pare the two matrices. We observe that when the number of samples is more than the

number of independent variables, the element wise comparison of R and R̂ defined

above is very accurate. For other cases, sum of orthogonal distances provides good

insight about the distance between true and estimated constraint matrix.

3.2.2 Identifying model order

Till now we have assumed that we know the model order or the number of consumers,

which is generally the case. In the leaf connectivity formulation, this information is ab-

solutely necessary along with labels whether a given meter reading is from a leaf meter

(consumer) or non leaf meter. But in case we don’t have labels which tell us the num-

ber of consumer meters, we can still estimate the model order accurately provided our

measurements aren’t too noisy. Generally a SCREE plot is used to estimate the model

order but in case of Smart meter data, due to the range of singular value, using a SCREE

plot becomes challenging. In such a scenario, we have used a modified SCREE plot,

plotting logarithm of the singular values with their index. As shown later in the simula-

tions, these perform accurately in the low noise case and when the number of elements

aren’t too high. We look for steep descent in the value of logarithm of the singular
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value. There might be multiple steep descents in the plot. Generally the first descent

is because of the fact the first principal component contains the maximum variance and

hence its singular value is high compared to the other singular values. Hence we neglect

the first steep descent in case of multiple descents. In case there aren’t steep descent, we

can do curve fitting to identify three regions, namely the sharp descent which contains

variables having the maximum variance, then a straight line having low gradient and

then another curve having a high gradient. The last curve will tell us the number of

dependent components.
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CHAPTER 4

SIMULATION ON SYNTHETIC DATA

This chapter describes the experimental setup and the assumptions in generating the

data to infer the network using techniques described in the previous chapter.

4.1 Generating test data

There are a number of smart meter manufacturers and distribution companies. The noise

levels in these smart meters, albeit following some standards vary depending on the

meter condition. Similarly, the size of distribution network depends on the population

density and power requirements of the area. Once the size is fixed, multiple instances

are generated with different noise levels.

We have generated data for network of different sizes. The small network consists of

around 20 components, the medium sized network consists of around 300 components

and the large network consists of around 3000 components. Random graphs of the

above mentioned sizes are used as the distribution network.

Technical standards define requirements for accuracy for measuring of power in

different operation modes. In Europe and other non-European countries these are usu-

ally the standards IEC 62053-24 and, for the American market, the standards of the

ANSI C12 series. The accepted accuracy is ±1.5% for most smart meters (VACUUM-

SCHMELZE, 2012). So in the data generating process, we have assumed a gaussian

noise model with 6 σ = 3% of the error free value. However, since the meter accuracy



may decrease over the course of usage, we have considered higher noise levels too for

testing our solution.

4.2 Modified Subset-sum method

We use the problem formulation described in section 3.1. We use this technique only

for small sized network to verify its results. We simulate a distribution network with

15 consumer meters, 4 DTs and 2 feeders. We first consider noise less meters and then

consider meters with upto±1.5% accuracy. We use ILP solver provided by MATLABTM

to solve the noise less LC problem given by equation 3.2. We call 4 instances of LC,

one for each DT and feeder with all the consumer meters as the leaf meters and one

with the DTs as the leaf meter. This gives us the complete network. We observe that the

number of meter readings should be atleast close to the total number of meters to obtain

any useful solution.

Next we try to solve the noisy LC problem. We use the formulation given in equation

3.3 and use CPLEX (put source) to solve this equation. This formulation also gives a

matrix which is close to the original constraint matrix. However we don’t perform any

further computations using this method because these formulations are NP hard and we

need to know the labels of meters to be able to get the connectivity model.

4.3 Model identification using SVD

In this section, we use the meter measurements without labels; that is, we don’t have the

information whether a particular meter reading is from a leaf node or a non leaf node.

First we infer the model order and then we obtain the connectivity model.
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4.3.1 Identifying model order

In the previous set of experiments, we have assumed that we know the number of leaf

meters(customer meters) in the tree network. These leaf meters are independent meter

readings. When calculating the SVD of a matrix, only the independent components will

have a non zero singular value. Hence, we can identify the number of customers by

plotting the singular values in decreasing order. Such a plot is called a SCREE plot.

However in our case, since the number of independent variables are high particularly in

the large network and also the difference between the lower singular values being very

close due to noise, we plot the logarithm of the singular value and identify the model

order. The model order can be approximated by looking at the sharp drop in the values

of log(singular value). The model order can be predicted with high accuracy in case of

error free network as the singular values will be very close to 0 for all the dependent

variables. In our experiments, for the noiseless case, Fig. 4.1 shows the change in value

of log(singular values). The number of leaf readings (300 and 3000 respectively for

medium and large network) can be obtained accurately.

Figure 4.2 and 4.3 shows the modified SCREE plots for medium and large networks

respectively with varying noise levels. We observe that as the noise levels increase,

the accuracy of obtaining the model order decreases as expected. For noise level with

σ = 0.5 (the operational accuracy set by metering standards), we can obtain an accurate

estimate of the model order.

4.3.2 Inferring connectivity model

As described in section 3.2, we aim to infer the connectivity model. We have tried two

approaches, one is calculating the exact SVD using standard linear algebra library LA-

PACK and another using Randomized SVD as described in [Enter reference randsvd].
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Figure 4.1: Identifying model order in noiseless case using modified SCREE plot

Figure 4.2: Identifying model order in medium sized noisy network
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Figure 4.3: Identifying model order in large noisy network

Fig 4.4 shows the plot of α as a function of the number of meter measurements in case

of no loss condition for medium and large network. We observe that once the number

of measurements equals the number of independent variables in the network (number of

leaf nodes), we have obtained the network completely.

Fig 4.5 and 4.6 shows the similar results in case of noisy data. All these results use

SVD provided by LAPACK library.

4.3.3 Inferring connectivity model using Randomized SVD

In section 2.3, we described a randomized algorithm for calculating the SVD of a ma-

trix. In case of randomized SVD, we find the SVD of a much smaller matrix and hence

it is expected to give results faster. In the first step of the algorithm, we try to estimate

the row space of the matrix. In case of smaller matrices, the computation time saved by

computing the SVD of a smaller matrix is negated by the computations in estimating

the row space. Hence we use this algorithm for large datasets only. In this section, we
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Figure 4.4: Inferring connectivity model for no noise case

Figure 4.5: Inferring meter measurements for Medium network in case of noisy network
for different noise levels
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Figure 4.6: Inferring meter measurements for Large network in case of noisy network
for varying noise levels
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compare the performance of randomized SVD against LAPACK SVD based on compu-

tation time and accuracy. Fig 4.7 shows variation of α in case of LAPACK SVD and

randomized SVD. We have used a reduced dimension of 1000 to compute randomized

SVD. We observe that randomized SVD matches the performance of deterministic al-

gorithms very closely. Fig 4.8 shows the plot of computation time. We observe that

asymptotically, randomized algorithm performs better than normal SVD in computing

the constraint matrix.

Figure 4.7: Comparing performance of Randomized SVD and LAPACK SVD to infer
connectivity model

4.3.4 SVD using Apache SparkTM

Apache SparkTM is a cluster computing framework. Its machine learning library (ML-

lib) has the SVD algorithm which we use for this experiment. Spark is run in pseudo-

distributed mode in these set of experiments. For installing Spark, refer (Prabeesh,

2014) and (Geusebroek, 2014). We run Spark in pseudo distributed mode since we

don’t want to deal with network ping etc. We use an Intel i7 processor for performing
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Figure 4.8: Comparison of computation time between Randomized SVD and LAPACK
SVD

our experiments. We convert our data into an instance of Resilient Distributed Dataset

(RDD) and use Spark to perform the necessary computation. Fig 4.9 shows a compari-

son in accuracy of inferring connectivity model by using Spark distributed algorithm and

LAPACK library. Since SPARK uses standard deterministic SVD algorithm, there is no

loss of accuracy while inferring the constraint matrix. Moreover the resilient distributed

database can handle network failure and store larger dataset which can’t be loaded in

the RAM of traditional systems. We have used Spark only on the large network meter

readings since the initial setup time and overhead neutralizes the time saved by Spark.

Fig 4.10 compares the computation time required by Spark with randomized SVD and

LAPACK SVD. We observe that Spark performs slightly better than traditional SVD on

large data. This effect will be more dominant if the data size is even larger and when

the data cannot be loaded into RAM.
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Figure 4.9: Comparing performance of Spark SVD and LAPACK SVD to infer connec-
tivity model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

Number of meter readings

C
om

pu
ta

tio
n 

T
im

e

 

 

LAPACK SVD
Randomized SVD
Spark SVD

Figure 4.10: Comparison of computation time between Spark SVD, Randomized SVD
and LAPACK SVD
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CHAPTER 5

SIMULATION ON SEMI-SYNTHETIC DATA

5.1 Description of the dataset

In the previous chapters, the meter readings we used were generated using pseudo-

random number generators. In this chapter, we test our solution on semi-synthetic data.

(Bristol City Council, 2014) has published anonymous household meter readings from

5 buildings. The summary of the data can be seen in Table 5.1. As seen in the previous

section, if the noise levels are within the specifications, the amount of information added

by increasing the number of meter readings once the number of readings has reached the

number of independent components is very less. Since we have assumed that the meter

readings are spatially indpendent, we have broken down the large number of meter

readings from a single meter into readings from multiple meters for shorter duration.

The rearranged data is described in Table 5.2.

Building No. No. of meteres No. of days of meter readings
1 3 362 , 331, 365
2 1 337
3 1 360
4 1 348
5 1 354

Table 5.1: Bristol City Council Smart Meter Readings

As in the previous chapter, we consider two cases, lossy-erroneous meter and non

lossy error free meters. We assume each building to be under one distribution tran-

former. In the case of erroneous meters, we have considered the standard deviation of



Building No. No. of meters No. of days of meter readings
1 35 30
2 11 30
3 12 30
4 11 30
5 11 30

Table 5.2: Rearranged Meter readings from Bristol City Council

the meters to be 0.5% of its mean value. The noise is assumed to be gaussian white

noise.

5.2 Model Identification using SVD

5.2.1 Inferring Model order

As described in Section 3.2.2, we first identify the model order from the meter readings.

Figure 5.1 shows the modified SCREE plots for the dataset with and without noise.

Gaussian noise is generated with σ = 0.5% of the mean meter reading, which translates

to an accuracy of 1.5%. The blue colored plot shows the descent of logarithm of singular

values in case of noise free network, while the red colored plot shows shows descent for

noisy network with σ = 0.5% of the mean meter reading. From the plot, we infer that

there are around 80 consumer meters in the network. In case of noisy network, obtaining

accurate results is difficult. However the modified SCREE plot gives a close estimate.

For the next step, we assume that the number of consumer meters are 80.
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Figure 5.1: Modified SCREE plot to infer model order

5.2.2 Building connectivity model

In Section 3.2, we described how to obtain the constraint matrix from meter data. We

apply the same procedure on this dataset. First we consider the no noise case and then

we consider the case of noisy network. We perform SVD on the dataset while varying

the number of meter readings. This will give us an estimate of the number of readings

required to obtain a solution which can be used to perform further calculations. We have

used to metrics to guess the accuracy of the estimate. These metrics have been defined

section 3.2.1. Fig 5.2 shows these two metrics in no noise condition. The top plot

shows the variation of α as a function of number of meter readings. We observe that

as the number of readings increase, α decreases until the number of readings equals the

number of components. We identify the complete network with maximum accuracy and

any subsequent meter reading doesn’t add any information. The same pattern is seen

31



in the bottom plot showing distance between the estimated regression matrix and the

actual regression matrix. These two matrices are supposed to be same element wise. So

we compare their norm distance. Once again, as the number of meter readings approach

the number of independent components, maximum reconstruction is done.

Figure 5.2: Variation of α and ‖ R − R̂ ‖ (estimated regression matrix from original
matrix) with no of meter readings for noise-free network

Fig 5.3 shows these two metrics in noisy condition. The top plot shows the variation

of α as a function of number of meter readings. Similar to the earlier plot, as the number

of observations increases, α decreases. But since its noisy data, we cannot infer the exact

model, but with more data, we reach a good estimate of the network. The same trend is

followed by ‖ R− R̂ ‖. We also observe that given the size of dataset, we aren’t able to

32



infer a very accurate connectivity model.

Figure 5.3: Variation of α and ‖ R − R̂ ‖ (estimated regression matrix from original
matrix) with no of meter readings for noisy network

So, we get back to our original dataset described in Table 5.1 and modify it such that

we have more instances of meter readings as opposed to the last time(1440 readings).

Our new modified dataset is described in Table 5.3. In this dataset, we have 100 days

of meter reading for each meter giving us 4800 meter readings for each meter. Also

notice that the number of independent meters have also decreased which should give us

a better estimate. Once again we perform SVD on this dataset and plot our observations.

These observations are plotted in Fig 5.4. We observe that as we increase the number

of meter readings, our estimate of the constraint matrix gets more accurate. We are able

to extract the constraint model from the data.
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Building No. No. of meteres No. of days of meter readings
1 9 100
2 3 100
3 3 100
4 3 100
5 3 100

Table 5.3: Rearranged Meter readings from Bristol City Council with large number of
time samples

Figure 5.4: Variation of α and ‖ R − R̂ ‖ (estimated regression matrix from original
matrix) with no of meter readings for noisy network with more meter read-
ings.
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CHAPTER 6

Conclusion and Future Scope

In chapter 4 and chapter 5, we saw SVD being used to identify the connectivity model

of power distribution system. In most of the cases, we could only get a matrix con-

taining the same row space as the original matrix. This information can be used to

perform Fault diagnosis in the distribution network (Yoon and MacGregor, 2000). We

compared three different implementations of SVD to calculate the connectivity model

with respect to computation time and accuracy of results. We saw that the deterministic

SVD algorithm provided by LAPACK is very accurate but has limitations in the form of

computation speed and dependence on RAM. We also observed that randomized SVD

can perform as good as deterministic SVD with high probability. It has a lower com-

putation time then the first SVD. Finally we used an instance of Spark to compute the

SVD in distributed setting. We only used pseudo distributed mode in order to ignore

network delays. It outperformed LAPACK SVD in computation time while giving sim-

ilar performance. For larger datasets, it will perform even better given its asymptotically

improving computation time and ability to handle extremely large datasets.

The above methodologies are also tested on real dataset provided by (Bristol City

Council, 2014). The network provided by the above methodologies are very close to the

original network thus validating these techniques.

Given the increasing size of power networks and the continuous improvement in

storage technology, we expect smart meter data to play a much bigger role. An ideal

network identification method should be able to make use of this increasing availability

of data. A distributed computing based algorithm, which uses randomness to reduce the



size of computation would be an ideal choice. Such an algorithm can be developed and

tested in future. Also, fault diagnosis systems for linear process can be tested on Spark

which will reduce the computation time and help in making real time decisions.
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