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ABSTRACT

Out of order RISC processors employ dynamic sheduling and register renaming

mechanisms to reorder ALU type instructions, thereby extracting more Instruction

Level Parallelism (ILP) from a thread. ILP is further boosted by using data

speculation mechanisms, wherein instructions from a sequential instruction stream

are allowed to be reordered irrespective of interspersed loads and stores. However,

on a multi-core system, memory accesses are not exclusive to a given core; they are

often shared by multiple threads running on di�erent cores. Therefore, it becomes

essential to exploit Thread Level Parallelism (TLP) to improve performance.

Thread Level Speculation (TLS), as the name suggests, provides a mecha-

nism by which data speculation can be done across threads, without regard to

any dependencies that may exist among them, and at the same time, ensuring

correct sequential semantics as assumed by the program. The prime utility of

such a framework is to help extract parallelism from applications where compilers

conservatively render sequential code when they �nd it di�cult, if not impossi-

ble, to statically disambiguate arbitrary memory references. This work presents a

detailed architectural design for TLS, an implementation on a widely used open-

source cycle-accurate simulator known as gem5, and a demonstration showing

the utility of using TLS where conventional auto-parallelizers fail. For explicitly

parallelized code, this implementation reports a near identical performance pro-

�le whether or not the TLS feature is used, thus indicating negligible overhead.

Based on insights gained throughout this work and through the analysis of this

implementation itself, several inputs regarding development of compiler support

to best leverage TLS are given, in addition to possible architectural extensions.
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Chapter 1

Introduction

Multicore systems are ubiquitous in today's world and to fully utilize them, it

is important to extract as much parallelism as possible from applications, the

onus of which lies largely with the programmer. When coupled with the fact that

legacy code cannot be dispensed with, this has resulted in an under-utilization

of parallel hardware that is available, even in the presence of auto-parallelizing

compilers. Signi�cant progress has been made in auto-parallelizing regular numeric

applications; however, the impact of auto-parallelizers has been limited mainly

because, to schedule a given loop for parallelization, they require a guarantee that

the said loop is actually independent.

Thread Level Speculation (TLS), also known as Speculative Multi-Threading

(SpMT), is a hardware and/or software approach aimed at improving this scenario

with little or no burden on the programmer. By means of careful book-keeping,

TLS is designed to ensure that correct execution of code is guaranteed, and this

enables compilers to optimistically render parallel code even in presence of inter-

iteration may dependencies. In a broader sense, TLS and Transactional Memory

(TM) share common design ideologies.

The apparent advantage of such a framework is better appreciated by consid-

ering the case of pseudo parallel loops. For example, when all but a few iterations

of a loop are devoid of data dependencies, or, when only strided dependencies

(with a stride of atleast 2) are present, it is clear that parallelism exists for such a

loop at a �ne-grained level. However, a traditional compiler would conservatively

analyze this loop to consist of dependencies, and hence this loop ends up being run

sequentially. With TLS, however, various iterations of such a loop can indeed be

speculatively executed in parallel. In case a data dependence (con�ict) is detected

at runtime, TLS employs a fallback, retry or synchronization mechanism to ensure

correctness of data.



The de�ciency of non-TLS auto-parallelizers is seen especially in the presence

of pointers and input-dependent parameters. In such cases, even embarrassingly

parallel loops are classi�ed as having may dependencies, thereby rendering them

un�t for parallelization. Using TLS in such scenarios helps unlock potential par-

allelism.

However, it must be noted that though TLS provides a guarantee on correct-

ness, it comes at the cost of misspeculation. I.e., in the event where a con�ict

is actually detected at runtime, any mechanism that TLS uses to ensure correct-

ness of data is bound to lower performance because of redundancy in execution. In

other words, it is imprudent to use TLS in cases where a loop is inherently sequen-

tial. Therefore, it can be seen that TLS provides a guarantee only on correctness

of data - not on performance. It simply provides a framework by which it is rela-

tively easier for the compiler/end-user to extract parallelism from an application

as opposed to using a traditional setup.

Chapter [2] presents more details about TLS in general and why contributions

of this work are important. In this work, the design of the TLS framework is

loosely based on an idea that was �rst presented in [1]. Implementation and

analysis of this design is done on gem5 [2], an open-source and modular simulator

platform that is widely used in computer systems architecture research today.

The main contributions of this work are as follows:

• A design that enables speculative bu�ering of data and supports runtime
con�ict detection.

• An X86 based gem5 implementation that can easily be extended to other
architectures, as well as to support Transactional Memory (TM).

• A preliminary analysis that demonstrates the utility of the implementation,
and provides insight towards development of compiler support to fully lever-
age TLS. Apart from providing speedup in cases where auto-parallelizers
fail, this implementation shows a near identical performance pro�le to that
of a conventional non-TLS architecture while running explicitly parallelized
code.

• An in-depth description of the design and implementation, to aid further
development of this framework.
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Throughout this report, the terms core and processor are used interchangeably.

The term thread may refer to either a hardware or a software thread as a one-one

mapping is assumed.

The rest of this report is organized as follows: Chapter [2] brie�y explains

the idea of TLS, its history and the motivation behind this work. Chapters [3]

and [4] provide, respectively, details of the designed architecture and the gem5

implementation. Two chapters of Appendix are written to further elaborate on

these two chapters. Chapter [5] demonstrates the utility of this implementation

and Chapter [6] summarizes the goals achieved and the insights obtained during

the course of this work, in addition to providing directions for future research.
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Chapter 2

Background

2.1 Thread Level Speculation

As mentioned earlier, Thread Level Speculation enables parallelization of code

that contains may dependence. With the hardware and/or software guaranteeing

correctness of data, the compiler can optimistically parallelize code without having

to conservatively con�rm the absence of data dependencies.

The concepts of commit and squash are extended from the context of spec-

ulative execution that occurs at the instruction level. When a thread completes

its speculative execution without running into any data dependence violations or

any irrevocable instructions (such as I/O), it can be committed as this speculative

execution is deemed correct. On the other hand, upon detection of a con�ict,

such a thread - along with all other threads that may be a�ected by it - must be

squashed as this speculative execution is deemed incorrect, from the standpoint of

sequential semantics assumed by the program.

This work adopts a hardware-software approach to realize TLS; a high level

description of which is as follows: The hardware maintains a global time ordering in

a �rst come �rst serve manner of threads, to match the spawn order as determined

by the software. The cache system is modi�ed to enable speculative bu�ering of

data and to detect con�icts based on this order, by extending a directory based

MESI cache coherence protocol. Any given speculative thread can commit results

from its speculative execution only after all its earlier threads have committed

successfully. This way, if there is a con�ict, all speculative threads newer (younger)

than the thread that detected this con�ict are squashed. Such squashes - necessary

to protect data from corruption - are communicated back to the runtime, which

ensures forward progress by re-executing such threads.



Figure 2.1: Illustration of TLS in the case of a RAW dependency

To illustrate, consider the example shown in Figure 2.1. There is a Read-

After-Write (RAW) dependency between threads 1 and 3 through variable a. In

the event where a is pointed to by a pointer p in thread 1 and by a pointer q in

thread 3, where p and q may point to the same memory location, traditional auto-

parallelizing compilers classify this as a may dependence, making parallelization

impossible for the entire loop. But TLS support makes exploitation of paralleliza-

tion within a part of the loop a possibility.

2.2 Evolution

The idea of performing memory loads and stores speculatively with general pur-

pose programs in mind has been around for roughly two decades. It was �rst

conceived as a means to further exploit Instruction Level Parallelism (ILP) via

the use of Address Resolution Bu�ers (ARB) [4]. ARB achieved speculative ver-

sioning by bu�ering all versions of a given memory location as a separate entry

[5]. The biggest drawback of this approach was that the ARB was a centralized

(shared among processors) bu�er, which meant that it ran into latency and band-

width bottlenecks. Naturally, later approaches made the speculative versioning

more distributed and sought to integrate it with the cache system.

The concept of Speculative Versioning Cache (SVC) [6] was built upon tradi-
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tional bus based snooping cache coherence. In this approach, each line of a private

cache was extended to indicate if it had been speculatively loaded, and to include

a pointer that identi�ed the processor containing the next version of that line. A

separate, dedicated Version Control Logic (VCL) was used to provide responses

to the private caches. These responses were given in a manner similar to that of

the disambiguation logic that ARB employed, i.e., by searching previous versions

in the case of a load, and later versions in the case of a store. A similar scheme

[7] was concurrently proposed wherein a simpler coherence protocol was adopted,

however, at the expense of bursty tra�c upon completion of each speculative con-

text - as was the case with ARB. Unlike SVC, this scheme relied completely on

software for task assignment to a processor.

Another approach [8] to TLS made use of a dedicated speculative co-processor

that helped execute a number of software speculation control handlers, thereby

lying somewhat in between the previous two schemes. However, to simplify cache

coherence, write through caches were employed in this scheme.

An orthogonal approach [9] was developed with an aim of simplifying the con-

ceptual and implementation complexity of such TLS (and TM) mechanisms. The

addresses accessed by a thread were compactly encoded using a Bloom �lter based

hash, resulting in a superset representation. This enabled easy implementation of

operations on groups of addresses.

Over the years, these groups proposed improved versions of their schemes, but

the basic ideas have remained unchanged. Also, several software-only implemen-

tations like [10, 11, 12] have been proposed, but as can be expected, these are very

slow when compared to approaches that used hardware support.

Recently, IBM released a system - BlueGene Q [13, 14] - that has inbuilt

support for TLS [15]. In this architecture, speculative versions of a line are placed

in separate ways of the directory set that stores the non-speculative version. To

distinguish versions, additional tags are used in the directory.

As mentioned earlier, this work adopts a hardware-software approach to TLS.

It may be observed that most of the book-keeping techniques that have been pro-

6



posed for detection of con�icts, like the VCL of the SVC scheme, give a directory-

esque structure to the design. A directory based coherence protocol lends itself

naturally for such functionality, and is hence adopted in this proposed design.

Moreover, similar techniques that are used to make a directory more distributed

and scalable, can be applied here as well.

2.3 Motivation

Silicon technology has advanced to a stage where a hardware implementation of

TLS is now commercially viable - as evidenced by BlueGene Q, which however, has

a rather under-utilized TLS framework. Also, there is a lack of a well-supported

platform for the community to collaboratively research TLS. These points are

explained in this Section, serving as motivation for this work.

As part of a related work [16] that involved writing a software framework

for auto-parallelization using TLS on BlueGene Q, it was necessary to gauge the

overhead caused due to TLS. For this purpose, the following loop was run after

compiling for TLS using a BG/Q speci�c C compiler - bgxlc_r :

for (i = WINDOW; i < SIZE; i++)

a[i] = a[i-WINDOW] + 1;

The intention behind this loop is that the degree of dependence changes with the

value of WINDOW, thus causing di�erent con�ict probabilities. For example, if

WINDOW is 0, then the loop is perfectly independent and for several non-zero

values, con�icts are expected. Given that BG/Q maintains speculative states in

the L2 cache and that the spawn policy used is that of OpenMP (bgxlc_r uses the

OpenMP runtime for parallelism), a sweep from 0 to SIZE/10 was done for WIN-

DOW, with steps of varied granularity. A SIZE of 10000000 was chosen so that

when TLS runs long enough, the con�ict overhead is not masked. Upon collecting

statistics, as given in Table [2.1], the only monotonic relationship observed was

that between L2 hits and execution time (cycles). The most puzzling aspect was

7



WINDOW Rollbacks L1p Misses L2 Hits L2 Misses Cycles

0 585 81192 22958266 109512803 638504716
1 585 82795 25878786 109268345 920234122
2 588 90346 23288451 96260552 849992884
3 586 4050901 22460165 111945889 636492262
4 585 4059102 22632073 112311636 653979778
5 586 4079870 26683489 112933698 977863450
6 586 4070801 27767357 113041372 1075979998
7 586 4088353 27578418 113515836 1049858014
10 586 4081335 26828284 112952959 990203554
100 585 90071 25947190 108819788 938475532
1000 586 93373 21983026 110167998 624440650
10000 588 90806 26079182 104113107 948449626
100000 587 91694 21691725 78139164 602617072
1000000 585 90716 23893375 61895535 860489428

Table 2.1: Counter values measured upon TLS execution of a simple loop with
varying degrees of dependence. A rollback occurs when speculative
execution encounters a con�ict.

that the measured number of rollbacks was nearly constant over all the values for

WINDOW.

Attempts to ensure that the compiler doesn't optimize away the dependencies

were made by declaring a as a pointer instead of an array and by wrapping the

above loads and stores into separate functions. Also, the initial values of a and the

value ofWINDOW were randomized so that information about these was available

only at runtime. Yet, the measured number of rollbacks remained nearly constant,

at ≈586, which is less than 0.01% of SIZE, where SIZE is roughly the total number

of iterations. If this was a large value, then it could have been be argued that

the granularity of the underlying con�ict detection in the L2 cache line was too

coarse, thus making many false positives. However, as relatively small number of

rollbacks were observed, two possible explanations exist: The compiler serialized

the loop or unrolled it e�ectively to hide the dependency, or, the L2 cache line

was evicted prematurely, i.e., before a con�ict could be detected. The qnounroll

compiler option was tried, but no change in behaviour was observed. Thus, either

the compiler chose to spawn very few iterations as parallel TLS threads; thereby

serializing the loop to execute in large chunks, or, the spawn policy of OpenMP

was suboptimal; causing frequent cache eviction.

8



Clearly, a deeper understanding of the underlying system was necessary to

develop an auto-parallelizing framework that leverages the utility of TLS. This

indicated a necessity to avail of a platform where architectures and various com-

piler designs for TLS was supported. No other publicly available cycle accurate

simulator apart from SESC [18] has incorporated support for TLS. Given that

the gem5 simulator is very modular, �exible and open-source, is widely used and

supported actively by the architectural research community [19], and that SESC

supports the MIPS architecture alone and does not provide a means of booting a

full �edged system, this work uses gem5 as its underlying implementation base.

9



Chapter 3

Design

It is assumed that there are N cores with a private L1 cache each and a shared L2

cache, which is the LLC (Last Level Cache) and is associated with the directory.

Of course, this can be extended to more levels of cache, but this implementation

uses a two level directory based cache hierarchy.

Sections [3.1], [3.2] and [3.3] elucidate necessary changes that have to be made

at the Core, Private Cache and Directory levels respectively. The approach fol-

lowed is that of strictly inclusive caching and of allowing only single speculative

writer. Reasons for choosing these, and strategies for eviction and commit are

discussed in Section [3.4].

Two important assumptions are made. One is that instruction blocks cannot

be speculatively modi�ed incorrectly, as, invalidating such lines as a result of

squash would render faulty program �ow. This will be clearer upon considering

an end-to-end implementation of this design, i.e., by Section [4.4]. The second

assumption is that the code has neither non-speculative nor irrevocable (such as

I/O) instructions within the limits of a TLS section.

3.1 Core

Unlike conventional speculative execution (instruction-level), thread level specu-

lation, as indicated by the name, requires knowledge of the execution status of

instructions - loads and stores, in particular - from other threads. Moreover, TLS

concerns itself only with memory accesses, and, the cache hierarchy has more con-

trol over and access to the higher level notion of a thread. Therefore, introducing

bu�ers for speculative results within the processor is meaningless. In other words,

if one were to use such bu�ers, inter-core query messages would end up eating

away the entire network bandwidth.



TLS SQ Processor State

0 0 Processor is executing in Normal mode

1 0
Processor is executing in TLS mode.

No squash detected so far

1 1
Processor is executing in TLS mode.
Atleast 1 squash has been detected

0 1
Processor is in a transient state between TLS mode and Normal mode.

Goes to Normal mode once invalidation of (mis)speculative addresses is done

Table 3.1: TLS Bits per Core

With bookkeeping for TLS being handled by the cache subsystem, all that is

left to be desired of a core is a means to interact with the runtime. This interaction

is for requests from the runtime to the core to start or stop TLS, and, responses

back to the runtime indicating their success or failure. This can be succinctly

achieved by means of two bits: TLS and SQ. The TLS bit indicates if the core is

running in TLS mode, i.e., if it is issuing speculative loads and stores. The SQ bit

indicates if atleast one squash has been communicated by the cache subsystem to

the core in the current (or immediately previous) TLS execution. Their meaning

when used together, is explained in Table [3.1].

These bits could be part of a non general purpose register like a control register.

Methods to read and manipulate these bits in the context of x86_64 are explained

in Sections [4.1] and [4.4].

These bits are propagated to the sequencer at the L1 cache controller along

with the other lines that indicate whether the request is a load or a store or

an instruction fetch etc.. Subsequent interpretation of these bits by the cache

subsystem is discussed in Section [4.3].

3.1.1 Design Complexity

In terms of storage, an overhead of two bits per core is incurred for the TLS and

SQ bits. In terms of routing, two extra lines are required between the core and

the cache subsystem. The timing overhead caused by this scheme on a memory

access path is limited to a few multiplexers (and demultiplexers) that would be

necessary for reading and/or writing the two bits, and in asserting the two lines

11



as part of the memory request. Though the exact number of these muxes (and

demuxes) may vary depending upon the implementation, it is obvious that the

clock frequency of the core would remain una�ected by these.

3.2 L1 Cache

Upon receipt from the core, complete with the TLS and SQ lines, the request

gets decoded and the cache coherence protocol state machine triggers a transition

accordingly. The coherence protocol, itself, is an extension of the MESI directory

protocol. This extension serves two primary purposes:

• To enable bookkeeping for TLS, i.e., to enable speculative bu�ering of data,
and,

• To enable detection of con�icts such as RAW (Read-After-Write or Flow)
and WAW (Write-After-Write or Output), so that a squash can be issued.

Each thread (or equivalently each core and its private L1 cache) is assigned a

particular specID. The notions of earlier/older than (<) and later/younger than

(>) are based on the relative values of specIDs. This way, a con�ict can be detected

when a thread with a higher specID tries to (speculatively) read or write into a

location that is being written into by a thread with a lower specID. The exact

mechanism by which assignment and con�ict detection are done is explained in

Section [3.3]; the directory maintains all these specIDs.

The resulting protocol, thus, adds 3 new states to the design to indicate TLS:

SpM, SpE and SpS. The meaning of each of these 7 stable states is explained in

Table [3.2].

A simpli�ed state diagram with just the stable states and their transitions to

events triggered by the processor as well as other coherence messages is depicted by

Figure [3.1]. A detailed state transition table complete with all transient states and

actions is available in Appendix [A.1]. This detailed table is designed (especially

w.r.t. coherence messages) in a manner that makes it conducive to debugging.

12



Figure 3.1: Simpli�ed TLS Cache Coherence State Machine - L1 Cache
The solid lines represent processor generated requests, the dashed lines
represent directory or inter-cache messages, the dotted lines indicate
messages generated due to TLS alone.
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State Meaning

I Invalid block

E
Block contains clean data.

This cache is the owner, read access only

M
Block contains dirty data.

This cache is the owner, read-write access

S
Block contains clean data.

This cache is not the owner, read access only

SpE
Block contains clean data.

This cache is the owner, read access only.
This core may be running in TLS mode∗

SpM
Block contains dirty data.

This cache is the owner, read-write access.
This core may be running in TLS mode∗

SpS
Block contains clean data.

This cache is not the owner, read access only.
This core may be running in TLS mode∗

Table 3.2: L1 Stable States. ∗: The clause may be is better appreciated in Sub-
section [3.4.4].

Also, a single bit isSp is used to indicate if the core is running in TLS mode

or not. This bit is set as soon as a TLS request is decoded, which indicates that

the core has entered into TLS mode, and is reset only upon receipt of a non-TLS

request, or in the case of a squash.

3.2.1 Design Complexity

In terms of storage, apart from the single isSp bit per L1 cache, there is one extra

bit per cache block to accommodate the extra base states. The bit encoding of

these states is shown in Table [3.3].

Signi�cant complexity arises from the MSHR (Miss Status Handling Registers

that handle transient states for the cache) and cache controller logic to handle new

messages. As this design is currently intended for a simulator implementation

(as opposed to synthesis of real hardware), redundant messages exist to make

debugging easier.
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States
Bits

Valid Exclusive Dirty TLS

I 0 × × ×
E 1 1 0 0
M 1 1 1 0
S 1 0 0 0

SpE 1 1 0 1
SpM 1 1 1 1
SpS 1 0 0 1

Table 3.3: Bit encoding of stable states at each L1 cache block

3.3 Directory

Under a basic and non-TLS scheme, the directory contains - for each valid block

- the directory state, the owner and an isShared bit vector that indicates which

of the L1 caches share the block. For TLS, in addition to the above, a single isSp

vector is needed. This vector stores 0 for non-TLS cores and a specID (>= 1) for

TLS cores. Reasons for storing this isSp vector in the directory instead of the L1

caches are as follows:

• Every message need not have the specID piggy backed onto it.

• The directory can make decisions (like detect con�icts) and take actions (like
issue squash) without redundant messages involving L1 caches, which would
thus unnecessarily have duplicate logic.

• It is eventually possible to allow replacement of speculative blocks. This
would allow threads with speculative contexts larger than the L1 cache ca-
pacity to speculatively execute, thereby allowing context switches without
having to squash them. This is explained in Subsection [3.4.2].

As L1 caches have TLS data encoded within their states, the states in the

directory state machine remain unchanged from the MESI protocol. However, the

meaning of each state is slightly modi�ed to account for the additional L1 states.

This is shown in Table [3.4]. A detailed state transition table complete with all

transient states and actions is available in Appendix [A.1]. As mentioned earlier,

this detailed table is designed (especially w.r.t. coherence messages) in a manner

that makes it conducive to debugging.
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State Meaning

I Invalid Block. Not present in any L1 cache.

E Block contains clean data. Owned by an L1 cache.

M

Block contains dirty data. Owned by directory if not present in any L1 cache.
Owned by an L1 cache if present in atleast 1 L1 cache.

If present in > 1 L1 caches, owner is in SpM and other L1 caches that contain it share it,
possibly speculatively, with a specID less than that of the owner.

S
Possibly dirty if transitioned from M. Owned by directory.

Present in zero or more L1 caches.

Table 3.4: Directory Stable States

3.3.1 Design Complexity

The total number of specIDs in any scenario can be limited to 2N -1. This is

because commit is done in-order and a round-robin specID assignment can be done

to the cores. To elaborate, upon receipt of a TLS request from an L1 cache, if that

core is not yet marked with a specID (or, equivalently, if that core has a specID

of zero), it is assigned a specID with a value equal to {max(specIDs allocated so

far)+1}. As commit is done in increasing order of specIDs, the assigned specIDs

go from 0 to the current maximum specID.

Without loss of generality, consider the case where core i has been assigned

with specID i, where i goes from 1 to N. At this point, each of the N cores is

executing in TLS mode, i.e., if any more threads are to execute speculatively, one

of these cores must commit. As commit is in-order, the �rst core to commit is

that with the lowest specID: 1. Now, a new thread can execute speculatively on

core 1, with a specID of N+1. Repeating this process till the time when core N is

about to commit, core N -1 has a specID of N+N -1. Now, after core N commits

and a new thread wishes to execute speculatively on it, N can be subtracted from

each specID so that each core i now has again been assigned with a specID of i.

In the presence of squashes or when the number of speculative threads is lesser

than the number of cores, the maximum specID is clearly lesser than 2N -1. There-

fore, it is su�cient to keep the size of each entry in the isSp vector to be lg(2N -1)

and thus, the storage overhead of the isSp vector is Nlg(2N -1).

The analysis of design complexity due to MSHR and cache controller is similar

to that of the L1 cache case, discussed in Subsection [3.2.1].
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3.4 Other Design Considerations

Designing a cache subsystem and its possible interactions with the core and hence

the runtime naturally gives scope to a lot of design space exploration. Some

important attributes that have had the most impact on the design are discussed

below.

3.4.1 Multiple Writers

In theory, because commits are executed in order, speculative writes to the same

word need not be coherent w.r.t. all speculative cores as long as they can be read

only from their own core. A scheme was initially developed to support this by

adding an isM bit vector to the directory for each block, in a manner similar to

the isShared bit vector. This, however, causes the bookkeeping overhead in the

directory to double. This approach has been discarded because of the notions that

making a directory scalable is still a topic of current research [22, 23], and that

writes are not generally on the critical path.

An approach to allowing multiple writes onto distinct words within the same

block is given in [1]. An advantage of this is that it helps avoids false con�icts.

This, however, has not been implemented in this design.

3.4.2 Eviction and Context Switch

The simplistic approach taken by this design is to simply squash in case of an

eviction. Assuming that the entire speculative context of a thread can be contained

within an L1 cache, then, subject to associativity, this squash is unlikely to occur

in the absence of context switches. This is a direct implication of LRU whereby

the non-TLS blocks (accessed before core went into TLS mode) will get replaced

�rst. Thus, to prevent capacity related squash, it would be useful if the compiler

can estimate a thread's context size before marking it as TLS.

Upon context switch or speculative context over�ow, it is likely that a TLS
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block gets evicted. If, however, a squash is to be avoided at this point, then a

table storing all TLS block addresses and their state bits of the currently executing

context (even after eviction from L1) has to be maintained in order to prevent

memory corruption (i.e., to facilitate rollback). Storage for this extra bookkeeping

could be implemented alongside L1, L2 or as an independent fully associative

bu�er. This added complexity would further increase the overhead for a context

switch or a rollback.

3.4.3 Inclusion

As the intent of this design is to simply demonstrate TLS, adding shadow tags in

the L2 cache and further complicating the cache coherence protocol to accommo-

date non-inclusive or exclusive caches was not attempted.

However, if coupled with allowing L1 eviction, using a non-inclusive or exclusive

setup would allow running TLS on threads with much bigger speculative contexts.

3.4.4 On Demand Commit

Commit is the process by which (in the absence of squash) the TLS bit in every

L1 cache block is turned o�, i.e., the following transitions take place: SpE > E,

SpS > S, SpM > M. Stalling the processor till all these transitions take place

is wasteful. In particular, the last transition: SpM > M requires sending of a

message from L1 to the directory, which then sends an invalidation message to all

(earlier) sharers of that block and a count to this L1. This L1 has to then wait

for all the (inv)acknowledgements from the sharers.

Instead, a simple optimization has been implemented so that the processor can

continue to execute (in non-TLS mode post issuing a commit request) without

stalling, and a commit transition is triggered upon a TLS block only when it has

been accessed.
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Chapter 4

Gem5 Implementation

This chapter gives the details of implementing the design outlined in Chapter [3]

into the gem5 simulator. Sections [4.1], [4.2] and [4.3] describe the role of various

�les within gem5 that need to modi�ed, Section [4.4] provides some insight as to

how TLS could be utilized from user space code.

Though the TLS design is largely agnostic to the exact ISA architecture, an x86

framework is used here simply because of the facts that it is well handled by gem5

in the presence of a detailed memory system (Ruby), and that it is ubiquitously

used.

4.1 X86 Core

As explained in Section [3.1], two bits, viz. TLS and SQ, are required to be imple-

mented within each core. While read access is su�cient for the SQ bit, software

requires write access to the TLS bit. Consider the control register CR0 [3]:

31 30 29 28 27 ... 18 17 16 ... 5 4 3 2 1 0

PG CD NW -* -* - AM - WP - NE ET TS EM MP PE
,

where,

PG - Paging

CD - Cache Disable

NW - Not Write-through

28 - TLS

27 - SQ

AM - Alignment Mask



WP - Write Protect

NE - Numeric Error

ET - Extension Type

TS - Task Switched

EM - Emulation

MP - Monitor Co-processor

PE - Protection Enable

Manipulation of the originally de�ned bits is possible with the help of kernel

mode privileges. However, direct usage (write, especially) of the reserved bits in

this register is not recommended by Intel[3], as is also demonstrated in Appendix

[B] where approaches of using new system calls or loadable kernel modules for this

purpose fail in an actual environment created with the help of a binary translation

based emulator known as QEMU [20].

These two bits could be stored in a separate general purpose register, but

this would increase register pressure. Or, they could be bit-packed along with

the remainder of the program data, but this would make register allocation more

complex than it already is, especially in light of context saving and rollback. Both

these approaches thus hamper performance.

A more elegant and e�cient alternative is to continue to store TLS and SQ

bits in CR0, but with an interface through the ISA to read and manipulate them.

There are 16 bits of unused opcode space in the ISA, some of which are uti-

lized by gem5 itself for implementing simulator speci�c commands such as exit(),

checkpoint(), panic() etc..

-- src/arch/x86/isa/decoder/two_byte_opcodes.isa

- Declare two new instructions 'spstart' and 'spcommit' in place of

m5reserved instructions

-- src/sim/pseudo_inst.(hh/cc)
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- De�ne spstart() function to set CR0.tls and reset CR0.sq

- De�ne spcommit() function to reset CR0.tls and return CR0.sq

X86 by default has a few operating (sub)modes like real mode, compatibility

mode, virtual8086 mode, protected mode and sixtyfourbit mode. Most of these

modes are for backward compatibility purposes all the way to 8086 and its limited

memory. Upon boot, it is the protected mode that is in use today. Thus, to make

the processor 'switch to TLS execution', the protected mode has been duplicated

to create a TLS mode.

-- src/arch/x86/types.hh

- Add a TLS mode to the list of (sub)modes that includes protected

mode

-- src/arch/x86/isa/decoder/one_byte_opcodes.isa

- Mimic functionality of protected mode into TLS mode

Just as how the CR0.0 (PE) bit is used to enable protected mode, the CR0.28 bit

is used to enable TLS mode. Details of sequence of steps involved in using TLS

correctly is mentioned in Section [4.4].

-- src/arch/x86/regs/misc.h

- De�ne TLS and SQ bits as bit-�elds 28 and 27 of CR0

-- src/arch/x86/isa.cc

- Tell gem5 that setting CR0.tls implies TLS mode

-- src/arch/x86/process.cc

- While setting the initial state to protected mode, reset CR0.tls

and CR0.sq
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4.2 Interfacing the Core and the Ruby Memory

System

As discussed in Section [3.2], the TLS and SQ bits have to be propagated as part

of every memory request. For this purpose, two new attributes are de�ned.

-- src/mem/request.hh

- De�ne two new attributes (or, �ags) called TLS and SquashedTLS

-- src/cpu/simple/timing.(hh/cc)

- Before sending an Ifetch or handling a read/write packet, assert

appropriate attributes in the request based on the values of CR0.tls

and CR0.sq

It is also necessary for the memory subsystem to communicate back to the core

regarding a squash. Two new address agnostic attributes are needed to indicate to

the core when a squash occurs, and also, when invalidation as a result of squash

is complete.

In gem5, the CPU and the Ruby memory system communicate by means of

the master-slave port mechanism (cf. Figure [4.1]). The modules and ports them-

selves are implemented with liberal use of inheritance and virtual functions. For

example, when a RubyPort sends a squash request to the processor, it does so

by calling the sendSquashRequest() function under the scope of SlavePort. This

gets routed through the base Port to the MasterPort - which in this case is the

TimingCPUPort - where a recvSquashRequest() is triggered.

-- src/mem/packet.(hh/cc)

22



Figure 4.1: Stripped port schematic of the CPU - Ruby Memory interface

- De�ne two new attributes called SquashReq and ResetSquashReq

to indicate a squash detection and completion of invalidation respec-

tively.

-- src/mem/port.(hh/cc)

- Implement SlavePort::sendSquashRequest() and SlavePort::sendResetSquashRequest()

by triggering the corresponding MasterPort::recv() functions.

- Declare these MasterPort::recv() functions as virtual

-- src/cpu/simple/timing.(hh/cc)

- Implement the virtual TimingCPUPort::recv() functions to (re)set

CR0.sq upon receipt of (Reset)SquashReq from the memory subsystem

4.3 Ruby Memory System

Each L1 Cache is associated with its own Sequencer, which is derived from a

RubyPort. It is the Sequencer that does the decoding of the attributes of the

incoming request from the processor.
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-- src/mem/ruby/system/Sequencer.(hh/cc)

- If the TLS attribute is set in the incoming request, then treat

every Load as an SpLoad and every Store as an SpStore.

- Else if the SquashedTLS attribute is set, then form a new packet

that has to be sent to squash (SpSquash) every speculative address of

the associated L1 cache. Upon completion, trigger a RubyResetSquash

callback.

- Propagate a Squash callback from the associated L1 cache by

triggering a RubySquash callback.

-- src/mem/ruby/system/RubyPort.(hh/cc)

- Implement the Ruby(Reset)Squash callbacks by creating a new

(Reset)SquashReq packet and passing it to SlavePort::send(Reset)SquashRequest()

-- src/mem/protocol/RubySlicc_Exports.sm

- Declare requests such as SpLoad, SpStore and SpSquash

Once a request is issued by the Sequencer, it is picked up by the associated L1

cache. The request is then processed as per the cache coherency protocol imple-

mentation, which is elaborated in detail in Appendix [A].

The relevant �les are:

src/mem/protocol/TLS_MESI_CMP_directory-L1Cache.sm

src/mem/protocol/TLS_MESI_CMP_directory-L2Cache.sm

src/mem/protocol/TLS_MESI_CMP_directory-dir.sm

src/mem/protocol/TLS_MESI_CMP_directory-msg.sm

src/mem/protocol/TLS_MESI_CMP_directory-dma.sm
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src/mem/protocol/TLS_MESI_CMP_directory.slicc

src/mem/protocol/SConsopts

configs/ruby/TLS_MESI_CMP_directory.py

The implementation of the coherency protocol is done in a DSL (Domain Speci�c

Language) called SLICC. However, this is more suited for handling requests at a

per-block level. I.e., implementing the necessary isSp and specID framework (cf.

Section [3.3]) turns out to be rather round-about if implemented in SLICC. Such

cache-level bookkeeping is thus done at the base C++ level itself.

-- src/mem/ruby/system/CacheMemory.(hh/cc)

- Use an std::map<NodeID, int> mapping for the isSp vector

- Add methods to add/remove a new TLS node, query specID of a

node, get all younger specIDs, get all younger speculative sharers etc.

-- src/mem/protocol/RubySlicc_Types.sm

- Declare the methods de�ned in CacheMemory for compatibility

with SLICC.

- These methods are invoked by the cache coherence protocol (TLS_.*\.sm

�les) to help trigger the appropriate transition and action

4.4 End User

In order to access the instructions spstart and spcommit, these must be exposed

from gem5 via an includable header �le and a linkable assembly �le.

-- util/m5/m5op.h

- Declare the two functions that are callable from user-space code

-- util/m5/m5ops.h
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- Map opcode bits to the functions declared in the two_byte_opcodes.isa

�le

-- util/m5/m5op_x86.S

- De�ne the callable functions by inserting the mapped opcode bits

into the assembly code

To summarize the utility of these instructions, Figure. [4.2] shows the high level

actions that occur during the execution of each TLS thread. It is expected that

appropriate source transformation is done so that this is mapped onto a parallel

runtime such as pthread, and that appropriate rollback or sequential fall-back is

e�ected in case a squash is detected. These are explained in more detail in Section

[5.1].

As is indicated by the meaning of the two bits TLS and SQ (cf. Table [3.1]),

two sequences are possible for the pair:

• Successful Commit: (00) -> (10) -> (00)

• Squashed Commit : (00) -> (10) -> (11) -> (01) -> (00)

This implementation was tested using the Ruby Random Tester that comes

with Gem5, and with a few micro-benchmarks written speci�cally to test the

functionality of the intended design. Analysis based on these micro-benchmarks

is done in Chapter [5].
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Figure 4.2: Execution of a single TLS thread
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Chapter 5

Analysis

This Chapter presents an analysis of performance of the implemented TLS frame-

work in gem5 from the perspective of the end user. For this purpose, statically

compiled C binaries were run on gem5 in its SE (Syscall Emulation) mode, with

a �xed set of microarchitectural parameters (cf. Table [5.1]). These values have

in no way been biased towards obtaining speedup for TLS speci�cally. However,

performance may vary upon changing these parameters. For example, it is intu-

itive that reducing the cache size increases the probability of a capacity miss, and

hence, the probability of a squash (smaller maximum speculative context), which

hurts performance (cf. Subsection [3.4.2]).

Section [5.1] details the parallelizing environment used to leverage TLS, and

also outlines two static approaches to handle a squash. Section [5.2] describes

the behaviour of the system when subject to a few common memory patterns.

These Sections strive to give an insight as to where TLS can be bene�cial. Like-

wise, Section [5.3] presents some performance details of running a few SPEC 2006

benchmarks [17] on a commercial TLS implementation - BlueGene Q [13]. These

Parameter Value

CPU Type Timing - gem5 speci�c
Memory System Type Ruby - gem5 speci�c

ISA X86
CPU Speed 2 GHz
Memory Size 512 MB
L1 I Size 32 KB
L1 D Size 64 KB

L1 Associativity 2
Cache Line Size 64 B

L2 Size 2 MB
L2 Associativity 8

Table 5.1: Fixed microarchitectural parameters in gem5



benchmarks, however, were not run on the gem5 implementation because of a lack

of compiler support to render the source code into a compatible TLS binary.

5.1 Pthread Environment

The pthread paradigm was chosen in preference over others such as OpenMP and

Cilk simply for the reason that the former provides much more �exibility and con-

trol than the latter two. Moreover, gem5 supports a light-weight implementation

of most of the commonly used functions of pthreads, called m5_threads. All that

is necessary is to link the pthread user code with m5_threads before passing it on

to gem5.

As can be seen in Figures [5.1] and [5.2], the role of the pthread environment

is as follows:

• Wrap the loop body to be parallelized into a function.

• Insert TLS calls into the loop body.

• Manage spawning and joining of threads subject to the following:

� In-order spawn to facilitate correct detection of squash. This is required
because the architecture assigns specIDs on a �rst come �rst serve basis,
i.e., for the squash detection mechanism to work correctly, it is essential
that an earlier/older speculative thread is assigned a lower specID than
a later/younger thread.

� In-order commit to preserve program semantics in the case where a
squash is detected.

When it comes to preserving program semantics in the case of a squash, in a

static environment, there are two approaches that serve as the extremes of possi-

bilities, viz. basic and aggressive. The former, as depicted in Figure [5.1], resorts

to sequential execution from the latest successful commit prior to the earliest de-

tected squash. The latter, as depicted in Figure [5.2], performs a rollback and

retry in case a squash is detected. Though the latter approach may succeed in

extracting more parallelism, if present, from the loop, it comes at the cost of hav-

ing to save the speculative context before the start of each TLS thread, thereby
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Figure 5.1: A conservative approach of sequential fallback in case of squash. The
TLS Thread Flow process is shown in Figure [4.2].
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Figure 5.2: An aggressive approach of rollback and retry in case of squash. The
TLS Thread Flow process is shown in Figure [4.2].
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causing an overhead even in the case of execution of a perfectly parallelizable loop.

This is quanti�ed in Subsection [5.2.1].

5.2 Micro-benchmarks

A few micro-benchmarks were written in C to test out the functionality of the

intended design and to demonstrate the utility of TLS. These memory access

patterns were then manually transformed (cf. Section [5.1]) to incorporate pthreads

and TLS, and were statically compiled and linked with m5_threads for execution

with gem5. gettimeofday was used to measure the execution time of the Region

Of Interest (ROI). For sequential code, the ROI is nothing but the loop itself, but

for parallelized code, the ROI also includes the thread creation and join sections.

For each of these micro-benchmarks, three independent runs were conducted: the

sequential version (serial), the parallel version (pthread) and the parallel version

complete with calls and control �ow to utilize TLS (pthread+TLS ). A separate

printing of the output was done outside the critical section as a means of manually

verifying program semantics for all the three versions.

Also included are inherently sequential paradigms where TLS would obviously

squash. This is simply to re-iterate the fact it is not prudent for the compiler or the

end-user to over-optimistically parallelize without �rst doing atleast a preliminary

analysis of the source code.

5.2.1 Array Modi�cation

Here, modi�cation of several memory locations is attempted in parallel. However,

as is the case when pointers or variable inputs are involved, parallelizing compilers

refuse to extract any parallelism from such loops (irrespective of whether the

iterations are actually independent or not) simply because of the presence of inter-

iteration may dependence. With TLS, this could be overcome.

As each core has its own private L1 cache, parallelism can be attempted at

the granularity of a cache line. Consider the cases where the array modi�cations
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occur to di�erent cache lines, to di�erent words in the same cache line, and to the

same word. It is to be noted that the cache line size has been �xed at 64 bytes,

and that the size of int is 4 bytes.

Di�erent cache lines

for (i = 0; i < N; i++) {

int k;

for (k = 0; k < LOOP_BODY_SIZE; k++) {

a[16*i+N-1] = k;

}

}

It is not feasible to perform a must dependence analysis on this code, especially if

the value of N is dependent upon the input. However, when N is less than 16, it is

clear (to a human or to a very intelligent compiler) that the memory writes would

occur at distinct cache lines. This means that this code does possess parallelism,

which can be exploited by TLS.

Each version of this code, viz. serial, pthread and pthread+TLS, was run

independently with a wide dynamic range of LOOP_BODY_SIZE. For the TLS

version, both strategies to handle squash (cf. Section[5.1]) were evaluated. Figures

[5.3] and [5.4] show the variation of speedup of the parallel versions of the code over

the serial version with di�erent LOOP_BODY_SIZE, when the basic sequential

fallback and the aggressive rollback and retry approaches are used for the TLS

version respectively. Figure [5.5] shows the pro�le of the speedup (slowdown) that

TLS overhead causes when compared to a bare-bones pthread version, again, with

both the squash handling strategies.

As can be seen, it is not worth parallelizing loops that have a small loop

body. One possible approach would hence be to unroll the loop appropriately

before setting it up for parallelization. It may appear that TLS causes signi�cant

overhead in the case of rollback, but this is a worst-case unoptimized software

situation. The source of the overhead is actually the setjmp framework used
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Figure 5.3: Speedup of parallel codes when compared with the serial version, with-
out the use of setjmp
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Figure 5.4: Speedup of parallel codes when compared with the serial version, with
the use of setjmp

Figure 5.5: TLS overhead over pthread version - with (right) and without (left)
out the use of setjmp
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to store a context for possible restoration later. Setjmp ends up saving all the

registers as part of the context, and this can typically include registers that are

not live-in at that program point. As this is wasteful, it would be worthwhile for

the compiler to explicitly save only the live-in registers, if it analyses that the loop

is not perfectly independent. The �gure to the left in Figure [5.5] clari�es this

position that TLS in itself causes negligible overhead in the parallelizing scenario.

As mentioned earlier in this use-case, it must be noted that an auto-parallelizing

compiler would typically not schedule such a loop for parallelization because of

the presence of may dependence and that the value of N may be dependent upon

the input. Therefore, the gain in performance when using TLS may very well be

assessed based on the serial version in this use-case.

The geometric means of these numbers are available in Table [5.2].

Di�erent words - same cache line

for (i = 0; i < N; i++) {

int k;

for (k = 0; k < LOOP_BODY_SIZE; k++) {

a[i] = k;

}

}

Here, as the same cache line is being modi�ed, using TLS results in a squash for

every thread after the �rst. Even if a sequential fallback is done after the second

thread, the overall code is observed to be slower than the sequential version because

of the overhead involved in pthread.

However, when N is greater than 16, if su�cient analysis is done by the com-

piler, it is possible to unroll this loop, or equivalently, e�ect the following trans-

formation to then pass to TLS:

for (i = 0; i < N; i += 16) {

int k;
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for (k = 0; k < LOOP_BODY_SIZE; k++) {

int j;

for (j = i; j < i+16; j++) {

a[j] = k;

}

}

}

Same word and cache line

for (i = 0; i < N; i++) {

int k;

for (k = 0; k < LOOP_BODY_SIZE; k++) {

a[0] = k;

}

}

In this case, no amount of source transformation would render parallelism possible;

TLS always shows slowdown because of squash.

5.2.2 Array Access

The experimental setup and intent are almost identical as in Subsection [5.2.1].

However, as there is no modi�cation involved, only two use-cases are worth con-

sidering: one where parallel reads are attempted on di�erent cache lines, and the

other, on the same cache line.

Di�erent Cache Line Access

for (i = 0; i < N; i++) {

int k, x;

for (k = 0; k < LOOP_BODY_SIZE; k++)

x = a[16*i+N-1];
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}

}

Same Cache Line Access

for (i = 0; i < N; i++) {

int k, x;

for (k = 0; k < LOOP_BODY_SIZE; k++)

x = a[i];

}

}

As the intent of this analysis is primarily to gauge utility of the implemented TLS

architecture, the sequential fallback strategy was implemented for these use-cases.

The rollback and retry strategy su�ers from software overhead because of setjmp

(cf. Subsection [5.2.1]), thus the former strategy is more representative of the

performance of the underlying architecture.

As is expected, it can be seen from Figures [5.6] and [5.7] that both these

use-cases do return near identical speedup pro�les, and that the overhead due to

TLS is indeed negligible (Figure [5.8]).

Table [5.2] summarizes the performance data for the array access and array

modi�cation use-cases where no squash is detected. As LOOP_BODY_SIZE can

often be determined statically by the compiler, also included is data pertaining to

the case where a speedup of atleast 1 is achieved w.r.t. the serial version.

5.2.3 Migratory and Producer-Consumer

Migratory

a[0] = N;

for (i = 0; i < N; i++) {

int k;

for (k = 0; k < LOOP_BODY_SIZE; k++) {

38



Figure 5.6: Speedup of parallel codes when compared with the serial version, for
the di�erent cache line access use case

Use-Case TLS Speedup (Geometric Mean)

# of
Setjmp

LOOP_BODY_SIZE ≥ 100 All
Cores vs. Serial vs. Parallel vs. Serial vs. Parallel

2
Y 1.76 0.91 0.87 0.94

Write N 1.93 1.00 0.92 1.00
a[16*i+N-1]

3
Y 2.53 0.91 1.12 0.93
N 2.77 1.00 1.20 1.00

Read 2 N 1.76 1.00 0.87 1.00
a[16*i+N-1] 3 N 2.53 1.00 1.14 1.00

Read 2 N 1.93 1.00 0.92 1.00
a[i] 3 N 2.77 1.00 1.20 1.01

Table 5.2: Summary of TLS speedup behaviour in absence of squash
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Figure 5.7: Speedup of parallel codes when compared with the serial version, for
the same cache line access use case

Figure 5.8: TLS overhead over pthread version - for the di�erent cache line access
use-case (left) and for the same cache line access use-case (right)
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a[16*(i+1) + N-1] = a[0];

}

}

In this case, the cache line that contains a[0] is written to precisely once, and all

subsequent accesses to this line are reads. Thus, this particular use case does have

parallelism that can be exploited. However, a squash is observed because, from

the perspective of the architecture, there is no guarantee that the core which wrote

to the a[0] line does not do so again. In other words, the a[0] line is in M state,

and remains so unless evicted or invalidated. Thus, no further speculative reads

(or writes) are possible to this line unless it gets �ushed from the modifying cache.

If speedup has to be achieved in this case, compiler/end-user support is necessary.

A comparable scenario occurs in the case of the producer consumer. Moreover, if

the stride width is indeterminable statically, pro�ling becomes necessary.

Producer-Consumer

for (i = 0; i < N; i++) {

int k;

for (k = 0; k < LOOP_BODY_SIZE; k++) {

if (i == N-1) {

b[16*i + N-1] = a[16*(i-(N-1)) + N-1];

} else {

b[16*i + N-1] = 1;

}

a[16*i + N-1] = i + N-1;

}

}

As can be seen from the behaviour of the implementation, it is worth re-stating

that the TLS architecture only guarantees correctness but not speedup. It is the

role of the end-user - together with the compiler - to ensure that squashes are kept

to a minimum. This is not singular to this implementation, but holds true for
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TLS architectures in general, as, for instance, is described in Section [5.3].

5.3 BlueGene Q

As mentioned earlier, due to a lack of compiler support to render code into a TLS

binary that is compatible with the implementation presented in this work, analysis

of only micro-benchmarks was done. However, to provide further insight into the

nature of TLS execution so that it may be utilized by the compiler/end-user more

e�ciently, this Section presents analysis based on a few experiments done on the

BlueGeneQ system.

This was actually done as part of another related work [16] but is being repro-

duced here for cohesion.

5.3.1 Input Dependent Speedup

To determine variation in TLS speedup/slowdown of a given program when subject

to di�erent inputs, experiments were done on three SPEC 2006 benchmarks, viz.

fp_lbm, hmmer and h264. A bash script was used to insert TLS or OpenMP

pragma calls to some of the loops and to insert calls to measure number of cycles

using bgpm, which is a C interface to access hardware performance measurement

counters on BlueGene. A compiler that supports these pragma calls on BG/Q,

bgxlc_r, was used. Speedup comparable to openMP speedup was observed w.r.t.

fp_lbm but slowdowns were observed for hmmer and h264. Each candidate loop

was executed speculatively and non-speculatively in separate runs and this was

done for every input. The cycles measured during every such execution are for the

execution of the corresponding loop alone.
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As the speedup varies signi�cantly depending upon the loop, a log box-plot

of the absolute value of speedup is shown so that e�ect of input on speedup (or

slowdown) can be seen. The inputs used for fp_lbm were ref, train and test ; those

for hmmer were bombesin, leng100, nph3 and retro; and those for h264 were fore-

man_ref_encoder_baseline, foreman_ref_encoder_main, foreman_test_encoder_baseline,

foreman\_train_encoder_baseline and sss_encoder_main.

While speedup is largely independent of inputs for fp_lbm, this is not the case

for hmmer and h264. (It must be noted that a logarithmic scale was used for the

box-plots to accommodate the high dynamic range of the values.)

5.3.2 Speedup across multiple invocations of a loop

It is possible that extent of TLS speedup/slowdown of a loop depends not only on

the input but also on the calling context. To measure this, each loop invocation

was executed speculatively and non-speculatively in separate runs and this was

done for every input. However, for fp_lbm, it was observed for two of the loops

that speedup was largely independent of context and input.
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Chapter 6

Conclusion

As is the case with any optimization or design that hopes to improve a certain

metric of code execution, this work satis�es the three main requirements:

1. Correctness. The main attraction of TLS lies in the fact that it guarantees
correctness of execution by detecting con�icts at runtime. This is done by
embedding the specID framework into the cache coherence protocol, which
ensures that the directory automatically issues a squash to all the cores
that have made use of stale data. (cf. Chapter [3] and Appendix [A]). In
Section [5.2], all relevant memory locations were printed out to manually
verify correctness for all the micro-benchmarks that were written.

2. Demonstrated (cf. Section [5.2]) improvement in performance and its
scope. The term improved performance, in this context, has two compo-
nents:

(a) TLS is used only in the cases where auto-parallelizers fail to paral-
lelize a loop. There are several scenarios - involving pointers and input-
dependent parameters - where auto-parallelizing compilers fail to ex-
tract parallelism. It has been demonstrated in such cases that the use of
TLS results in signi�cant speedup when compared to the otherwise se-
quential execution. Even if the code is written to explicitly parallelize
loops in such cases, there is no signi�cant di�erence in performance
between this explicit parallel version and the TLS version.

(b) TLS is used as a replacement for an existing parallelizing framework.
It has been demonstrated that the underlying architectural implemen-
tation, by itself, results in an identical performance pro�le when used
with or without TLS, when used on codes for which it is semantically
correct to parallelize without TLS.

However, the scope of achieving speedup cannot be generalized to all pro-
grams, as it is meaningless to try and parallelize programs that are inherently
sequential in nature.

3. Ease of adoptability. The bare-bones interface for software to interact with
the processor to leverage TLS has been designed and implemented in a very
simplistic manner (cf. Section [4.4]). However, as mis-speculation ham-
pers performance signi�cantly depending upon how often a squash occurs
and how the squash-handling is done, a greater challenge lies in providing
compiler support that provides a guaranteed speedup (or atleast, one that
guarantees that there is no slowdown) for any given code.



As it is very clear that compiler support is a must to properly utilize TLS,

the following is a brief summary of the insights gained through this work regard-

ing program analysis in a TLS environment, and, resulting suggestions for the

compiler/end-user to incorporate.

Like every other parallel framework, it is imprudent to attempt parallelization

when the the size of the loop body is small. The notion of small is obviously

dependent on the entire system, but this can be easily calibrated; either indepen-

dently or by means of a pro�ling run. With the framework implemented in this

work, it is recommended that a minimum loop body size of ≈100 load/stores be

used (cf. Section [5.2]). On the other hand, care must be taken that the specu-

lative context size doesn't exceed the L1 capacity. This is because, as described

in Subsection [3.4.2], there is no provision to store the speculative state of evicted

blocks, and hence, a speculative context over�ow would cause performance degra-

dation due to squash. As extracting these parameters from source code is often

possible statically (infrastructure to do this in LLVM [21] - using the opt tool -

has been implemented as part of another related work [16]), loop unrolling can be

used to arrive at an optimal value.

However, it is certainly not su�cient to halt analysis once this optimal size has

been reached. The compiler must also be cache line aware, i.e., take into account

the granularity of cache accesses to minimize false con�icts, for instance, in the

second use-case in Subsection [5.2.1].

If the squash-handling mechanism is some version of rollback and retry, another

dimension gets added to this trade-o� in deciding as to how much of a loop has to

be speculated upon at a time. To elaborate, when a rollback/retry is involved, it

becomes necessary to save and restore context. As it is wasteful to simply save and

restore all registers as part of the context, the compiler must involve only the live-in

registers at the program point and that too only when it analyzes that a squash is

probable. For instance, upon saving all the registers using setjmp, a performance

drop of ≈10% was observed (cf. Subsection [5.2.1]) when no such saving was

actually required. Thus, if a squash is probable, another way of partitioning the

loop for TLS is by minimizing the number of live-in registers in the resulting
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critical section.

Further, if it is possible for the compiler to detect a strided dependency, it

is necessary for it to vary the TLS spawn width it issues so as to minimize the

probability of a squash. However, performing such analyses statically can be un-

reliable as well as expensive. For example, in the migratory/producer-consumer

use-cases as shown in Subsection [5.2.3], it is impossible to determine stride in

the presence of input-dependent parameters. Coupled with the fact that speedup

is dependent on the loop and input, as evidenced by Section [5.3], and in some

cases, possibly dependent on the execution context as well, it becomes necessary

to incorporate dynamic pro�ling support to complete this cost-bene�t analysis. To

give a simple illustration, assuming input dependence and context independence

- as was found in Subsections [5.3.1] and [5.3.2], the following basic pro�ling may

be done: If there are multiple calls to a loop, execute the loop sequentially the

�rst time, speculatively the second time and measure the speedup; if speedup is

observed, execute the remaining invocations of the loop speculatively, else, fall-

back to sequential execution. This way, it is less likely that TLS is attempted on a

loop where no speedup can be achieved. Having mentioned that, it must be noted

that program pro�les vary signi�cantly from the sample of the SPEC 2006 and

the micro-benchmarks that were used in this work.

However, one of the prime utilities of TLS is to enable compilers to optimisti-

cally parallelize. Spending a lot of time on analyses of code defeats the purpose

as it may still turn out that a given loop was simply not �t to be parallelized in

any manner. As it may be obvious to the end-user if a given loop is inherently

sequential, it becomes useful to provide a framework of annotations so that hints

can be given to the compiler.

There is also scope for further improving this gem5 implementation. For ex-

ample, another design choice is to use separate (physical/virtual) links to service

messages that are needed only to satisfy speculative requests, as, it is undesirable

that non-TLS requests get starved because of all the resources (bandwidth, bu�ers

etc.) being used up by TLS requests alone. The utility of this design choice may

become more apparent when a more detailed scalability analysis is done.
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As an example of an application speci�c optimization, to reduce false con�icts

in the migratory use-case (Subsection [5.2.3]), cache (line) �ush can be e�ected if

the architecture can get a hint that a given line is going to be written precisely

once. Or, more simply, tra�c can be traded for squashes by employing data

forwarding from an older speculative core that writes to a line to a newer one.

Moreover, as Transactional Memory (TM) is based on a similar design princi-

ple of speculation, this work may be extended to support it. Lastly, bringing some

dynamism to the runtime would allow for much more e�cient squash handling

mechanisms than the static approaches that were discussed in Section [5.1]. For

example, instead of retrying or simply giving up on parallelism, synchronization

primitives can be built upon this framework.

In a nutshell, several possibilities exist in this design space that involves compile

time, compiler complexity, ease of programming, architecture (design, implemen-

tation and veri�cation) complexity, and run time. Ideally, though TLS provides

rollback support to ensure correctness, this should be used as sparingly as possible.
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Appendix A

Cache Coherence Protocol State Machine

This detailed state machine has been written in a manner that makes it easy to

implement in gem5, which in turn uses a DSL (Domain Speci�c Language) called

SLICC. As the emphasis is on debug-ability, there is some redundancy w.r.t. some

transient states and messages.

To make the terminology used clearer, an example trace of the protocol with

a two core system is explained in the following table.

L1 Cache - 0 L1 Cache - 1 L2 Cache

0 State: M

State: I

State: M

Event: Store

Action: Allocate a Data Block

(Trigger an L1 Replacement if needed)

Allocate a TBE (Similar to MSHR)

Issue a GetM message to L2

Pop the request

Next State: I_MAD

1 State: M State: I_MAD

State: M

Event: GetM

Action:

Forward request to Owner

Make requester Owner

Mark requester as not Speculative

Set block as most recently used

Pop the request

Next State: M

2

State: M

State: I_MAD State: M

Event: Fwd_GetM

Action:

Send Data to Requester

Deallocate L1 Block

Pop the request

Next State: I

3 State: I

State: I_MAD

State: M

Event: Data_Core

Action: Write Data to L1 Block

Indicate Store Hit

Deallocate TBE

Pop the request

Wakeup Dependants

(Process stalled events)

Next State: M

The coherence messages used in this implementation are mentioned in the next

two tables.



Message Description of L1 Request

GetS Get Shared

GetM Get Modi�ed

GetInstr Get Instruction

GetSpS Get Speculatively Shared

GetSpM Get Speculatively Modi�ed

UpdateAsSq Indicate that Block has been Invalidated post Squash

ToM Upgrading to M

ToSpM Going to SpM

ToSpMData Going to SpM with Writeback Data

ToSp Going to SpS/SpE

FromSp Commit from SpS/SpE/SpM

EtoI Indicate that E Block wishes to be Invalidated

MtoI Send Writeback Data to indicate that M Block wishes to be invalidated

StoI Indicate that S Block wishes to be Invalidated

Fwd_GetM Forward of an unserviced forwarded GetM request

SquashReq Indicate that core is not speculative anymore

DummyFwd Forward of an unserviced forwarded dummy request

Message Description

Data_Excl Exclusive Data from L2

Data_Ack Data with an appended Ack count from L2

Data_NoAck Data indicating no more Acks are necessary from L2

Data_Core Inter-cache transfer of Data

NumAcks Ack count from L2

Ack Ack from L2

Squash Squash from L2

Inv Invalidate from L2

EtoS Downgrade from L2

InvAck Invalidation Ack from L1

Mem_Data Data from Memory

Mem_Ack Ack from Memory

Mem_Inv Invalidate from Memory
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A.1 L1 Cache

Having mentioned the meaning of the 7 base states in Table [3.2], the transient

states are described in the following table.

State Meaning

I_SD Issued GetS, waiting for data

I_SD_I Need to invalidate after wait in I_SD is satis�ed

I_MAD Issued GetM, waiting for data and ack(s)

I_MA Received data, waiting for ack(s)

I_MA_S Need to share after wait in I_MA is satis�ed

I_MA_I Need to invalidate after wait in I_MA is satis�ed

I_MA_S_I Need to invalidate after wait in I_MA_S is satis�ed

I_SpSD Issued GetSpS, waiting for data

I_SpMD Issued GetSpM, waiting for data

E_IA Sent EtoI, waiting for Ack

M_IA Sent MtoI, waiting for Ack

S_IA Sent StoI, waiting for Ack

SpM_MAa Issued FromSp, waiting for all younger sharers to invalidate

S_MAa Issued ToM, waiting for all (non-speculative) sharers to invalidate

S_MA_S Need to share after wait in S_MA is satis�ed

S_MA_I Need to invalidate after wait in S_MA is satis�ed

S_MA_S_I Need to invalidate after wait in S_MA_S is satis�ed

S_SpMA Issued ToSpM, waiting for ack

S_SpEA Issued ToSp, waiting for ack

S_SpSA Issued ToSp, waiting for ack

A.1.1 Processor Triggered Events

Table 1.1a Load / Ifetch SpLoad Store SpStore

I

Alloc. D/I Block Alloc. D Block Alloc. D Block Alloc. D Block

Alloc. TBE Alloc. TBE, GetSpS Alloc. TBE Alloc. TBE, GetSpM

GetS, Pop Set isSp, Pop GetM, Pop Set isSp, Pop

I_SD I_SpSD I_MAD I_SpMD

S

Load Hit ToSp, Alloc. TBE Alloc. TBE ToSpM, Alloc. TBE

Pop Set isSp, Pop ToM, Pop Set isSp, Pop

- S_SpSA S_MAa S_SpMA
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Table 1.1a Load / Ifetch SpLoad Store SpStore

E

Load Hit ToSp, Alloc. TBE Alloc. TBE ToSpM, Alloc. TBE

Pop Set isSp, Pop ToM, Pop Set isSp, Pop

- S_SpEA S_MAa S_SpMA

M

Load Hit ToSpM with Data Store Hit ToSpM with Data

Pop Load Hit, Set isSp Pop Store Hit, Set isSp

Pop Pop

- SpM - SpM

SpS

Load Hit Load Hit FromSp, ToM ToSpM

FromSp Pop Reset isSp Alloc. TBE

Reset isSp Alloc. TBE Pop

Pop Pop

S - S_MAa S_SpMA

SpE

Load Hit Load Hit FromSp, ToM ToSpM

FromSp Pop Reset isSp Alloc. TBE

Reset isSp Alloc. TBE Pop

Pop Pop

E - S_MAa S_SpMA

SpM

Load Hit Load Hit Store Hit Store Hit

FromSp Pop FromSp Pop

Reset isSp Reset isSp

Alloc. TBE Alloc. TBE

Pop Pop

SpM_MAa - SpM_MAa -

I_SD

I_SD_I

I_MAD

I_MA

I_MA_S

I_MA_I

I_MA_S_I

I_SpSD

I_SpMD

E_IA Stall Stall Stall Stall

M_IA

SpM_MAa

S_IA

S_MAa

S_MA_S

S_MA_I

S_MA_S_I

S_SpSA

S_SpMA

S_SpEA - - - -

Table 1.1b
SpSquash L1_Replacement

assert !isSp isSp

I

Dummy Store Hit
Ill Ill

Pop

- - -

S
Ill

StoI, Alloc. TBE
Ill

Dealloc. Block

- S_IA -

E
Ill

EtoI, Alloc. TBE
Ill

Dealloc. Block

- E_IA -

M
Ill

MtoI with Data
Ill

Alloc. TBE

- M_IA -

SpS

Dummy Store Hit StoI, Alloc. TBE Squash to core and Dir

UpdateAsSq Dealloc. Block Reset isSp
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Table 1.1b
SpSquash L1_Replacement

assert !isSp isSp

Dealloc. Block, Pop Dealloc. Block

I S_IA I

SpE

Dummy Store Hit EtoI, Alloc. TBE Squash to core and Dir

UpdateAsSq Dealloc. Block Reset isSp

Dealloc. Block, Pop Dealloc. Block

I E_IA I

SpM

Dummy Store Hit MtoI with Data Squash to core and Dir

UpdateAsSq Alloc. TBE Reset isSp

Dealloc. Block, Pop Dealloc. Block

I M_IA I

I_SpSD Dummy Store Hit

I_SpMD UpdateAsSq

S_SpSA Dealloc. TBE Stall Ill

S_SpMA Dealloc. Block, Pop

S_SpEA Wake Dependants

I - -

I_SD

Ill Stall Ill

I_SD_I

I_MAD

I_MA

I_MA_S

I_MA_I

I_MA_S_I

E_IA

M_IA

SpM_MAa

S_IA

S_MAa

S_MA_S

S_MA_I

S_MA_S_I - - -

A.1.2 Non-Processor Triggered Events

Table 1.2a Data_Excl Data_Ack Data_NoAck Data_Core

I_SD

Update L1, Load Hit

Ill

Update L1, Load Hit Update L1, Load Hit

Dealloc. TBE Dealloc. TBE Dealloc. TBE

Pop Pop Pop

Wake Dependants Wake Dependants Wake Dependants

E - S S

I_SD_I

Update L1, Load Hit

Ill

Update L1, Load Hit Update L1, Load Hit

Dealloc. TBE, L1 Dealloc. TBE, L1 Dealloc. TBE, L1

Pop Pop Pop

Wake Dependants Wake Dependants Wake Dependants

I - I I

I_MAD
Ill

Update L1, Update L1, Store Hit Update L1, Store Hit

Record pending Dealloc. TBE Dealloc. TBE

Acks in TBE, Pop Pop

Pop Wake Dependants Wake Dependants

- I_MA M M

I_SpSD

Update L1, Load Hit

Ill

Update L1, Load Hit Update L1, Load Hit

Dealloc. TBE Dealloc. TBE Dealloc. TBE

Pop Pop Pop

Wake Dependants Wake Dependants Wake Dependants

SpE - SpS SpS

I_SpMD
Ill Ill

Update L1, Store Hit Update L1, Store Hit

Dealloc. TBE Dealloc. TBE

Pop Pop

Wake Dependants Wake Dependants
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Table 1.2a Data_Excl Data_Ack Data_NoAck Data_Core

- - SpM SpM

S_MAa
Ill Ill Ill

Update L1, Store Hit

Dealloc. TBE

Pop

Wake Dependants

- - - M

S_MA_I
Ill Ill Ill

Update L1, Store Hit

MtoI

Pop

- - - M_IA

I

Ill Ill Ill Ill

S

E

M

SpS

SpE

SpM

I_MA

I_MA_S

I_MA_I

I_MA_S_I

E_IA

M_IA

SpM_MAa

S_IA

S_MA_S

S_MA_S_I

S_SpSA

S_SpMA

S_SpEA - - - -

Table 1.2b NumAcks Ack Squash EtoS

I
Ill Pop Ill Ill

- - - -

S
Ill Ill

Squash to Core

IllDealloc. L1

Reset isSp, Pop

- - I -

E
Ill Ill

Squash to Core Pop

Reset isSp, Pop

- - - S

M
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

SpS
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

SpE
Ill Ill

Squash to Core Pop

Reset isSp, Pop

- - - SpS

SpM
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_SD
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_SD_I
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_MAD
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_MA
Ill Ill

Squash to Core
Ill
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Table 1.2b NumAcks Ack Squash EtoS

Reset isSp, Pop

- - - -

I_MA_S
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_MA_I
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_MA_S_I
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_SpSD
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

I_SpMD
Ill Ill

Squash to Core
Ill

Reset isSp, Pop

- - - -

E_IA
Ill

Dealloc. TBE Squash to Core

PopPop Reset isSp

Wake Dependants Pop

- I - -

M_IA
Ill

Dealloc. TBE, L1 Squash to Core

IllPop Reset isSp

Wake Dependants Pop

- I - -

SpM_MAa

Record pending Dealloc. TBE Squash to Core

IllAcks in TBE, Pop Reset isSp

Pop Wake Dependants Pop

- M - -

S_IA
Ill

Dealloc. TBE Squash to Core

IllPop Reset isSp

Wake Dependants Pop

- I - -

S_MAa

Record pending Store Hit Squash to Core

IllAcks in TBE, Dealloc. TBE, Pop Reset isSp

Pop Wake Dependants Pop

- M - -

S_MA_S

Record pending Store Hit, Data to Squash to Core

Ill

Acks in TBE, Recorded and L2, Reset isSp

Pop Dealloc. TBE and L1, Pop

Pop

Wake Dependants

- S - -

S_MA_I

Record pending Store Hit Squash to Core

Ill
Acks in TBE, Data to Recorded Reset isSp

Pop MtoI with data Pop

Pop

- M_IA - -

S_MA_S_I

Record pending Store Hit, Data to Squash to Core

Ill

Acks in TBE, Recorded and L2, Reset isSp

Pop Dealloc. TBE and L1, Pop

Pop

Wake Dependants

- I - -

S_SpSA
Ill

Load Hit Squash to Core Fwd back

Dealloc TBE, Pop Reset isSp to L2

Wake Dependants Pop Pop

- SpS - -

S_SpMA
Ill

Store Hit Squash to Core Fwd back

Dealloc TBE, Pop Reset isSp to L2

Wake Dependants Pop Pop

- SpM - -

S_SpEA
Ill

Load Hit Squash to Core Fwd back

Dealloc TBE, Pop Reset isSp to L2
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Table 1.2b NumAcks Ack Squash EtoS

Wake Dependants Pop Pop

- SpE - -

Table 1.2c Dummy_Fwd Fwd_GetS/Fwd_GetInstr Fwd_GetM

I

Fwd back to L2 Fwd back to L2 Fwd back to L2

Pop Pop Pop

- - -

S

Data to Req Data to Req
Ill

Pop Pop

- - -

E
Ill Ill Ill

- - -

M

Data to Req Data to Req, L2 Data to Req

Pop Pop Dealloc. L1, Pop

- S I

SpS
Ill Ill Ill

- - -

SpE
Ill Ill Ill

- - -

SpM

Data to Req Data to Req, L2 Data to Req

Reset IsSp Reset IsSp Reset IsSp

Pop Pop Dealloc. L1, Pop

- S I

I_SD

Fwd back to L2 Fwd back to L2 Fwd back to L2

Pop Pop Pop

- - -

I_SD_I
Ill Ill Ill

- - -

I_MAD
Stall Stall Stall

- - -

I_MA
Stall Stall

Record Req

Pop

- I_MA_S I_MA_I

I_MA_S
Stall Stall

Record Req

Pop

- - I_MA_S_I

I_MA_I
Ill Ill Ill

- - -

I_MA_S_I
Stall Stall Ill

- - -

I_SpSD
Ill Ill Ill

- - -

I_SpMD
Ill Ill Ill

- - -

E_IA
Ill Pop Pop

- - -

M_IA

Data to Req Data to Req Data to Req

Pop Pop Pop

- - -

SpM_MAa
Ill Ill Ill

- - -

S_IA

Data to Req Data to Req Ill

Pop Pop

- - -

S_MAa
Stall Stall

Record Req

Pop

- S_MA_S S_MA_I

S_MA_S
Stall Stall

Record Req

Pop

- - S_MA_S_I

S_MA_I
Stall Stall Stall

- - -
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Table 1.2c Dummy_Fwd Fwd_GetS/Fwd_GetInstr Fwd_GetM

S_MA_S_I
Stall Stall Ill

- - -

S_SpSA

Fwd back to L2 Fwd back to L2 Fwd back to L2

Pop Pop Pop

- - -

S_SpMA

Fwd back to L2 Fwd back to L2 Fwd back to L2

Pop Pop Pop

- - -

S_SpEA

Fwd back to L2 Fwd back to L2 Fwd back to L2

Pop Pop Pop

- - -

Table 1.2d
Inv InvAck

From L2/L1 From L1 Last Ack <-else

I

InvAck to Req
Ill Ill Ill Ill

Pop

- - - - -

S

InvAck to Req
Ill Ill Ill Ill

Dealloc. L1, Pop

I - - - -

E

InvAck to Req
Ill Ill Ill Ill

Dealloc. L1, Pop

I - - - -

M

MtoI with Data
Ill Ill Ill Ill

Alloc. TBE, Pop

M_IA - - - -

SpS

InvAck to Req

Ill Ill Ill IllReset isSp

Dealloc. L1, Pop

I - - - -

SpE

InvAck to Req

Ill Ill Ill IllReset isSp

Dealloc. L1, Pop

I - - - -

SpM

MtoI with Data

Ill Ill Ill IllReset isSp

Alloc. TBE, Pop

M_IA - - - -

I_SD
InvAck to Req Ill Ill Ill Ill

I_SD_I - - - -

I_SD_I
Stall Ill Ill Ill Ill

- - - - -

I_MAD
Stall

InvAck to Req ack�
Ill Ill

Pop Pop

- - - - -

I_MA
Stall Ill Ill

ack� ack�

Dealloc. TBE Pop

Store Hit, Pop

Wake Dependants

- - - M -

I_MA_S
Stall Ill Ill

ack� ack�

Dealloc. TBE Pop

Store Hit

Data to L2, Pop

Wake Dependants

- - - S -

I_MA_I
Stall Ill Ill

ack� ack�

Store Hit Pop

Data to Recorded

MtoI with Data

Pop

- - - M_IA -
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Table 1.2d
Inv InvAck

From L2/L1 From L1 Last Ack <-else

I_MA_S_I
Stall Ill Ill

ack� ack�

Store Hit Pop

Data to Recorded, L2

Dealloc. TBE, L1

Pop

Wake Dependants

- - - I -

I_SpSD
Ill Ill Ill Ill Ill

- - - - -

I_SpMD
Ill Ill Ill Ill Ill

- - - - -

E_IA
Stall

InvAck to Req
Ill Ill Ill

Pop

- - - - -

M_IA
Stall Ill Ill Ill Ill

- - - - -

SpM_MAa
Ill Ill Ill

ack� ack�

Dealloc. TBE, Pop Pop

Wake Dependants

- - - M -

S_IA
Stall

InvAck to Req
Ill Ill Ill

Pop

- - - - -

S_MAa
Stall

InvAck to Req

Ill

ack� ack�

Pop Dealloc. TBE Pop

Store Hit, Pop

Wake Dependants

- S_MA_I - M -

S_MA_S
Stall

InvAck to Req

Ill

ack� ack�

Pop Dealloc. TBE Pop

Store Hit

Data to L2, Pop

Wake Dependants

- S_MA_I - S -

S_MA_I
Stall Ill Ill

ack� ack�

Store Hit Pop

Data to Recorded

MtoI with Data

Pop

- - - M_IA -

S_MA_S_I
Stall Ill Ill

ack� ack�

Store Hit Pop

Data to Recorded, L2

Dealloc. TBE, L1

Pop

Wake Dependants

- - - I -

S_SpSA

InvAck to Req InvAck to Req

Ill Ill Ill

Squash to core Pop

Load Hit

Dealloc. TBE, L1

Reset isSp, Pop

I - - - -

S_SpMA

InvAck to Req InvAck to Req

Ill Ill Ill

Squash to core Pop

Store Hit

Dealloc. TBE, L1

Reset isSp, Pop

I - - - -

S_SpEA

InvAck to Req InvAck to Req

Ill Ill Ill

Squash to core Pop

Load Hit

Dealloc. TBE, L1
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Table 1.2d
Inv InvAck

From L2/L1 From L1 Last Ack <-else

Reset isSp, Pop

I - - - -

A.2 L2 Cache

Having mentioned the meaning of the 4 base states in Table [3.4], the transient

states are described in the following table.

State Meaning

E_IAa May have sent squashes. Waiting for InvAck(s) for Inv(s) sent

E_Ia Sent EtoI to Memory. Waiting for Mem_Ack

S_IAa May have sent squashes. Waiting for InvAck(s) for Inv(s) sent. Will send StoI to Memory

mS_IAa May have sent squashes. Waiting for InvAck(s) for Inv(s) sent. Will send Data to Memory

S_Ia Sent StoI/Data to Memory. Waiting for Mem_Ack

M_Ida May have sent squashes. Waiting for Data from Owner

I_Sd Waiting for Mem_Data for Memory Fetch to service GetS/GetSpS/GetInstr yet

I_Md Waiting for Mem_Data for Memory Fetch to service GetM yet

M_Ia Sent Data to Memory. Waiting for Mem_Ack

M_SD Received a Sharer request while in M. Waiting for Data.

Table 2a
GetInstr(/GetS)

Dir is Owner <-else Owner isSp

I

Alloc. Block, TBE

Ill Ill Ill

Req is Owner

Record Req

Fetch to Memory

(Req isn't Sp)

Set MRU, Pop

I_SD - - -

E

EtoS to Owner

Ill Ill Ill

Data_NoAck to Req

Owner, Req isShared

Dir is Owner

(Req isn't Sp)

Set MRU, Pop

S - - -

S

Data_NoAck to Req

Ill Ill Ill
Req isShared

(Req isn't Sp)

Set MRU, Pop

- - - -

M
Ill

Data_NoAck Fwd to Owner Data_NoAck

to Req, Owner, Req isShared to Req,

Req isShared Alloc. TBE Req isShared

(Req isn't Sp) (Req isn't Sp) (Req isn't Sp)

Set MRU, Pop Set MRU, Pop Set MRU, Pop

- S M_SD -

E_IAa

Stall Ill Ill Ill

E_Ia

S_IAa

mS_IAa

S_Ia

M_Ida - - - -
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Table 2a
GetInstr(/GetS)

Dir is Owner <-else Owner isSp

I_Sd

Record Req

Ill Ill Ill

Owner, Req isShared

Dir is Owner

(Req isn't Sp)

Set MRU, Pop

- - - -

I_Md

Stall Ill Ill Ill
M_Ia

M_SD - - - -

Table 2b

GetSpS

Owner isSp, Owner isSp, Dir is Owner

Req > Owner Req < Owner Owner not Sp

I

Alloc. L2, TBE

Ill Ill Ill Ill

Req is Owner

Record Req

Req isSp

Addr is Sp

Set MRU, Pop

I_Sd - - - -

E

EtoS to Owner

Ill Ill Ill Ill

Data_NoAck

to Req,

Owner isShared

Req isShared

Dir is Owner

Req isSp

Mark addr as Sp

Set MRU, Pop

S - - - -

S

Data_NoAck

Ill Ill Ill Ill

to Req,

Req isShared

Req isSp

Mark addr as Sp

Set MRU, Pop

- - - - -

M
Ill

Squash to Data_NoAck Data_NoAck Squash to

>= Req, to Req, to Req, >= Req,

Dummy Fwd Req isShared Req isShared,isSp Dummy Fwd

to Owner, Mark addr as Sp Mark addr as Sp to Owner,

Pop Req isSp Req isSp Pop

Set MRU, Pop Set MRU, Pop

- - - S -

E_IAa

Stall Ill Ill Ill Ill

E_Ia

S_IAa

mS_IAa

S_Ia

M_Ida - - - - -

I_Sd

Record Req

Ill Ill Ill Ill

Owner isShared

Dir is Owner

Req isShared

Req isSp

Mark addr as Sp

Set MRU, Pop

- - - - -

I_Md

Stall Ill Ill Ill Ill
M_Ia

M_SD - - - - -
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Table 2c

GetM

Dir is Owner /
<-else Owner isSp

Owner is Req

I

Alloc. Block, TBE

Ill Ill Ill

Req is Owner

Record Req

Req isn't Sp

Fetch to Memory

Set MRU, Pop

I_Md - - -

E
Ill

Data_NoAck to Req Data_Ack_1 to Req Data_NoAck to Req

Req is Owner Inv (Fwd) to Owner Squash to

Req isn't Sp Req is Owner isSp >= Owner,

Set MRU Req isn't Sp Req is Owner

Pop Set MRU Req isn't Sp

Pop Mark addr as not Sp

Set MRU, Pop

- M M M

S

Inv (Fwd) to

Ill Ill Ill

Non-Sp Sharers,

Data_Ack to Req

Squash to >=

�rst instance of

isShared&isSp,

Req isn't Sp

Set MRU, Pop

M - - -

M
Ill

Data_NoAck to Req Fwd to Owner Squash to >= min(

Req is Owner Req is Owner Owner, �rst Sp Sharer),

Req isn't Sp Req isn't Sp Inv (Fwd) to

Set MRU Set MRU Non-Sp Sharers,

Pop Pop Data_Ack to Req

Req is owner

Req isn't Sp

Set MRU, Pop

- - - -

E_IAa

Stall Ill Ill Ill
E_Ia

S_IAa

mS_IAa

S_Ia - - - -

M_Ida

Stall Data_NoAck to Req

Ill Ill
Req is Owner

Req isn't Sp

Pop

- - - -

I_Sd

Stall Ill Ill IllI_Md

M_Ia

M_SD - - - -

Table 2d

GetSpM

Owner isSp,

Dir is Owner

Owner isn't Req <

<-elseReq < Owner Sp instance of

isShared&isSp

I

Alloc. L2

Ill Ill Ill Ill Ill

Alloc. TBE

Req isOwner

Record Req

Req isSp

Addr is Sp

Set MRU

Pop

I_Md - - - - -
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Table 2d

GetSpM

Owner isSp,

Dir is Owner

Owner isn't Req <

<-elseReq < Owner Sp instance of

isShared&isSp

E
Ill

Data_NoAck

Ill

Data_NoAck

Ill Ill

to Req, to Req,

Squash to EtoS to

isSp>=Owner, Owner,

Req isSp Owner

Req isOwner isShared,

Mark addr Req isOwner

as Sp, Mark addr

Set MRU as Sp,

Pop Set MRU, Pop

- M - M - -

S
Ill Ill Ill Ill

Squash to Data_NoAck

isSp >= �rst to Req,

such instance, Req

Data_NoAck is Owner,

to Req, Req isSp

Req isOwner Mark addr

Req isSp as Sp,

Mark addr Set MRU

as Sp, Pop

Set MRU

Pop

- - - M M

M
Ill

Data_NoAck Data_NoAck Squash to

Ill Ill

to Req, to Req, >= Req,

Squash to isSp Req isOwner Dummy Fwd

>=min(Owner, Req core isSp to Owner,

�rst Sp Sharer Mark addr Pop

after Req), as Sp,

Req isOwner Set MRU

Req isSp Pop

Mark addr

as Sp,

Set MRU

Pop

- - - - - -

E_IAa

Stall Ill Ill Ill Ill Ill

E_Ia

S_IAa

mS_IAa

S_Ia

M_Ida

I_Sd

I_Md

M_Ia

M_SD - - - - - -

Table 2e

FromSp ToSpMData ToSpM ToSp

Req <

<-elseinstance of

isShared&isSp

I
Ill Ill Ill Ill Ill Ill

- - - - -

E

Req isn't Sp

Ill

Ack to Req

Ill Ill

Ack to Req

Mark addr as not Sp Req isSp Req isSp

Pop Mark addr Mark addr

as Sp, as Sp,

Set MRU Set MRU

Pop Pop

- - M - - -
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Table 2e

FromSp ToSpMData ToSpM ToSp

Req <

<-elseinstance of

isShared&isSp

S

Req isn't Sp

Ill Ill

Squash to Ack Ack to Req

Pop isSp >= �rst to Req, Req isSp

such instance, Req Mark addr

Ack to Req, is Owner, as Sp,

Req isn't Req isn't Set MRU

Shared, Shared, Pop

Req isOwner Req isSp

Req isSp Mark addr

Mark addr as Sp,

as Sp, Set MRU

Set MRU Pop

Pop

- - - M M -

M

Inv (Fwd) to Update L2 Req isSp

Ill Ill Ill

Non-Sp Sharers, Req isOwner Mark addr

NumAcks to Req Req core isSp as Sp,

Req isn't Sp Mark addr Set MRU

Mark addr as not Sp as Sp, Pop

Pop Set MRU

Pop

- - - - - -

E_IAa

Req isn't Sp

Ill Pop Ill Ill PopMark addr as not Sp

Pop

- - - - - -

E_Ia
Ill Ill Pop Ill Ill Pop

- - - - - -

S_IAa

Req isn't Sp
Ill Pop Ill Ill Pop

Pop

- - - - - -

mS_IAa

Req isn't Sp
Pop Pop Ill Ill Pop

Pop

- - - - - -

S_Ia
Ill Ill Pop Ill Ill Pop

- - - - - -

M_Ida
Pop Pop Pop Ill Ill Pop

- - - - - -

I_Sd
Ill Ill Ill Ill Ill Ill

- - - - - -

I_Md
Ill Ill Ill Ill Ill Ill

- - - - - -

M_Ia
Ill Ill Pop Ill Ill Pop

- - - - - -

M_SD
Stall Stall Stall Ill Ill Stall

- - - - - -

Table 2f

EtoI StoI MtoI

Req isn't Last Req is Last

Owner Ack Owner Ack

I
Ill Ill Ill Ill Ill Ill Ill

- - - - - - -

E

Ack to Req

Ill Ill Ill

Update L2

Ill Ill
Dir is Owner Ack to Req

Pop Dir is Owner

Pop

S - - - M - -

S
Ill

Ack to Req Ack to Req

Ill

Ack to Req

Ill Ill
Req isn't Req isn't Pop

Shared, Shared,

Pop Pop
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Table 2f

EtoI StoI MtoI

Req isn't Last Req is Last

Owner Ack Owner Ack

- - - - - - -

M
Ill

Ack to Req Ack to Req

Ill

Update L2 Update L2

Ill

Pop Pop Ack to Req Ack to

Pop Req,

Dir is

Owner,

Pop

- - - - - - -

E_IAa

Ack to Req

Ill Ill Ill

Update L2 Update L2

Ill

Dir is Owner Ack to Req Ack

EtoI to Mem Pop to Req

Pop Dir is

Owner,

Data

to Mem,

Pop

E_Ia - - - M_Ida M_Ia -

E_Ia
Ill Ill Ill Ill Ill Ill Ill

- - - - - - -

S_IAa
Ill

Ack to Req ack� ack�

Ill Ill Ill

Req isn't Ack to Req Ack to Req

Shared, Pop StoI to Mem

EtoI to Mem Pop

Pop

- E_Ia - S_Ia - - -

mS_IAa
Ill

Ack to Req ack� ack� ack�

Ill

ack�

Data to Mem Ack to Req Ack to Req Ack to Req Ack

Pop Pop Data to Mem Pop to Req,

Pop Data

to Mem,

Pop

- E_Ia - S_Ia - - S_Ia

S_Ia
Ill Ill Ill Ill Ill Ill Ill

- - - - - - -

M_Ida
Ill

Ack to Req

Ill Ill

Update L2 Update L2

Ill

Pop Ack to Req Ack

Pop to Req,

Data

to Mem,

Dir

is Owner,

Pop

- - - - - M_Ia -

I_Sd
Ill Ill Ill Ill Ill Ill Ill

- - - - - - -

I_Md
Ill Ill Ill Ill Ill Ill Ill

- - - - - - -

M_Ia
Ill

Ack to Req
Ill Ill

Ack to Req
Ill Ill

Pop Pop

- - - - - - -

M_SD
Ill

Ack to Req Ack to Req

Ill

Update L2 Update L2

Ill

Req isn't Req isn't Ack to Req Ack

Shared, Shared, Pop to Req,

Pop Pop Req isn't

Shared,

Dir

is Owner,

Dealloc.

TBE,

Pop

Wake

Depend.

68



Table 2f

EtoI StoI MtoI

Req isn't Last Req is Last

Owner Ack Owner Ack

- - - - S -

Table 2g

ToM Data_Core

Dir is Owner/
<-else

Owner

Owner is Req isSp

I
Ill Ill Ill Ill Ill

- - - - -

E

Ack to Req

Ill Ill Ill IllReq isn't Shared

Set MRU, Pop

M - - - -

S

Req isn't Shared

Ill Ill Ill Ill

Inv (Fwd) to

Non-Sp Sharers,

NumAcks to Req

Squash to >=

�rst Sp Sharer,

Req is Owner

Set MRU, Pop

M - - - -

M
Ill

Ack to Req Fwd to Owner Squash to

Ill

Req isn't Sp Req is Owner >=min(Owner,

Req is Owner Req isn't Sp �rst Sp Sharer),

Set MRU Set MRU Inv (Fwd) to

Pop Pop Non-Sp Sharers,

NumAcks to Req

Req is Owner

Req isn't Sp

Set MRU, Pop

- - - - -

E_IAa

Ack to Req

Ill Ill Ill IllReq isn't Shared

Pop

M_Ida - - - -

E_Ia
Ill Ill Ill Ill Ill

- - - - -

S_IAa

Ack to Req

Ill Ill Ill Ill
Req isn't Shared

Reset Pending Acks

Pop

M_Ida - - - -

mS_IAa

Ack to Req

Ill Ill Ill Ill
Req isn't Shared

Reset Pending Acks

Pop

M_Ida - - - -

S_Ia

Ill Ill Ill Ill Ill
M_Ida

I_Sd

I_Md

M_Ia - - - - -

M_SD
Stall Ill Ill Ill

Update L2

Dealloc. TBE

Dir is Owner

Pop

Wake Depend.

- - - - S

Table 2h
InvAck Fwd_GetM DummyFwd SquashReq

Last Ack
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Table 2h
InvAck Fwd_GetM DummyFwd SquashReq

Last Ack

I
Pop Ill Ill Ill Ill

- - - - -

E
Ill Ill

Data_NoAck Req isn't Sp

Ill to Req, Squash to > Req

Pop Pop

- - - - -

S
Ill Ill Ill

Data_NoAck Req isn't Sp

to Req, Squash to > Req

Pop Pop

- - - - -

M
Ill Ill Ill

Data_NoAck Req isn't Sp

to Req, Squash to > Req

Pop Pop

- - - - -

E_IAa

EtoI to Mem

Ill Ill Stall

Req isn't Sp

Pop Squash to > Req

Pop

E_Ia - - - -

E_Ia
Pop Ill Ill Stall

Req isn't Sp

Squash to > Req

Pop

- - - - -

S_IAa

ack� ack�

Ill Stall

Req isn't Sp

Pop StoI to Mem Squash to > Req

Pop Pop

- S_Ia - - -

mS_IAa

ack� ack�

Ill Stall

Req isn't Sp

Pop Data to Mem Squash to > Req

Pop Pop

- S_Ia - - -

S_Ia

Pop Ill Ill Stall

Req isn't Sp

M_Ida Squash to > Req

I_Sd Pop

I_Md

M_Ia - - - - -

M_SD
Ill Ill

Inv (Fwd) to

Stall

Req isn't Sp

Non-Sp Sharers, Squash to > Req

Data_Ack to Req Pop

Req isn't Sp

Squash to >=

�rst Sp Sharer,

Set MRU, Pop

- - - - -

Table 2i
UpdateAsSq Mem_Ack Mem_Data

Last Ack One Sharer Req

I
Ill Ill Ill Ill Ill

- - - - -

E

Dir is Owner
Ill Ill Ill Ill

Pop

- - - - -

S

Req isn't Sharer
Ill Ill Ill Ill

Pop

- - - - -

M

Dir is Owner

Ill Ill Ill Illif Req is Owner

Pop

- - - - -

E_IAa

EtoI to Mem
Ill Ill Ill Ill

Pop

E_Ia - - - -

E_Ia
Ill Ill

Dealloc. TBE

Ill Ill
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Table 2i
UpdateAsSq Mem_Ack Mem_Data

Last Ack One Sharer Req

Pop

Wake Depend.

- - I - -

S_IAa

ack� ack�

Ill Ill IllPop StoI to Mem

Pop

- S_Ia - - -

mS_IAa

ack� ack�

Ill Ill IllPop Data to Mem

Pop

- S_Ia - - -

S_Ia
Ill Ill

Dealloc. TBE

Ill IllPop

Wake Depend.

- - I - -

M_Ida

Data to Mem
Ill Ill Ill Ill

Pop

M_Ia - - - -

I_Sd
Ill Ill Ill

Update L2 Update L2

Data_NoAck to Reqs Data_Excl to Req

Dealloc. TBE Dealloc. TBE

Pop Pop

Wake Depend. Wake Depend.

- - - S E

I_Md
Ill Ill Ill

Update L2

Ill

Data_NoAck to Req

Dealloc. TBE

Pop

Wake Depend.

- - - M -

M_Ia
Ill Ill

Dealloc. TBE

Ill IllPop

Wake Depend.

- - I - -

M_SD

Dealloc. TBE

Ill Ill Ill Ill
Dir is Owner

Pop

Wake Depend.

S - - - -

Table 2j

{Clean} L2 Replacement (/Mem_Inv)

Dir is Owner Owner No Non-Sp

<-else
Owner isn't Sp isSp Sharers

I
Ill Ill Ill Ill Ill Ill

- - - - - -

E
Ill Ill

Inv to Squash to

Ill Ill

Owner, >=Owner,

Alloc. TBE EtoI to Mem

Dealloc. Alloc. TBE

TBE, Dealloc. Block

(Pop) (Pop)

- - E_IAa E_Ia - -

S
Ill Ill Ill Ill

Alloc. TBE Alloc. TBE

{StoI}/Data to Inv to

Mem, Non-Sp Sharers,

Squash to >= Set Pending Acks

�rst Non-Sp Data to Mem

Sharer, Squash to >=

Dealloc. Block �rst Non-Sp Sharer,

(Pop) Dealloc. Block

(Pop)
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Table 2j

{Clean} L2 Replacement (/Mem_Inv)

Dir is Owner Owner No Non-Sp

<-else
Owner isn't Sp isSp Sharers

- - - - S_Ia {S_IAa}/mS_IAa

M
Ill

Data to Mem Inv to Squash to

Ill Ill

Alloc. TBE Owner, >= Owner,

Dealloc. Block Alloc. TBE Inv to

(Pop) Dealloc. Non-Sp Sharers,

Block, Set Pending Acks

(Pop) Data to Mem

Alloc. TBE

Dealloc. Block

(Pop)

- M_Ia M_Ida mS_IAa - -

E_IAa

Stall Ill Ill Ill Ill Ill

E_Ia

S_IAa

mS_IAa

S_Ia

M_Ida

I_Sd

I_Md

M_Ia

M_SD - - - - - -
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Appendix B

System Calls, QEMU, Kernel

This Appendix supplements Section [4.1]. In order to read or manipulate the

control register CR0, kernel mode privileges are required. Therefore, this can be

achieved by means of either writing a new kernel module, or by inserting a new

system call.

The overall procedure described here will also help in setting up an environment

to facilitate development of a TLS runtime that is of a more dynamic nature than

what is currently being used in Section [5.1].

B.1 Using QEMU

A virtual environment achieves the best compromise between safety and speed to

test out and debug changes done at the kernel level. QEMU, or Quick EMUlator,

is a binary translation based open source machine emulator and virtualizer.

To create a loop device that will become the root �lesystem, and to install
Debian:

dd if=/dev/zero of=rootfs.img bs=1024 count=1048576

sudo losetup /dev/loop0 rootfs.img

sudo mkfs -t ext3 -m 1 -v /dev/loop0

mkdir mnt

sudo mount -t ext3 /dev/loop0 mnt

sudo debootstrap sid mnt http://ftp.debian.org/debian

sudo chroot mnt/ /bin/bash

#: apt-get install gcc sudo make

#: exit

sudo umount mnt

This img can be resized at any time using the resize2fs utility. For subsequent
mounting, just the losetup and mount commands are su�cient. To enable login
through a serial console, make the following changes to the img :



/etc/shadow/

- Change root:*: to root::

/etc/inittab/

- Uncomment the line that specifies ttyS0

Assuming a bzImage has already been compiled, QEMU can be invoked as
follows:

qemu-system-x86_64 -kernel <path_to_kernel>/arch/x86/boot/bzImage \

-hda rootfs.img -append "root=/dev/sda console=ttyS0" -nographic

login: root

#

B.2 Writing and Loading a Kernel Module

The following code provides a sample manipulation of CR0 demonstrating the use
of asm.

#include <linux/init.h>

#include <linux/module.h>

static int m_init(void) {

u32 cr0, eax, ebx;

__asm__ __volatile__ (

"mov %%cr0, %0\n\t" // Read CR0

: "=r" (cr0)

:

:

);

printk(KERN_INFO "1. cr0 = 0x%8.8X\n", cr0);

__asm__ __volatile__ (

"mov %%cr0, %%eax\n\t" // Move CR0 into EAX

"or $(1 <�< 28), %%eax\n\t" // Set TLS bit

"mov %%eax, %0\n\t"

"mov %%eax, %%ebx\n\t"

"mov %%ebx, %1\n\t"

"mov %%eax, %%cr0\n\t"

"mov %%cr0, %2\n\t"

: "=a" (eax), "=b" (ebx), "=r" (cr0)

:

:

);

printk(KERN_INFO "2. OR'd eax = 0x%8.8X\n", eax);

printk(KERN_INFO "3. copied to ebx from eax 0x%8.8X\n", ebx);
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printk(KERN_INFO "4. copied to cr0 from eax 0x%8.8X\n", cr0);

__asm__ __volatile__ (

"mov %%cr0, %%eax\n\t"

"or $(1 <�< 30), %%eax\n\t" // Set Cache Disable

"mov %%eax, %0\n\t"

"mov %%eax, %%ebx\n\t"

"mov %%ebx, %1\n\t"

"mov %%eax, %%cr0\n\t"

"mov %%cr0, %2\n\t"

: "=a" (eax), "=b" (ebx), "=r" (cr0)

:

:

);

printk(KERN_INFO "5. Disabling cache...\n");

printk(KERN_INFO "6. OR'd eax = 0x%8.8X\n", eax);

printk(KERN_INFO "7. copied to ebx from eax 0x%8.8X\n", ebx);

printk(KERN_INFO "8. copied to cr0 from eax 0x%8.8X\n", cr0);

return 0;

}

static void m_exit(void) {

u32 cr0, eax, ebx;

__asm__ __volatile__ (

"mov %%cr0, %%eax\n\t"

"and $~(1 <�< 30), %%eax\n\t" // Reset Cache Disable

"mov %%eax, %0\n\t"

"mov %%eax, %%ebx\n\t"

"mov %%ebx, %1\n\t"

"mov %%eax, %%cr0\n\t"

"mov %%cr0, %2\n\t"

: "=a" (eax), "=b" (ebx), "=r" (cr0)

:

:

);

printk(KERN_INFO "9. Re-enabling cache\n");

printk(KERN_INFO "10. AND'd eax = 0x%8.8X\n", eax);

printk(KERN_INFO "11. copied to ebx from eax 0x%8.8X\n", ebx);

printk(KERN_INFO "12. copied to cr0 from eax 0x%8.8X\n", cr0);

printk(KERN_INFO "Bye!!\n");

};

module_init(m_init);

module_exit(m_exit);

This code can be compiled into a loadable module using the following Make�le.

obj-m += module.o

all:
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make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

test:

all

sudo insmod ./module.ko

sudo rmmod module

dmesg | less // The KERN_INFO output can be viewed this way

Upon installing the kernel headers into the img (by using a make deb-pkg on
the kernel source and then using dpkg -i on the resulting .deb �le in the img), a
make test on the module gives the following (stripped) output:

1. cr0 = 0x8005003B

2. OR'd eax = 0x9005003B

3. copied to ebx from eax 0x9005003B

4. copied to cr0 from eax 0x8005003B

5. Disabling cache...

6. OR'd eax = 0xC005003B

7. copied to ebx from eax 0xC005003B

8. copied to cr0 from eax 0xC005003B

9. Re-enabling cache

10. AND'd eax = 0x8005003B

11. copied to ebx from eax 0x8005003B

12. copied to cr0 from eax 0x8005003B

As can be seen, while it is possible to modify the de�ned bits in CR0, it is not

so in the case of the reserved bits.

B.3 Inserting System Calls into the Kernel

The same asm code for CR0 bit manipulation can wrapped around by a system
call as well, with identical results. To insert a new system call, the following �les
in the kernel source (as of v3.13.5) must be modi�ed:

arch/x86/include/asm/

- New header �le declaring the new system call as extern

arch/x86/include/generated/uapi/asm/unistd_32.h

- Assign a new ID to the new system call
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arch/x86/kernel/

- Create a source �le to de�ne the new system call; also modify the Make�le

arch/x86/syscalls/syscall_32.tbl

- Append the call number ID and entry vector for the new system call

Upon re-building this source and installing the headers into the guest sys-

tem, the new system call can be called from user-space code by including the

unistd_32.h �le.
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