
High Level Synthesis using Conditional Decision

Diagrams

A project report

submitted by

NISHANTH P. P.

in partial fulfilment of the requirements

for the award of the degrees of

BACHELOR & MASTER OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2015

THESIS CERTIFICATE

This is to certify that the thesis entitled High Level Synthesis using Con-

ditional Decision Diagrams, submitted by Nishanth P. P., to the Indian

Institute of Technology, Madras, for the award of the degrees of Bachelor &

Master of Technology, is a bonafide record of the research work carried out by

him under our supervision. The contents of this thesis, in full or in parts, have not

been submitted to any other Institute or University for the award of any degree

or diploma.

Dr. V. Kamakoti

Research Guide

Professor

Dept. of Computer Science and Engineering

IIT-Madras, 600 036

Place: Chennai

Date:

Dr. Nitin Chandrachoodan

Research Guide

Associate Professor

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGMENTS

I am indebtedly grateful to Dr. V. Kamakoti for his guidance throughout the

project. His invaluable support and constant motivation have proved indispens-

able for the completion of the project. I would also like to thank Dr. Nitin Chan-

drachoodan for providing necessary help and support throughout the project.

I would like to thank Vikas Chauhan for working together with me in bringing

this project to fruition. I would also like to thank all the members of RISE lab,

especially Neel Gala, Arjun Menon and Arnab Roy, for helping and guiding us

throughout the project.

I would like to thank my family and friends for their invaluable support, constant

encouragement and unconditional love. I am eternally grateful to them for the

same.

i

ABSTRACT

Decision diagrams are compact graphical representations of Boolean functions

mainly used for applications in hardware design, simulation, and formal verifica-

tion. This report proposes a new type of decision diagram called the Conditional

Decision Diagram (CDD), based on the functionally complete, efficient and par-

tially unique Assignment Decision Diagram. We propose an end-to-end solution

using CDDs that can generate an optimized gate-level netlist directly from an in-

put hardware description in Chisel, an embedded domain-specific language (DSL)

in Scala. Our proposed CDDs retain the unique capabilities of ADDs which are

not offered by traditional representations, namely low syntactic variance and es-

timation of layout quality metrics during synthesis. We propose an algorithm to

convert an input ADD netlist to its CDD representation and using a few rules

we have developed, generate a minimized CDD representation and convert it back

into the ADD netlist. We can hence optimize the number of ADDs in the hardware

design.

ii

Contents

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES vi

GLOSSARY vii

ABBREVIATIONS viii

1 Introduction ix

2 Assignment Decision Diagrams xi

2.1 Introduction . xi

2.2 High-level synthesis using ADDs . xiii

2.3 Representing ADDs in Chisel . xiv

2.3.1 ADD representation . xv

2.3.2 The when-elsewhen-otherwise construct xv

2.3.3 The switch-is construct . xvi

2.3.4 The Mux construct . xvii

iii

2.3.5 The MuxCase construct . xviii

2.3.6 The MuxLookUp construct xviii

3 Conditional Decision Diagrams xx

3.1 Introduction . xx

3.2 Logic Minimization . xxii

3.2.1 Scope for minimization . xxii

3.3 Minimization Rules . xxvii

3.3.1 Rule 1 . xxvii

3.3.2 Rule 2 . xxviii

3.3.3 Rule 3 . xxviii

3.3.4 Rule 4 . xxix

3.3.5 Rule 5 . xxix

3.3.6 Rule 6 . xxx

3.3.7 Rule 7 . xxx

3.3.8 Rule 8 . xxx

3.4 Minimization Algorithm . xxxi

3.4.1 Working of the algorithm . xxxi

4 Conclusions and Future Work xxxvi

REFERENCES xxxviii

iv

List of Figures

2.1 The Assignment Decision Diagram: (a) FSMD model, (b) the ADD

[1] . xii

2.2 A general high-level synthesis approach [1]. xiii

2.3 High-level synthesis using Assignment Decision Diagrams [1]. xiv

2.4 A 2-input Assignment Decision Diagram xv

2.5 ADD realization of Chisel when-elsewhen-otherwise and switch-is

constructs . xvi

2.6 ADD realization of Chisel Mux, MuxCase and MuxLookUp constructsxvii

3.1 (a) & (b) A single input ADD and its corresponding CDD; (c) &

(d) A 2-input ADD and its corresponding CDD; (e) & (f) A 3-input

ADD and its corresponding CDD xxi

3.2 Our high-level synthesis approach. xxii

3.3 ADD realization of the example code. xxiv

3.4 Gates realized using ADDs along with their CDD representation. . xxv

3.5 The ADD netlist of the combinatorial part of Figure 3.3. xxvi

3.6 The CDD representation of the ADD netlist in Figure 3.5. xxvii

3.7 Rule 1 . xxviii

3.8 Rule 2 . xxviii

v

3.9 Rule 3 . xxviii

3.10 Rule 4 . xxix

3.11 Rule 5 . xxix

3.12 Rule 6 . xxx

3.13 Rule 7 . xxx

3.14 Rule 8 . xxx

3.15 CDD obtained after applying Rule 5 over the CDD in Figure 3.6. . xxxiii

3.16 Branching at the child of root, node c, by applying Rule 8 over the

CDD in Figure 3.15. xxxiii

3.17 Branching at the child of node c, node b, by applying Rule 8 over

the CDD in Figure 3.16. xxxiii

3.18 Resulting CDD after applying Rule 4 over the CDD in Figure 3.17. xxxiv

3.19 Output CDD which will be converted to the ADD netlist. xxxiv

3.20 Simplified ADD netlist. ADD count: 8. xxxv

3.21 Karnaugh map of F . xxxv

vi

GLOSSARY

Chisel An open-source hardware construction language developed at

the University of California at Berkeley that supports ad-

vanced hardware design using highly parametrized generators

and layered domain-specific hardware languages.

Logic

minimization

The problem of obtaining the smallest logic circuit (Boolean

formula) that represents a given Boolean function or truth

table

vii

ABBREVIATIONS

AST Abstract Syntax Tree

ADD Assignment Decision Diagram

BDD Binary Decision Diagram

CDD Conditional Decision Diagram

CHISEL Constructing Hardware in a Scala-Embedded Language

DSL Domain-Specific Language

FSMD Finite-State Machine with Datapath

LUT Look-Up Table

ROCDD Reduced Ordered Conditional Decision Diagram

viii

Chapter 1

Introduction

Today’s VLSI technology enables us to build large, highly complex systems con-

taining billions of transistors on a single chip. To exploit this technology, designers

need sophisticated Computer Aided Design tools that enable them to efficiently

manage billions of transistors.

In the past few years, logic synthesis has become an integral part of the design

process, leading to an evolution in methodology from “capture-and-simulate” to

“describe-and-synthesize”. The new methodology’s advantage is that it allows us

to describe a design in a purely behavioral form, devoid of implementation details,

and then to synthesize the design structure with CAD tools.

Designers can apply the “describe-and-synthesize” methodology on various levels

of abstraction, namely the gate level, FSM level and RTL level with flow charts

and data-flow graphs. High-level synthesis is a sequence of tasks that transforms

a behavioral representation into an RTL design. The design consists of functional

units such as ALUs and multipliers, storage units such as memories and register

files, and interconnection units such as multiplexers and buses.

The main advantages of high-level synthesis are productivity gains and better de-

sign space exploration. It achieves productivity gains by moving the design process

to higher abstraction levels, where designers can specify, model, verify, synthesize,

simulate, and debug designs in lesser time. The automation provided by high-level

synthesis ensures a more systematic and efficient search of the large design spaces

ix

created by the shift to higher abstraction levels.

In this project, we are trying to build an end-to-end solution to generate a final

gate-level netlist that would automatically generate optimal, syntactically invari-

ant hardware from a given description in Chisel (a Hardware Construction Lan-

guage based on Scala being developed by University of California at Berkeley).

We use Assignment Decision Diagrams proposed in [1] to ensure syntactic in-

variance and convert the resulting netlist into our proposed CDD representation.

We have successfully tested converting sample Chisel programs into ADD repre-

sentation using a compiler phase which modifies the AST of the Scala compiler

using a plugin and verified the functional equivalence of the hardware designs with

and without using ADDs using FormalPro. We also tried to convert a five-stage

RISC-V processor code written in Chisel to its ADD representation, and have

fixed numerous bugs in the compiler plugin. In order to minimize the number of

ADDs in the design, we run optimizations at the high level of abstraction provided

by CDD using our algorithm and then convert the minimized CDD representation

back into the ADD netlist. The resulting netlist is guaranteed to have lesser, if

not, the same number of ADDs as compared to the input netlist, while providing

the same functionality.

The rest of this report is organized as follows: Chapter 2 explains the concept of

ADDs and why they were used for high-level synthesis of the hardware design.

Chapter 3 introduces the concept of CDDs and the algorithm used to convert the

ADD netlist to a CDD representation, minimize the CDD and convert it back to

the ADD netlist.

x

Chapter 2

Assignment Decision Diagrams

This chapter summarizes the concept of Assignment Decision Diagrams proposed

by Gajski et al. in [1] and explains its advantages pertaining to high-level synthesis.

This chapter contains some content verbatim from the above mentioned paper.

2.1 Introduction

The ADD representation was developed in order to encapsulate the functionality

of a described hardware in a simple, precise and unique manner. These three

objectives are treated with utmost importance because of the following reasons:

• The representation’s uniqueness allows synthesis tools to be independent of

syntactic variances usually present in the input description. The ADD should

be able to depict the most parallel representation of the input description to

satisfy the uniqueness property.

• The representation should also consist of parts that reflect the description’s

semantics instead of syntactic constructs. Each and every part of the repre-

sentation should have no direct relationships with language constructs. This

is referred to as the preciseness of the representation.

xi

• A representation is simple if it consists of a few number of different object

types and relationships between each object type. Such representations can

simplify synthesis algorithms because the algorithms have to manage small

number of objects. Since most of the synthesis algorithms are topology

graph based, the representation for a synthesis system has to be a form of

topology graph. A simple representation is thus, a graph that consists of a

small number of different types of nodes and edges.

Digital systems can be classified into sequential and and combinatorial sys-

tems. Functionality of the sequential and and the combinatorial systems can be

described by the Finite-State Machine and Datapath model (FSMD) as shown in

Figure 2.1(a).

Figure 2.1: The Assignment Decision Diagram: (a) FSMD model, (b) the ADD
[1]

Note that in the case of a combinatorial system, storage units will not be present

in the model. The FSMD model can be viewed as assignments of values to storage

units (either the storage units in the datapath or the state variable) and output

xii

ports based on the state of the system along with certain conditions. These con-

ditional assignments are represented in the Assignment Decision Diagram shown

in Figure 2.1(b). The state variable is represented in the ADD in the same way

as any other variable.

2.2 High-level synthesis using ADDs

The first task in high-level synthesis is to compile the input description into an

internal representation that is usually in a form of a topological graph. The com-

pilation is usually accomplished by a one-to-one mapping of the input description

into the internal representation, i.e., each language construct in the description

is realized with a particular topology of nodes in the representation, and hence

different descriptions could lead to disparate representations, even if they are se-

mantically equivalent. Compilers generate graphs with different topologies for

different descriptions, and even though the graphs themselves may be semanti-

cally the same, synthesis algorithms, which are topology based, would produce

different hardware for different topologies, as illustrated in Figure 2.2.

Figure 2.2: A general high-level synthesis approach [1].

ADDs represent different descriptions having the same semantics in a “unique”

topology. They use the most parallel, and not the most sequential representation

of the input description to be the “unique” representation because it does not

contain implicit sequentiality found in the description. Thus, ADDs can depict

the most parallel representation of any given input description. Traditional rep-

xiii

resentations can not provide such capability because their constructs inherit the

sequentiality from the description.

After defining ADDs, we develop a compilation scheme from the input descrip-

tion into the new representation. The compilation transforms/converts a given

description into its most parallel representation and, at the same time, resolves

the discrepancies that are caused by the ordering and grouping of conditional

branches and/or computations. As a result, different descriptions that contain

such discrepancies can be transformed into a “unique” graph so that the result

obtained from synthesis tasks is consistent. The ADD approach is illustrated in

Figure 2.3.

Figure 2.3: High-level synthesis using Assignment Decision Diagrams [1].

Our ultimate objective is to design all combination parts of a hardware description

using only ADDs and completely devoid of gates, since the ADD is functionally

complete and can replace any gate in the hardware design.

2.3 Representing ADDs in Chisel

In this section, we explain the structure of an Assignment Decision Diagram and

the equation that governs it, along with a few well known Chisel constructs rep-

resented as ADDs, namely when-elsewhen-otherwise, switch, mux, muxcase and

muxlookup.

xiv

2.3.1 ADD representation

The Assignment Decision Diagram is a MUX-like structure with conditions having

a priority order. A 2-input ADD has two inputs i1, i2, two conditions C1, C2, with

C1 having higher priority over C2, and a default value, D, as shown in Figure 2.4.

Figure 2.4: A 2-input Assignment Decision Diagram

The output is assigned one of the inputs or the default value depending on the

values of the conditions, given by

Output = C1i1 + C1C2i2 + C1C2D (2.1)

2.3.2 The when-elsewhen-otherwise construct

The when-elsewhen-otherwise construct is used in the behavioral description to

produce sequential condition-branching effect. If the condition in the when part

is true, the operations accompanying it are executed, if not, then the condition

in the elsewhen part is checked. If it is true, the operations associated with that

elsewhen condition are executed, and if not, the next elsewhen condition is checked

and so on. Optionally, there can exist an otherwise condition whose operations

are executed only if all the when and elsewhen conditions don’t hold true.

/* Chisel excerpt of when-elsewhen-otherwise */

xv

when (io.opcode === UInt(0)) {

io.output := io.a + io.b // ADD

} .elsewhen (io.opcode === UInt(1)) {

io.output := io.a - io.b // SUB

} .otherwise {

io.output := io.a // PASS A

}

The ADD representation of the above description is given in Figure 2.5. Here,

the first condition is C1 ≡ (io.opcode === UInt(0)) and the second condition is

C2 ≡ (io.opcode === UInt(1)). The inputs are i1 ≡ io.a+io.b and i2 ≡ io.a−io.b

respectively and the default value, D ≡ io.a. The output is given by io.output.

Figure 2.5: ADD realization of Chisel when-elsewhen-otherwise and switch-is con-
structs

2.3.3 The switch-is construct

The switch construct is similar to the when-elsewhen-otherwise construct and

provides multi-way branching capability to the sequential description. Operations

in a branch are executed if the accompanying condition evaluates to true.

/* Chisel excerpt of switch-is */

xvi

io.output := io.a // PASS A

switch (io.opcode) {

is (UInt(0)) {

io.output := io.a + io.b // ADD

} is (UInt(1)) {

io.output := io.a - io.b // SUB

}

}

The ADD representation of the above description is the same as that of when, i.e.

Figure 2.5. The hardware is hence bound to be the same, since the excerpts are

performing the same function.

2.3.4 The Mux construct

Chisel has the Mux function in-built. It takes in as input a Boolean select, a value

to be assigned to the output when select is True and a value to be assigned to

the output when select is False.

/* Chisel excerpt of Mux */

io.output := Mux((io.opcode === UInt(0)), io.a,

Mux((io.opcode === UInt(1)), io.b,

io.c)) // Default

Figure 2.6: ADD realization of Chisel Mux, MuxCase and MuxLookUp constructs

xvii

The ADD representation of the above description is shown in Figure 2.6. Here,

the first condition is C1 ≡ (io.opcode === UInt(0)) and C2 ≡ (io.opcode ===

UInt(1)). The inputs are i1 ≡ io.a and i2 ≡ io.b respectively and the default

value, D ≡ io.c. The output is given by io.output.

2.3.5 The MuxCase construct

Chisel provides MuxCase which is an n-way Mux where each condition/value is

represented as a tuple in a Scala array and where MuxCase can be translated into

a Mux expression as shown below:

MuxCase(default, Array(c1 -> a, c2 -> b, ...)) is equivalent to

Mux(c1, a, Mux(c2, b, Mux(..., default)))

/* Chisel excerpt of MuxCase */

io.output := MuxCase(io.c, Array(// Default

(io.opcode === UInt(0)) -> io.a,

(io.opcode === UInt(1)) -> io.b

))

The ADD representation of the above description is the same as that of Mux

shown in Figure 2.6.

2.3.6 The MuxLookUp construct

Chisel also provides MuxLookup which is an n-way indexed multiplexer. It can

also be translated into a Mux expression as shown below:

MuxLookup(idx, default, Array(v1 -> a, v2 -> b, ...)) is equivalent to

xviii

Mux((idx===v1), a, Mux((idx===v2), b, Mux(..., default)))

/* Chisel excerpt of MuxLookUp */

io.output := MuxLookUp(io.opcode, io.c, Array(// Default

UInt(0) -> io.a,

UInt(1) -> io.b))

The ADD representation of the above description is again the same as that of Mux

shown in Figure 2.6.

xix

Chapter 3

Conditional Decision Diagrams

This chapter proposes a new type of data structure based on the Assignment

Decision Diagram called the Conditional Decision Diagram, in order to optimize

the number of ADDs at the same abstraction level as the ADD in a given hardware

design.

3.1 Introduction

The Conditional Decision Diagram is based on the Assignment Decision Diagram

and hence has all of its fundamental properties. It is modeled as a Directed Acyclic

Graph with edges connecting the output to the input conditions and values. Fig-

ure 3.1(a) shows the ADD and Figure 3.1(b) shows the corresponding CDD. For

simplicity, we ignore the default value of the ADD and use our algorithm, the

CDD logic minimizer, only on those CDDs which have the same value for default.

Also, since we are considering only those CDDs which have the same default value,

Equation 2.1 reduces to

Output = C1V1 + C1C2V2 (3.1)

where V1, V2 are the values to be assigned to the output and C1 and C2 are the

xx

conditions, with C1 having higher priority over C2.

Figure 3.1: (a) & (b) A single input ADD and its corresponding CDD; (c) & (d)
A 2-input ADD and its corresponding CDD; (e) & (f) A 3-input ADD and its
corresponding CDD

Our objective is to integrate the CDD logic minimizer into the Chisel compiler

such that it takes in as input the ADD netlist generated by our plugin and sends

as output the minimized ADD netlist back to the plugin, which then sends the

optimized netlist in the required format to the Scala compiler to generate Verilog

code corresponding to the input description in Chisel. We use five rules to achieve

the logic minimization, while preserving the functionality of the CDDs while ap-

plying each rule. The functionality of the modified netlist is thus guaranteed to be

the same as that of the input netlist. The rules are explained in detail in the fol-

lowing section. Our high-level synthesis approach is illustrated in Figure 3.2 below.

xxi

Figure 3.2: Our high-level synthesis approach.

The Conditional Decision Diagrams heavily depend on the variable ordering chosen

and the degrees of minimization can vary greatly depending on it. But for a fixed

ordering, CDDs are canonical, i.e. for a certain expression with a certain chosen

variable ordering, we can only have one CDD representing it.

3.2 Logic Minimization

We need to first look at where minimizations can be performed over an ADD

netlist and then we will show our approach to perform the minimization.

3.2.1 Scope for minimization

Consider an excerpt of code from a Chisel program implemented using ADDs.

/* Chisel excerpt for logic minimization */

io.output := io.e // Default

when (io.opcodea === UInt(0)) {

when (io.opcodeb === UInt(1)) {

when (io.opcodec != UInt(2)) {

when (io.opcoded === UInt(3)) {

io.output := io.b - io.c

} .elsewhen (io.opcoded != UInt(3)) {

io.output := io.a + io.b

xxii

}

}

} .elsewhen (io.opcodeb != UInt(1)) {

when (io.opcodec === UInt(2)) {

when (io.opcoded != UInt(3)) {

io.output := io.a + io.b

}

}

}

} .elsewhen (io.opcodea != UInt(0)) {

when (io.opcodeb === UInt(1)) {

when (io.opcodec === UInt(2)) {

io.output := io.a - io.c

}

} .elsewhen (io.opcodeb != UInt(1)) {

when (io.opcodec != UInt(2)) {

when (io.opcoded === UInt(3)) {

io.output := io.a + io.b

}

}

}

}

io.output := io.e // Default

when (io.opcodea === UInt(0)) {

when (io.opcodeb === UInt(1)) {

when (io.opcodec === UInt(2)) {

when (io.opcoded === UInt(3)) {

io.output := io.a - io.b

} .elsewhen (io.opcoded != UInt(3)) {

io.output := io.a + io.b

}

xxiii

}

}

} .elsewhen (io.opcodea != UInt(0)) {

when (io.opcodeb === UInt(1)) {

when (io.opcodec != UInt(2)) {

io.output := io.a + io.b

}

}

}

The same output is being assigned different values depending on the conditions

and it has the same default value in both instances shown above. The ADD

representation of the above excerpt would be as shown in Figure 3.3.

Figure 3.3: ADD realization of the example code.

Note that we are realizing the combinatorial part on the left using just ADDs and

not gates. This is where we can use logic minimization. A few basic gates and

xxiv

their CDD representations are given in Figure 3.4 below.

Figure 3.4: Gates realized using ADDs along with their CDD representation.

xxv

Using these CDD representations, we can prepare the ADD netlist for the code

excerpt realized in Figure 3.3. The netlist is shown below in Figure 3.5.

Let a ≡ (io.opcodea === UInt(0)), b ≡ (io.opcodeb === UInt(1)), c ≡

(io.opcodec === UInt(2)) and d ≡ (io.opcoded === UInt(3)). Now we have

to minimize the Boolean equation

F = abc̄d̄ + ab̄cd̄ + āb̄c̄d + ābc̄ + abcd̄

Figure 3.5: The ADD netlist of the combinatorial part of Figure 3.3.

xxvi

Figure 3.6: The CDD representation of the ADD netlist in Figure 3.5.

3.3 Minimization Rules

We have developed eight rules using which we perform the logic minimization.

They can be applied on CDDs assigning the same value to the output while having

the same value for default. We define an ROCDD, Reduced Ordered Conditional

Decision Diagram, as a decision diagram in which a particular ordering of liter-

als has been chosen for the minterms of the boolean expression, along with the

following rules being applied over it in order to simplify the Conditional Decision

Diagram. From now onwards, we shall use the term CDD to refer to ROCDD.

3.3.1 Rule 1

If a CDD is assigning the same value to the output and the conditions are com-

plements of each other, then the CDD can be removed and replaced by that value

alone, without any loss in functionality.

xxvii

Figure 3.7: Rule 1

3.3.2 Rule 2

If we have a CDD where both the conditions and values are repeated more than

once, we replace the CDD with just one instance of the condition-value pair.

Figure 3.8: Rule 2

3.3.3 Rule 3

If an CDD is performing an AND operation over two OR CDDs which have the

same conditions but one of them is complemented in one of the OR CDDs, the

three CDDs can be replaced by an ADD having just the condition that was not

complemented.

Figure 3.9: Rule 3

xxviii

3.3.4 Rule 4

If a CDD is performing an OR operation over two AND CDDs which have the

same conditions but one of them is complemented in one of the AND CDDs, the

three CDDs can be replaced by an ADD having just the condition that was not

complemented.

Figure 3.10: Rule 4

3.3.5 Rule 5

If a CDD is performing an OR operation over another CDD which is also per-

forming OR (nested OR), the input size of the parent CDD can be increased by

one less than the number of children of the child CDD, in order to accommodate

the children of the sibling CDD, and the child CDD can be removed. This helps

remove nested ORs so there is no unnecessary hierarchy involved during simplifi-

cation. After simplifying, all the OR gates having input size more than two can

be replaced by nested ORs before converting the CDDs back to the ADD netlist.

Figure 3.11: Rule 5

xxix

3.3.6 Rule 6

We can remove all CDDs succeeding a condition if it is a tautology. Since there

exists a priority order for the conditions, we cannot remove the preceding ones.

Figure 3.12: Rule 6

3.3.7 Rule 7

The boolean redundancy rule is used to simplify CDDs having conditions as shown

in Figure 3.13.

Figure 3.13: Rule 7

3.3.8 Rule 8

We use this rule to branch out at each node, in order to simplify the process of

finding minterms which are one literal away from each other.

Figure 3.14: Rule 8

xxx

3.4 Minimization Algorithm

The ADD netlist, N , that we are provided contains, in each line L, the combina-

tions of conditions, C assigning an output variable V a particular value for that

combination of conditions, v and the default value, D, also for that combination

of conditions. The algorithm is given in Algorithm 1.

3.4.1 Working of the algorithm

The first part of the algorithm is to identify the combinations of conditions for

which the same output variable is being assigned the same value, along with the

same value being assigned as default for that combination of conditions. Once

we have all the combinations of conditions, we store them in groups H which are

identified uniquely by the output variable, the value it is assigned and the default

value. Each group H contains minterms of conditions in SOP form. For each H,

we can minimize the number of ADDs used to implement it. We first choose a

group Hi, add missing literals using a procedure called Reduce so that we have all

the literals in each minterm, choose a certain ordering of variables and construct

trees for each minterm. We then construct an OR-Tree which has all the minterm-

trees together. This OR-Tree is unique for a particular H. We then apply our

CDD rules over the OR-Tree in a procedure similar to technology mapping. The

CDD obtained after applying all the rules will be having lesser, if not, the same

number of minterms as the input ADD, depending on the variable ordering.

To demonstrate with an example, let us consider Figure 3.6. Once we have this

as the input, we apply Rule 5 to obtain the CDD shown in Figure 3.15.

xxxi

N ≡ (L,C, V, v,D)

Algorithm MinCDD(N)

for each line L ∈ N do

for each Vi ∈ V do

for each vj ∈ vVi
do

for each Dk ∈ Dvj do
Hm ←Hm ∪ L

end

end

end

end

for each Hm ∈ H do

BuildCDD(Hm)

end

Procedure BuildCDD(H)

for each Ci ∈ CH do
CH ← CH − Ci

CH ← CH ∪Reduce(Ci, Literals(CH))

end

while nterms(minimizedCDD(H)) > nterms(inputCDD) do

O = RandomOrdering(Literals(CH))

for each Cj ∈ CH do

SkewedTree(Cj, O)← BuildSkewedTree(Cj, O)

ORTree(CH)← ORTree(CH) ∪ SkewedTree(Cj, O))

end

Map(RootORTree(CH))

end

Return minimizedCDD(H)

Procedure Map(node n)

if n 6= leafnode then

while no more rules can be applied do
Technology Mapping using Rules starting from node

end

Map(Children of n)

end

Algorithm 1: CDD minimization algorithm
xxxii

Figure 3.15: CDD obtained after applying Rule 5 over the CDD in Figure 3.6.

After this, we apply Rule 8 over the root node and subsequent nodes until we

reach the leaf nodes. The subsequent figures show the branching at each node.

Figure 3.16: Branching at the child of root, node c, by applying Rule 8 over the
CDD in Figure 3.15.

Figure 3.17: Branching at the child of node c, node b, by applying Rule 8 over the
CDD in Figure 3.16.

Now since the we reach the leaf nodes, we stop branching and apply Rule 4 on

each of the branched trees, resulting in Figure 3.18.

xxxiii

Figure 3.18: Resulting CDD after applying Rule 4 over the CDD in Figure 3.17.

Since no more rules can be applied, we combine the minterm trees using the inverse

of Rule 8 i.e. performing OR all the minterm trees and generating back the ADD

netlist as shown in Figure 3.19.

Figure 3.19: Output CDD which will be converted to the ADD netlist.

The resulting CDD obtained can be converted to the ADD netlist by a simple

parsing of the nodes in the tree. In the example shown here, the result is optimal,

as can be seen from a Karnaugh Map. The simplified ADD netlist is shown in

Figure 3.20 below.

xxxiv

Figure 3.20: Simplified ADD netlist. ADD count: 8.

It only contains 8 ADDs as compared to 18 in the input. The simplified boolean

expression is now

F = acd̄ + āc̄d + bc̄d̄

which is the optimal solution as can be seen from the Karnaugh map in Figure 3.21

below.

Figure 3.21: Karnaugh map of F .

xxxv

Chapter 4

Conclusions and Future Work

This report has proposed an new type of decision diagram called the Conditional

Decision Diagram to minimize the number of Assignment Decision Diagrams used

in a hardware design. We have described how to incorporate it in the ADD netlist

and have also shown how the minimization can be performed. This was introduced

so as to minimize the number of ADDs used in the hardware design, at the same

level of abstraction as the ADD. We have shown that even though the result may

not always be optimal and depends on the variable ordering we choose for the

CDD, the result obtained for any Boolean function we are provided as input from

the ADD representation is guaranteed to be minimized and in the worst case, the

same as that of the input.

The properties of this data structure have to be explored in depth and its perfor-

mance needs to be compared with conventional data structures like BDDs (Binary

Decision Diagrams) proposed in [3] and [5]. The algorithm needs to be imple-

mented in the Scala compiler plugin to automate the minimization process and

its performance on a substantial number of examples, including the RISC-V cores

needs to be benchmarked against BDDs.

xxxvi

REFERENCES

[1] Viraphol Chaiyakul and Daniel D. Gajski. “Assignment Decision Diagram

for High-Level Synthesis”. In Technical Report, Information and Computer

Science, University of California, Irvine, pages 92–103, Dec. 12, 1992.

[2] Viraphol Chaiyakul, Daniel D. Gajski, and Loganath Ramachandran. “High-

level Transformations for Minimizing Syntactic Variances”. In Proceedings of

the 30th International Design Automation Conference, DAC ’93, pages 413–

418, New York, NY, USA, 1993. ACM.

[3] Randal E Bryant. “Graph-based algorithms for boolean function manipula-

tion”. Computers, IEEE Transactions on, 100(8):677–691, 1986.

[4] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Waterman, R. Avizienis,

J. Wawrzynek, and K. Asanovic. “Chisel: Constructing hardware in a Scala

embedded language”. In Design Automation Conference (DAC), 2012 49th

ACM/EDAC/IEEE, pages 1212–1221, June 2012.

[5] S.B. Akers. “Binary Decision Diagrams”. Computers, IEEE Transactions on,

C-27(6):509–516, June 1978.

[6] Indradeep Ghosh and Masahiro Fujita. “Automatic Test Pattern Generation

for Functional RTL Circuits Using Assignment Decision Diagrams”. In Pro-

ceedings of the 37th Annual Design Automation Conference, DAC ’00, pages

43–48, New York, NY, USA, 2000. ACM.

[7] Liang Zhang, M. Hsiao, and I. Ghosh. “Automatic design validation framework

xxxvii

for HDL descriptions via RTL ATPG”. In 12th Asian Test Symposium, (ATS)

2003, pages 148–153, Nov 2003.

[8] D. Karchmer and D.S. Stellenberg. “Using assignment decision diagrams with

control nodes for sequential review during behavioral simulation”, February 24

2004. US Patent 6,697,773.

[9] S.K.S. Hari, V.V.R. Konda, V. Kamakoti, V.M. Vedula, and K.S. Maneper-

ambil. “Automatic Constraint Based Test Generation for Behavioral HDL

Models”. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 16(4):408–421, April 2008.

xxxviii

