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ABSTRACT

Engineering drawings play a key and irreplaceable role in the field of engineer-

ing design and production. They provide a graphical means of understanding the

information (dimensions and geometry) required for manufacturing a certain ma-

chine part.

Machinery and infrastructure requirements are constantly evolving and often

involve making changes to existing engineering designs. One of the fundamental

steps in applying these changes is by introducing minor changes in existing engi-

neering designs. Although documentation of these changes is prescribed practice,

engineers often do not not document them. Since these changes are not readily

available to the manufacturer, he has to go through all the dimensioning details in

order to manufacture the new product which increases the time of delivery.

In order to avoid this delay, another intermediate employee documents the

changes between the two design versions by manually comparing each and every

dimension of the two drawings. Such a manual method of change detection is a

very error-prone, slow and cumbersome task. This thesis is an attempt at propos-

ing an algorithm to automatically detect the changes and document the same.
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CHAPTER 1

Introduction

The continuous progression of technology is reflected in the change of machinery,

infrastructures and various engineering equipment. To adapt to changing technol-

ogy, engineering designs are often modified. In general, only few modifications

are made to the original design to obtain the new design. If these changes are

readily available to the manufacturer, he only needs to introduce these few modi-

fications to his previous settings to manufacture the new product.

In the absence of a list of changes between the two design versions, he has

to go through each and every dimension in order to manufacture the new product,

which delays the process of manufacturing by a significant amount of time. While

engineers are expected to document changes, engineers do not usually document

these changes. An employee, called the checker , is the one who manually checks

each and every dimension and locates the changes.

The typical sequence of steps during the production cycle is as follows:

1. Engineer 1 prepares Design Version 1 (V1)

2. Manufacturer installs a setup to manufacture components based on V1

3. Engineer 2 modifies V1 to produce Design Version 2 (V2)

4. An employee (the checker) inspects the two versions of the design and pre-

pares a list of changes from V1 to V2.

5. Manufacturer implements changes to his initial settings based on the list of

changes he receives.



This process of detecting changes is a very tedious and an error-prone process

and also requires a considerable amount of manual involvement. To remove this

delay and render the manual intervention unnecessary, it is required to have an

automated system which compares two drawings efficiently. Currently, Computer

Aided Drawings (CAD) is used extensively in the process of creating engineering

drawings and manufacturing the products. Though these automate a lot of steps

involved in the creation of the drawings, the tools for comparing two drawings

efficiently are not readily available.

A typical engineering drawing is shown in Fig. 1.1. Fig. 1.2 is obtained by

modifying some of the dimensions of the engineering drawing shown in Fig. 1.1

and the dimensions in the green bounding boxes indicate the changed dimensions.

There are some image processing tools which are based on image subtraction

currently available to compare such drawings. Fig. 1.3 shows the output when the

drawings shown in Fig. 1.1 and 1.2 are compared using one such tool. From the

Fig. 1.3, it is evident that such tools are not very useful in detecting the changes

since they work only when the two drawings are perfectly aligned, which need

not be the general case. This thesis presents an automated algorithm to compare

two engineering drawings. The goal is to propose an algorithm the will be robust

to alignment differences between the two engineering drawings.

It is to be noted that any change in the dimension is reflected in the corre-

sponding label marked in the drawing. The labels are nothing but the textual

content present in the drawing. Hence, comparison of two drawings can be done

by comparing the labels of the two drawings. The first step here is to separate the

graphics and the textual part in the drawing. Most of the text extraction algorithms

proposed in the literature are based on the texture and colour based features. These

algorithms fail in this case as we deal with only binary images.
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Figure 1.1: A typical engineering drawing.
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Figure 1.2: Engineering drawing obtained by modifying the drawing shown in
Fig. 1.1. The dimensions which are modified are shown in green
bounding boxes.
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Figure 1.3: Result of comparison of the drawings shown in Fig. 1.1 and Fig. 1.2.
Black lines indicate the unchanged regions, red indicates the deleted
regions and the green indicates the added regions.
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Some algorithms which are used for text extraction in documents use the

knowledge of the layout of the document, but in this case no such information is

available. Fletcher and Kasturi [1] proposed an algorithm for text string separation

from mixed text/graphics images. It is based on generation of connected compo-

nents and application of Hough Transform to group together the components in

logical character strings. Lai and Kasturi [2] proposed a system for detecting di-

mensioning sets in engineering drawings. Even this method is based on connected

component generation and later composing them into strings which are associated

with dimensioning lines. Lu [3] presented a rule-based method for text/graphics

separation based on features of text and graphics in engineering drawings. In this

thesis, we propose a method based on connected components generation similar

to the method mentioned in [1].

Each drawing will have multiple sub drawings corresponding to various views

of the object. Before comparing, the sub-drawings in the two drawings have to

be associated with each other. Since we deal with binary images, texture or in-

tensity information is not available; it is the shape of the drawings that can be

exploited in order to achieve the matching. We propose a method in which match-

ing is achieved by using SIFT-features [4]. Since SIFT fails on binary images, the

engineering drawings are blurred before the SIFT features are obtained.

Once the sub-drawing associations are known, the labels of two corresponding

sub-drawings are compared with each other to find the difference between the two

drawings. Every label of a sub-drawing is matched with every label in the corre-

sponding sub-drawing of the other drawing. If a label does not have any match,

then it is reported as a change. Initially, the number of characters in the label,

Euler number [5] and dimensional similarity are used to reduce the search space

for matching. The labels are finally matched using a Hausdorff based comparison

6



[6] measure. Flowchart for the proposed method is shown in the Fig. 1.4 and the

detailed explanation is provided in the following chapters.

Separate the textual part
from the graphics part

Form label strings from
the extracted characters

Segment the graphics
part into sub-drawings

Match the corresponding
segments in two drawings

Associate the labels to the graph-
ics part of the sub-drawings

Compare the corresponding
sub-drawings to get matching labels

Highlight all the labels
which do not have a match

Figure 1.4: Flowchart of the proposed method.

1.1 Organization of Thesis

Chapter 2 deals with text and graphics separation using connected component

generation and characteristics of the textual information in engineering drawings

7



to classify the components into text and graphics.

Chapter 3 explains a procedure followed to segment the given drawing into

sub-drawings corresponding to various views of the component. It also explains

how to obtain SIFT descriptors and use the same to match binary images.

Chapter 4 discusses about grouping the dimensioning information to the re-

spective segments. It deals with grouping of text logically to form labels and then

assigning the labels and the dimensioning lines to the corresponding segments

based on distance transform [7].

Chapter 5 deals with the comparison of the labels of the corresponding sub

drawings, thereby performing the comparison of engineering drawings. A series

of parameters like number of characters in the label, Euler number and dimensions

of the characters in the label reduce the space for searching the possible matching

labels for each label. Finally, a Hausdorff Distance based character receealgorithm

is used to compare the labels.

Chapter 6 presents some experimental results and discusses the issues in-

volved.

Chapter 7 concludes the thesis.
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CHAPTER 2

Text and Graphics

Any engineering drawing will consist of a lot of dimensioning information in the

form of labels and labeling lines. A drawing can be viewed as comprising of two

parts : the drawing portion (which consists of the component drawing and labeling

lines) and the textual portion (which consists of all text characters). In order to

efficiently interpret engineering drawings, it is necessary to separate the textual

portion from the graphics part. This chapter explains a technique to separate the

text labels from the drawing portion.

2.1 Text Extraction

Text extraction is a crucial step in separating the text and graphics as most of the

dimensioning information present in the drawing is textual. Once this textual part

is removed from the drawing, only the labeling lines have to be eliminated to ob-

tain the graphics part. The first step in the algorithm is to find all the connected

components in the drawing using an 8-connected component algorithm [8]. Of-

ten the size of the text characters is much smaller when compared to that of the

graphics portion. This property can be used as a classifier to distinguish the text

and graphics.

Firstly, the connected components are to be generated. They are obtained by

grouping all the 8-connected black pixels against the white background. These

connected components are analyzed to know the characteristics of the text in the



(a)

(b)

Figure 2.1: (a) Indicates the histogram of width of the connected components and,
(b) indicates the histogram of length of the connected components.
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Figure 2.2: Sequence of Steps to extract text components

drawing. From the histogram of length and width of connected components, the

average range in which the characters occur is evident. Figs. 2.1a and 2.1b in-

dicate the histogram of width and length of the connected components extracted

from the drawing shown in Fig. 1.1. From these histograms it is evident that all

the characters have length and width less than 55 pixels. Based on this range,

all the characters can be extracted from the drawing to obtain an image which

contains only the text. Using only this constraint will group even dashed lines as

characters, since the dashed lines generally are thin and are shorter than charac-

ters. Hence, an additional constraint such as length of the line if the the width is

too small can be included accordingly to eliminate the dashed lines. The entire

sequence of steps can be seen in Fig. 2.2.
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Figure 2.3: Result of text extraction on the drawing shown in Fig. 1.1.
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2.2 Elimination of Dimensioning Lines

After all the text is extracted from the drawing, all that remains is the graphics

part and the labeling lines as shown in Fig. 2.4. In general, the thickness used to

draw labeling lines is less than that used for the drawing itself and typically all

labeling lines are thin. Thus, morphological operations can be used to eliminate

the labeling lines from the drawing.

2.2.1 Thinning

Thinning is a morphological operation which is similar to erosion [9]. Through

thinning, binary regions can be reduced to their center lines also called skeletons

[10]. This is a composition of morphological operations and works as follows:

• Perform erosion with the mask given below
0 1 0

1 1 1

0 1 0


• Remove pixels such that it does not split the region. The following masks

can be used for this purpose.
0 0 0

1 1 1

0 0 0

 ,


0 1 0

0 1 0

0 1 0


• Remove pixels such that endpoints are retained using the following masks.

0 0 0

0 1 1

0 0 0

 ,


0 1 0

0 1 0

0 0 0

 ,


0 0 0

1 1 0

0 0 0

 ,


0 0 0

0 1 0

0 1 0


13



• The above steps are performed iteratively till there are no changes in the

image.

In the previous section, the method to extract the text was mentioned. After

removing the the textual part from the drawing, all that remains is the labeling

lines and graphics. Fig. 2.4 shows the residue after removing the text content

from the drawing shown in Fig. 1.1. We perform thinning operation on the residue

image shown in Fig. 2.4 to get the skeleton of the image in Fig. 2.5. If the

labeling lines are thinner than the lines used in the drawing portion, we can use

erosions and image subtractions to remove the labeling lines. Since certain images

have labeling lines and drawing lines of the same thickness, we adopt a different

approach as detailed below:

• Apply thinning morphological operation to the residue image (Fig. 2.4) to

obtain the image skeleton in Fig. 2.5.

• Apply a morphological operation called filling [11] to the image skeleton to

obtain the filled image as in Fig. 2.6

• Apply the distance transform [12] on the image obtained in Fig. 2.6

• During the thinning operation all the dimensioning lines would have had

line thickness of 1 pixel. Hence, we filter out all lines with distance trans-

form value of 1. In order to not lose any pixels belonging to the graphics

part, we flag all pixels with distance transform value of 1 that are adjacent to

a pixel with a higher distance transform value. Such pixels are not removed

and are retained.

The resulting image is shown in Fig. 2.7 has all the dimensioning lines removed.

The shaded textboxes can be removed later during the segmentation stage.

14



Figure 2.4: Image after the removal of textual information from the drawing
shown in Fig. 1.1.

15



Figure 2.5: Effect of thinning on the drawing shown in Fig. 2.4.
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Figure 2.6: Effect of filling on the drawing shown in Fig. 2.5.
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Figure 2.7: Filled Drawing after removal of dimensioning lines.
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CHAPTER 3

Segmentation and Matching

3.1 Segmentation

In an engineering drawing, there will generally be several sub drawings which can

be various views of the same part or can be of different parts or a combination of

both. In order to analyze the engineering drawing, segmentation is an essential

step.

Considering the three sub-drawings in the engineering drawing shown in Fig.

1.1, we find that the outer boundary of the graphics part of each of the sub draw-

ings is a closed contour. This is valid for all the sub drawings in any engineering

drawing. To begin with, we consider the filled image after removal of dimension-

ing lines in Fig. 2.7. Our objective is to eliminate the shaded textboxes and obtain

the segment masks of the three segments.

Since the filled segments are the components with the largest areas, we first

filter out all components with areas below a threshold. Next, we selectively filter

out shaded rectangles (ie., shaded textboxes) and shaded circles (ie. text circles).

For these two types of shapes, we look at the text density inside these components.

If the text density is above a particular threshold, we filter them out once again.

At the end of this process, we obtain the segment mask which contains just the

filled contours of the three segments of the drawing as seen in Fig. 3.1.



Figure 3.1: Segment Mask obtained after removing non-segment filled compo-
nents.
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3.2 SIFT

SIFT (Scale Invariant Feature Transform) is an image descriptor for image-based

matching developed by David Lowe [4]. The SIFT descriptor is invariant to trans-

lations, rotations and scaling in the image domain and robust to moderate perspec-

tive transformation and illumination variations. The algorithm by David Lowe

[4], designed for gray scale images, has been very useful in the field of object

recognition, image stitching, video tracking and image matching. Other related

image feature descriptors which are inspired from SIFT are Histogram of Gradi-

ents (HoG) [13], Gradient Location and Orientation Histogram (GLOH) [14] and

Speeded Up Robust Features (SURF) [15].

In this chapter we discuss only the SIFT-descriptor. The first stage identifies

the key locations in the scale space by looking for locations that are extrema of a

Difference of Gaussian (DoG) function [16]. Each point is then used to generate

a feature vector that describes the local image region. The detailed algorithm for

obtaining the SIFT descriptor is explained below:

3.2.1 Detection of scale-space extrema

This is the first step of the algorithm. It is efficiently implemented by using Dif-

ference of Gaussians [16, 17] to identify potential interest points that are invariant

to scale and orientation.

Octaves and Scales

Several octaves of the image are generated. Each octave’s image size is half of the

previous one. The number of octaves and scales depend on the size of the original

21



image. It is to be noted that in David Lowe’s algorithm [4], the number of octaves

is restricted to 3.

Blurring

Blurring of an image is plainly convolution with a Gaussian kernel,i.e.,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.1)

where,

• L is the blurred image

• G is the Gaussian kernel

• I is the input image

• σ is the scale factor which decides the amount of blur.

Difference of Gaussians (DoG)

Two consecutive images in the octave are picked up and one is subtracted from

the other. Then the next consecutive pair is taken and the process repeats. This is

done for all octaves. This is a scale invariant version of Laplacian of Gaussians.

The results are minima and maxima which are very good key features.
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3.2.2 Keypoint Localization

Locate extrema in DoG images

The first step here is to coarsely locate the extrema. To accomplish this, at every

pixel check all the neighboring pixels and if that location was an extrema or not.

X is marked as a keypoint if it is greatest or smallest of all its 26 neighbors in the

current scale, the scale above and below.

Locating sub-pixel extrema

The extrema points obtained previously are only approximate locations. The ac-

tual extrema points will generally be between pixel locations. Hence, mathemati-

cally the sub-pixel extrema points should be obtained.

The Taylor series expansion of the scale-space function, D(x,y,σ)T , shifted so

that the origin is at a sample pixel can be expanded as below:

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (3.2)

where D and its derivatives are evaluated at the sample pixel and x = (x, y, σ)T

is the offset from this point. The location of the extremum x̂ is obtained by taking

the derivative of the above equation with respect to x and equating it to zero,

which gives

x̂ = −∂
2D−1

∂x2

∂D

∂x
(3.3)

These sub-pixel locations increase the chances of matching and stability. The

same procedure is followed over all octaves.
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3.2.3 Removing edges and low contrast regions

The keypoints obtained from the previous step are too many. Some of them lie

along the edge and some of them do not have enough contrast. These are are not

very useful and hence must be eliminated.

Eliminating low contrast features

Low contrast feature is equivalent to low intensity pixel in a DoG image. If the

magnitude of intensity at the extrema points is lower than a certain threshold, then

they are discarded.

Removing edges

At every keypoint, two gradients are calculated, both being perpendicular to each

other. If the keypoint is in a flat region, then both the gradients are small; else

if it is in an edge region one of the gradients will be small and the other will

be large. Only if the keypoint lies in the corner region will both the gradients

be high; only such points are to be extracted [18]. This can be mathematically

achieved by analyzing the Hessian matrix in a manner similar to Harris corner

detection [19]. Here, ratio of the two eigenvalues are used instead of gradients to

determine whether the point is a corner or not.

3.2.4 Assigning keypoint orientation

In this step, orientation is assigned to each keypoint. This orientation ensures

rotation invariance. In order to assign the orientation, gradient magnitudes and

direction are collected around each key point. The most prominent direction is
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later assigned as the orientation for that keypoint. For each Gaussian smoothed

image L, gradient magnitudes and directions are calculated as,

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

(3.4)

θ(x, y) = tan−1
[
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

]
(3.5)

where m(x, y) is the gradient magnitude and θ(x, y) is the direction at any key-

point (x, y).

The orientation histogram is formed from the gradients of sample points around

each keypoint. This histogram contains 30 bins covering 360 degrees range. Each

sample added to the histogram is weighted according to its gradient magnitude

and the Gaussian-weighted circular window with a σ that is 1.5 times that of the

scale of the keypoint.

The highest peak in the histogram is detected and any other local peak with

magnitude atleast 80% of the highest peak is used to create another keypoint with

that orientation.

Within each 4×4 window, gradient magnitudes and orientations are calculated.

These orientations are put into 8-bin histogram. Unlike the previous histogram,

the amount added here depends on the distance from the keypoint. This can be

done using a Gaussian weighing function.

Thus, for every keypoint there will be 16 histograms, each with 8 bins, thus

giving a 128-dimensional descriptor.
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3.3 Matching Segments

In section 3.1, segmentation of an engineering drawing was explained. Given

two such drawings, the sub-drawings in one has to be matched with the other.

In order to achieve this, the matching points across the two drawings have to be

determined. A SIFT-based matching algorithm [4] is adopted to do the same.

3.3.1 Finding matched keypoints

First the feature vectors for both the engineering drawings are obtained. For every

descriptor in the first image, its Euclidean distance from every other descriptor in

the second image is calculated. A match is accepted only if its distance from the

descriptor is less than certain fraction of the distance to the second closest match.

Thus a match is accepted when the ratio of its distance to the distance with the

second closest match is less than a certain threshold. A threshold of 0.6 gives a

fair amount of matching keypoints. This is iterated for every descriptor of the first

image.

For computational efficiency, dot products between the descriptors is com-

puted instead of finding the Euclidean distances. Ratio of the angle between the

descriptors is close to the ratio of the Euclidean distances for smaller angles. The

angle between the descriptors is calculated by taking the inverse cosine of the dot

product between the descriptors.

3.3.2 SIFT for binary images

Since engineering drawings are all binary images, the gradient information in

these images is not good enough for the SIFT algorithm to work. To get good
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Figure 3.2: Result of SIFT on the graphics part of the drawings shown in Figs. 1.1
and 1.2.

descriptors for these drawings, they have to be converted into gray scale images

so that there is considerable amount of gradient information. We apply Gaussian

blur to these drawings and the intensities are scaled accordingly to get gray scale

images. Experimentally, a Gaussian kernel with standard deviation 0.3 gives the

best results.

To match the corresponding segments of one drawing with the other, only the

graphics part of the drawing has to be considered. Hence the text and graphics

are separated out from the engineering drawings shown in the Figs. 1.1 and 1.2.

The graphics part of the drawings are blurred as mentioned previously. These

drawings are generally very large in size, of the order of 8000 × 6000. It is com-

putationally very expensive to find descriptors for such large images. Hence, the

blurred drawings are scaled down by a factor of 4. The SIFT feature descriptors

are now obtained for these scaled and blurred drawings. Fig. 3.2 shows the result
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of finding the match between the graphics part of the drawings shown in Figs. 1.1

and 1.2.

3.3.3 Finding the match matrix

Once the SIFT-descriptors are available for an image pair, we need some measure

across the segments of two drawings to find an appropriate match for each of

the segments. Hence, we construct a match matrix which gives a measure of

how much each segment matches with the other. For every segment of the first

drawing, the number of matched keypoints with each of the other segment of the

second drawing is calculated. Thus, every sub-drawing of the first drawing will

have a vector of numbers indicating the number of matched keypoints with every

sub-drawing of the second drawing. All these vectors are stacked to get the Match

matrix.

3.3.4 Finding the matched segment

If the number of segments in the first drawing is N1 and the number of segments

in the second is N2, then the size of the Match matrix will be N1 ×N2. From

the maximum value in this matrix, we get the indices corresponding to the best

matched segments. The row index corresponds to the segment in the first drawing

and the column index corresponds to its matched segment in the second drawing.

For every segment in a drawing there can be only one matched segment in the

other. This implies that once the first matched pair is obtained, then those seg-

ments cannot be matched with other segments. Hence, the values in the row of

the Match matrix corresponding to the row index and the column corresponding

to the column index are made zero and then the next maximum is found. This
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Figure 3.3: The regions in the two drawings corresponding to the same colour
indicate the matched segments.

procedure is iterated till all the elements in the matrix become zero.

For the image pair shown in Figs. 1.1 and 1.2, the Match matrix was found to

be


8 0 0

0 10 2

0 0 9

. Since there are 3 segments in each of the drawing the match

matrix is of the size 3 × 3. From this match matrix, the segments matched are

shown in Fig. 3.3 at a scale of 0.45.

At the end of this procedure, the matched segment for every segment is known

(if there are any). The rows and the columns which never got selected as matched

indices correspond to the segments which do not have a match. This happens

when a sub-drawing is either added or deleted from the drawing.
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3.3.5 Calculating Image Homography

Since we now have a set of matched keypoints, we try and obtain the image ho-

mography by using a method similar to the one proposed by Vincent and La-

ganiere [20]. After calculating the homography, we overlap the two images and

check for maximum correlation. This setup (ie, orientation, scaling and transla-

tion), enables us to match the contours of the two segments.
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CHAPTER 4

Association of Labels with Segments

During segmentation only the graphics part of the engineering drawing was con-

sidered. Hence the segments obtained contain only the graphics part. The labels

and the labeling lines have to be reassigned to their corresponding segments in

order to obtain the complete sub-drawing.

4.1 Grouping Labeling Lines

Labeling lines are used to get the correspondence between the sub-drawing and

its label. These lines can be either connected to the sub-drawing, or can just be

close to the sub-drawing indicating that they belong to that sub drawing.

4.1.1 Grouping labeling lines using dilation

One method to combine some of the labeling lines with the segment is by dilation.

The mask obtained in the previous step can be dilated with a structuring element of

size about 60×60 to get a dilated mask. When we remove the text and the graphics

part from the drawing, only the labeling lines remain. These can be combined with

the dilated mask using the logical OR operation to connect the labeling lines to

the segments. As the masks were dilated, the labeling lines which were closer to

the segments earlier will now get attached to the segments. Fig. 4.1 shows the

dilated mask combined with the labeling lines from the drawing in Fig. 1.1.



Figure 4.1: Dilated mask combined with labeling lines for the drawing shown in
Fig. 1.1.

4.1.2 Grouping labels

In section, 2.1 the method to extract all the characters from the drawing was dis-

cussed. These extracted characters have to grouped logically to obtain the labels.
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String extraction

The spacing between the characters of a label are typically of a constant small

value. Hence, these can be grouped using the dilation method.

In order to combine the characters, all the characters are extracted from the

drawing. Then a bounding box is formed for each of these characters. The region

within these bounding boxes are filled to obtain the text mask. The text mask

can be dilated with a small structuring element, so that the bounding boxes of the

neighboring characters merge. A new set of connected components are extracted

from the resulting image. All the characters in each of the connected components

are grouped as one. This provides a group of characters which are close to each

other. Now, a common bounding box is inserted into these group of characters and

the boxes are filled to get a new mask which has all the closer characters grouped.

Since dilation is a computationally expensive procedure, we adopt a different

approach to achieve the same results as above. Our approach is thus:

• The height of text characters is always more than its width. All characters

are now assigned orientations - horizontal or vertical based on this. (Here,

vertical characters belong to vertical strings and horizontal characters to

horizontal strings)

• The vertical character bounding boxes are now sorted based on their mini-

mum vertical position in the image (ie, Y-position)

• We now apply a Static Queue-based algorithm to string characters together

to form labels.

– While character exists in sorted array, add character to a list that con-

tains a string
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Figure 4.2: Label mask for the drawing shown in Fig. 1.1.
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Figure 4.3: Logical OR of the label mask and the drawing shown in Fig. 1.1.
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– If another character lies within a threshold Y-distance of bottommost

point of character bounding box:

∗ If X-width and X-position of the new character bounding box is

similar to the previous character, add new character to list.

∗ If X-position of the new character bounding box is not close to

the original character, push new character onto queue

– If next character does not within a threshold Y-distance of bottom-

most point of character bounding box, increment list counter. If queue

is empty, assign currentcharacter=nextcharacter and proceed with the

same procedure. Else, dequeue one character and assign it to be the

current character.

– Repeat Procedure until sorted array has no characters remaining

Assigning Labels to Segments

From the previous step, all the characters are grouped to form labels. These la-

bels now have to be assigned to the corresponding segments. We use distance

transform [12] to achieve the same.

Distance Transform

This operation transforms a binary image into a gray scale image. It gives a mea-

sure of distance from the foreground to the background. Farther the pixels are

from boundaries, higher will be the value of their distance measure. The standard

distance measure used is the Euclidean distance.

Label masks are combined with the dilated masks using the binary ‘OR’ op-

eration. We then take the distance transform of the resulting image. Based on the
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(a)

(b) (c)

Figure 4.4: (a), (b) and (c) shows the segments after the assignment of label for
the segments shown in Fig. 1.1.
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values of the distance transform in each of the label mask, the labels are assigned

to the segments. For every label, the minimum value of distance transform (pro-

vided the label lies within a threshold distance of some segment) is taken and the

segment which is at that distance from the label is the one to which it belongs.

The same procedure is iterated for all the labels.

Thus, by using the technique described above, dimensioning information re-

lated to a segment is grouped and all such segments are separated out and analyzed

independently in the further course of the work.
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CHAPTER 5

Image Comparison

Most changes that are made in any drawing are reflected in their corresponding

dimensions. These changes can hence be tracked by tracking the labels. Since

we now have the segments and the corresponding labels, instead of comparing

the drawings directly, we can compare the labels corresponding to the segments

to get the difference between the two drawings. The changes in the drawings can

also include addition or deletion of segments. These changes have to be detected

before we compare the matched segments using the labels.

Finding addition/deletion of Segments

In section 3.3, we discussed a method to match the segments of two engineering

drawings. The output of this algorithm is a vector V . The number corresponding

to the index of vector V represents the matching segment corresponding to the

index. If the number corresponding to the certain index is zero, then it implies

that the segment does not have any matching segment in the second drawing.

Thus any segment which has been deleted in the second drawing can be detected.

Along similar lines, the indicies which are not present in the vector V are the

segments in the second drawing which do not have any matching segment in the

first. From this, any new segments which got added into the second drawing can

be detected.



5.1 Comparison of Labels

The changes in the labels reflect the changes in the drawing. Thus comparison

of labels helps in understanding the changes in the drawing. Since label to label

association is not known, every label in each of the sub-drawing is compared with

every other label in the corresponding sub-drawing of the other drawing. The

comparison is done using Hausdorff distance [6]. The search space for compari-

son using the labels is reduced based on various parameters which are discussed

further in this chapter. When a label does not get any matches, it is reported as a

change.

Length

One of the simplest ways of finding the labels which do not have any match is by

using the number of characters in the label. For every label of a sub drawing, all

those labels of the corresponding sub-drawing which have the same length is used

as the reduced searchspace.

Euler number

The properties of characters of a label can be made use of as another parameter

to find the differences between the labels. Euler number [? ] is defined as the

difference between the number of connected components and the total number of

holes. Since we already have the list of labels which have already been matched

according to their lengths, we can also distinguish based on the number of holes

in the label. To find the number of holes in a label, all the holes in the character

are firstly filled. From this, the original character can be subtracted to get the
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image which has only those regions where the holes were present. The number

of connected components in the resultant image gives the number of holes in the

character. For every label, only those labels which have the same number of holes

in the corresponding characters are retained for further comparison, thus further

reducing the searchspace.

Dimensions of the characters

Generally all the labels in the drawing are written using the same font style and

size. Hence, two labels can be same only if the corresponding characters in both

the labels are same. Thus for every label, the search space is further reduced by

considering only those labels whose characters do not vary much in their dimen-

sions.

Hausdorff Distance

For two point sets A and B, the Hausdorff distance between them is defined as

H(A,B) = max(h((A,B), h(B,A)) (5.1)

where,

h(A,B) = max
a∈A

min
b∈B
‖ a− b ‖ (5.2)

and ‖.‖ denotes a norm on the points of A and B [6]. The function h(A,B)

is called the directed Hausdorff distance from point set A to set B. It identifies

the point a ∈ A that is farthest from any point of B and measures the distance

from a to its nearest neighbor in B. If h(A,B) = d, then each point of A will be

within distance d of some point of B. . When we translate the points of set A, the
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distance h (A,B) is minimized. At this translation, all the points of setA coincide

with some points of set B thereby minimizing the value of h (A,B).

Matching labels

For the two labels to be same, all the characters in the label should be same.

The Hausdorff distance between the corresponding characters is calculated. Two

labels are said to be matched only if the all the Hausdorff distances between the

characters are less than a threshold. A threshold of 4 gives good results for the

case of characters in engineering drawings. At the end of all comparisons, we

know which labels are matched. Sometimes, a single label can have multiple

labels which are matched to it. In such cases, the match is decided based on the

location of the label. The centroids of all the matched labels are found and the

label which is at a minimum distance from the centroid of the label is chosen as

the match.

Finally, all those labels which do not have any matches are the ones which

have changed. These labels are highlighted to indicate the difference between

the two drawings. Figs. 5.1 and 5.2 show the final result of comparison of the

drawings in Figs. 1.1 and 1.2.
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Figure 5.1: Result of comparison of the drawings in Figs. 1.1 and 1.2.
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Figure 5.2: Result of comparison of the drawings in Figs. 1.1 and 1.2.
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CHAPTER 6

Experimental Results

The entire implementation was done in Python using free packages like Numpy,

OpenCV and others. The implementation was tested on drawings with different

amounts of complexities and sizes on a standard 64-bit Windows machine with an

Intel Core i5-2500 3.3 GHz CPU and 16 GB RAM. The median running time per

image pair was 107 seconds.

In addition to the example which was used in previous chapters to explain

the method, we considered 42 more pairs of engineering drawings with different

amounts of complexities and sizes provided by Caterpillar India Pvt. Ltd. to eval-

uate our method. We illustrate the comparison results for another pair of example

drawings shown in Figs. 6.1 and 6.2.

Final results of comparison for Example 2 are shown in Figs. 6.3 and 6.4. The

changes detected are marked in red and as the size of the labels are too small, a

red dot also has been marked wherever there was a change.

On one image with thin lines and a broken curve, the filling operation before

segmenation failed and hence all successive steps failed in a cascading fashion.

Also, devising a method for completion of broken curves would help vastly in

improving the performance of the algorithm.

With Hausdorff Distance being a very intensive value to compute, all label

pairs were also compared using a free source OCR engine named Tesseract. While

the running time, dropped hugely after shifting to an OCR engine, the OCR engine

did fail on the count of character recognition accuracy on a few counts.



The consolidated results for all the 42 pairs are drawings are:

Total Number of Labels in Image Set 1 2027
Total Number of Labels in Image Set 2 2019
Total number of changes 182
Total number of changes detected accurately 166
Total number of false detections 4

Thus, our method detected 94% of the changes with a false detection of 2.4%.
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Figure 6.1: Original drawing of Example 2.

47



Figure 6.2: Modified drawing of Example 2.

48



Figure 6.3: Result of image comparison for Example 2.
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Figure 6.4: Result of image comparison for Example 2.
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CHAPTER 7

Conclusions

In this thesis, we have proposed a method to separate the text and the graphics

part in engineering drawings. We analyze the connected components based on

the characteristics of text and graphics in these drawings to extract the text. An

algorithm to segment an image into sub-drawings has also been proposed. An

algorithm to remove labeling lines from an image regardless of relative line thick-

ness between graphical portion and labeling lines has been proposed.

A SIFT-based algorithm was discussed to perform the matching of segments

across the drawings using match matrix. This algorithm is robust to any misalign-

ments in the two drawings and works without the need for registration. We have

presented a method to compare any two engineering drawings by means of finding

matching labels. Various properties of the labels such as length, Euler number and

dimensions were exploited in order to eliminate the labels which do not match.
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