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ABSTRACT

KEYWORDS: Degree sequence ; Degree set; Reachability

The degree sequence D of a graph G(V, ) is defined as the sequence of degrees of all
the vertices of (G, arranged in non-increasing order. The degree set S of a graph G(V, E)
is just the set of degrees of the vertices of GG. In our attempt to use degree-set constraints
in computational complexity, we attempt to answer a slightly modified version of the
Directed Graph Reachability problem through this point of view. This problem is known
to be in the complexity class NL. We look at a slightly constrained version of this
problem, i.e., by predetermining the degree set of the underlying undirected graph. In
addition, we investigate various degree set-variants for directed graphs and also arrive

at certain degree set realizability conditions for directed graphs with a given girth k.
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CHAPTER 1

INTRODUCTION

1.1 The Reachability Problem

The Directed-Graph Reachability problem is stated as follows: "Given a directed
graph G(V, E) and two vertices (s,t) € V', determine whether there is a path from s to
tinG."

The Directed-Graph Reachability problem is solvable in polynomial time and is
known to be in the complexity class NL. Also, the problem is known to be hard for NL.
While this problem is known to be NL-complete, the undirected version of the same is

known to be in L.

1.2 Degree Sets of Graphs

In the context of complexity-related questions, representation of graphs can be a
hugely important aspect. While the standard methods like adjacency matrix and ad-
jacency list representations use O(]V|?) space to represent a graph G(V, E), degree
sets and degree sequences can be used to represent graphs to an extent using just

O(|V |log|V']) space.

Realizability of degree sets has also been an important line of research in the past
years. In Kapoor et al. (1977), it is shown that any set S = a1 < ag < ... < a, of
positive integers can always be realized by a simple graph with a,, + 1 vertices. They
also gave minimum realizability conditions for trees, planar graphs etc. Similarly, Char-
trand et al. (1976) showed such realizability conditions for directed graphs, given their

outdegree set.



Figure 1.1: An undirected graph of 4 vertices with degree set {2, 3}. Note that 4 is the
minimum number of vertices required to realise this degree set.

1.3 Motivation

The Directed Graph Reachability problem is a well-studied problem in terms of
its space complexity (Reachability is NL-complete). Hence, we try to constrain the
problem, by specifying the graph’s degree set beforehand. It is interesting to see if this
constrained version remains as hard as the original, or if it falls down to deterministic

log-space.

The results regarding asymmetric (Girth=3) digraphs in Kumar et al. (2013), gave
rise to the question if the result could be generalized to any girth. We develop a similar
proof for this general case, which also gives us an idea about degree set realization for

DAG:s.

1.4 Overview

In the chapter 2, we provide the basic concepts in Graph Theory and Complex-
ity Theory used in our results, and familiarize the reader with the terminology used

throughout.

Chapter 3 gives a broad view of the literature related to our work. We state and
also reproduce some of the work done in the field previously, and which is needed as a

background to grasp the essence of our work here.

Chapters 4 and 5 contain our contribution in the thesis. Chapter 6 outlines the open
problems and future research which could help expand and better the results in this

thesis.



CHAPTER 2

PRELIMINARIES

2.1 Graph Theoretic Preliminaries

Undirected Graphs

An undirected graph is an ordered pair G(V, F), where V' is a finite non-empty
set of elements (known as vertices), and F is a finite set of unordered pairs of vertices
(known as edges). For some e = (u,v) € E, u and v are known as the end-vertices of e
and the edge e is said to be incident with the vertices u and v. Also, v and v are called
adjacent vertices. Two edges, (u1,v;) and (us, v9), are called parallel edges if vy, = vy,

and uy = vo. When u = v, the edge (u, v) is called a self loop.

Figure 2.1: An example undirected graph of 6 vertices.

In an undirected graph, the degree of a vertex v (deg(v))is defined as the number of
edges incident with it. A vertex with degree 0 is called an isolated vertex. For a graph

G(V,E), >, cydeg(v) = 2|E|. In the graph in Figure 2.1,

o deg(vg) = 3;deg(v1) = 6;deg(va) = 2;deg(vs) = 4; deg(vy) = 2;deg(vs) =3

Directed Graphs

A directed graph is an ordered pair G(V, A), where V is a finite non-empty set of
elements (known as vertices), and A is a finite set of ordered pairs of vertices (known as

arcs or directed edges). For some e = (u,v) € A, v and v are known as the start-vertex



and end-vertex of e respectively. Also, v is said to be a direct successor of u, and u is
said to be a direct predecessor of v. Two arcs, (uy,v1) and (ug, ve), are called parallel

edges if u; = vy, and uy = v9. When u = v, the arc (u, v) is called a self loop.

In a directed graph G(V, A), the outdegree of a vertex u € V, denoted by d* (u),
is defined as d* (u) = |(u,v) € Alv € V| and the indegree of a vertex u € V, denoted
by d(u), is defined as d(u) = |(v,u) € AJv € V|. A vertex with positive outdegree and
indegree 0 is called a source vertex. A vertex with positive indegree and outdegree 0 is

called a sink vertex. For a graph G(V, A), Y~ . d*(v) = > .,d” (v) = |E|.

Simple Graphs

A graph G(V,E) is said to be simple if it does not contain self loops and parallel
edges. It may be directed or undirected. Henceforth, whenever we use the term graph,

we implicitly mean simple undirected graph.

In Figure 2.2, only the graphs on the right are simple graphs.

&)

4

g
q

>

Figure 2.2: An example to illustrate simplicity of graphs.



Degree Sequences and Degree Sets
The degree sequence of an undirected graph G(V, E), D(G) is defined as the se-
quence of degrees of all the vertices of G arranged in non-increasing order.

The degree set of an undirected graph G(V, '), S(G) is defined as the set of degrees

of all the vertices of G.

For the graph in Figure 2.1, the degree sequence is (6,4, 3, 3,2,2) and the degree
setis {2,3,4,6}

Although generally undefined, we will define notions of degree sequences and sets

for directed graphs as required in future sections.

Subclasses of graphs

There are many subclasses of both directed and undirected graphs have applications

in various fields. Some of the subclasses are:

Tree: A connected undirected graph with no cycles is called a tree.

Planar Graph: A planar graph is a graph which can be embedded in a plane.

Directed Acyclic Graph: A directed acyclic graph (DAG) is a digraph without
directed cycles.

Directed Tree : A digraph whose underlying undirected graph is a tree.

Other Graph Properties

The order of a graph is the number of vertices in the graph. The size of a graph is

the number of edges in the graph.

The girth of a graph is the length of the shortest cycle contained in the graph. For

directed graphs, it is the length of the shortest directed cycle.

The complement G(V', E') of a graph G(V, E) is that graph for which V' = V" and
for any u,v € V, (u,v) € E'if and only if (u,v) ¢ E.

The union G U H of two disjoint graphs G(V, E) and H(V", E’) is that graph whose

vertex set is V' U V'’ and whose edge setis £ U F'.



The join G + H of two disjoint graphs G(V, E) and H(V’, E') is that graph whose
vertex setis VUV’ and whose edge setis EUE'UX, where X = {(u,v)|u € Vandv €
V'}.

2.2 Complexity Theoretic Preliminaries

The complexity of a given problem is a measure of how hard it is to solve the prob-
lem, with respect to the amount of resources required to solve it. The resources usually
used as complexity measures are time and space. A complexity class, however, is de-
fined as a collection of problems that, using some model of computation, have the same
resource based constraints . We will concentrate on space as a resource, as it is relevant
to our work. Also, we will use a single-tape Turing Machine as our primary model of

computation.

Space complexity

The space complexity of a problem is a measure of the amount of space, or memory

required by an algorithm to solve it.
Space Complexity Classes

e DSPACE(f(n)) : Set of languages that are decidable by a DTM using O(f(n))
tape cells.

e NSPACE(f(n)): Set of languages that are decidable by a NDTM using O(f(n))
tape cells.

e PSPACE= |J,.,DSPACE(n°)
o NPSPACE= |,.,NSPACE(n)
o L=DSPACE(log(n))

o NL=NSPACE(log(n))

Class L is a set of languages that are decidable by a DTM using logarithmic number
of tape cells with respect to input length. Similarly, class NL is a set of languages that
are decidable by a NDTM using logarithmic number of tape cells with respect to input

length.



CHAPTER 3

Literature Review

3.1 Space complexity of the Directed Reachability Prob-
lem (DREACH)

In our bid to see if degree set bounds really help in bettering algorithms, we first look
at some of the established results regarding Reachability in graphs. Directed Reacha-
bility (DREACH) DREACH is a well-studied problem, and is known to be in the com-
plexity class NL, i.e., it takes logarithmic space for a NDTM to solve DREACH. We

will see the result proved here:

3.1.1 DREACH € NL

This part is fairly simple. To see that it is in NL, we need to show a non-deterministic
algorithm using log-space that never accepts if there is no path from s to ¢, and that
sometimes accepts if there is a path from s to ¢. The following simple algorithm

achieves this:

input <G, s,t>

if s = t ACCEPT

set v := s

for i = 1 to n:

guess a vertex vnext

if there is no edge from v to vnext, REJECT
if vnext = t, ACCEPT

v 1= vnext

if i = n and no decision has yet been made, REJECT

The above algorithm needs to store ¢(using [ogn bits), and at most the labels of two

vertices v and vnext (using O(logn) bits).



Interestingly, the problem DREACH is also known to be hard for NP, i.e., if DREACH
can be solved by a DTM in logarithmic space, then NL will collapse to L. The following

is a proof for this:

3.1.2 DREACH is hard for NL

For this, we will choose an arbitrary language A € NL and reduce it in logspace to

DREACH.

e Let A be alanguage in NL

e Let M be a non-deterministic Turing Machine that decides A with space com-
plexity logn

e Choose an encoding for the computation M () that uses klog(|x|) symbols for
each configuration.

e Let () be the initial configuration, and C, be the accepting configuration.

e We represent M (z) by giving first the list of vertices, and then a list of edges by
doing the following:
— We go through all possible strings of length klog(|x|) and, if the string prop-
erly encodes a configuration of M, prints it on the output tape.

— We go through all possible pairs of strings of length klog(|z|). For each pair
(C;, C;), it checks if both strings are legal encodings of configurations of
M, and if C; can yield Cj. If yes then it prints out the pair on the output
tape.

— Both these require only log-space, as the strings are lexicographically or-
dered and only the current string needs to be stored.

e M accepts x if and only if there is a Cj is reachable from C,,, in the graph M (x).

Although the undirected Reachability problem is now known to be in L, there is a
much simpler algorithm to compute the Reachability problem for acyclic graphs. We

will give a gist of the algorithm here:

e The input is an acyclic graph F' and two vertices s and t.
e We first form a cyclic order beginning from s by looking at the adjacency list.

e We traverse this order, and store the edge through which we first left s. Name this
edge e.

e If ¢ is encountered at any point, stop and accept.

e If we reach s through some edge ¢, and e follows €’ in the cyclic order, then stop
and reject.



o [t takes more than logarithmic space to assign a cyclic order, but if we assign the
order for a vertex’ neighbours when we are at the vertex itself, then at any instant
we do not need more than logarithmic space. Also, remembering e requires log-
space.

In figure 3.1, we can see the path taken by the algorithm to decide that ¢ is not

reachable from s.

Figure 3.1: The log-space algorithm on a forest F’

With this background of the reachability problem, we attempt to look at the problem

within degree set constraints. Our attempts in this regard are seen in Chapter 4.

3.2 Degree Set Characterizations of Undirected and Di-
rected Graphs

Given aset S = {a; < ay < ... < a,}, it is interesting to see if S can be
realized by a graph. If yes, how many vertices does it need to realize it? To answer
this question, Kapoor ez al. (1977) give some interesting results, where it is shown that
there always exists a simple graph G(V, E) with |V | = a,, + 1 vertices realizing the set
S =a; <ay<...<a, of positive integers. This implies that u(S) = a, + 1. We

reproduce the proof as below:



Theorem 1 Any set S = {a; < as < ... < a,} of positive integers is realized by a

simple graph and j(S) = a, + 1.

Proof

Proof is by induction on |S|. For |S| = 1, S = {al} and the corresponding graph
is K, 11, the complete graph on a; + 1 vertices. For |S| = 2, S = {al} and the

corresponding graph is K, 11 + (K 4,4, +1 (Note that it has exactly as + 1 vertices).

Now assume that, Vm < n for every set .S with m number of elements, (S) =
am + 1, where a,, is the largest element of S. Let S = {b; < by < ... < b,11} By the
induction hypothesis, p({bs — by < bs—b; < ... <b,—b1})=b, — by + 1. Let H
be some graph which satisfies this degree set with b,, — b; + 1 vertices. Thus, the graph

Ky, + (Ky, ., s, U H) has the degree set S’ and order b, ;. Thus, using the principles

n+1

of mathematical induction, p(a; < ags < ... < a,) = a, + L. [ |

This result was extended to asymmetric directed graphs in Chartrand et al. (1976),

wherein they only restricted the outdegree set of the digraph.

Lemma 2 Fora > 0, u,(a) =2a+1

A graph for a = 3 with 2(3) 4+ 1 = 7 vertices can be seen in Figure 3.2.

Figure 3.2: An example for a minimum order graph for a singleton degree set.

Theorem 3 Let {0 < a1 < ay < ... < a,},(n > 2) be a set of non-negative integers,

and let t be the least integer exceeding 1 for which (n +t — 2)a; + (;) > > a;. Then,
i=2

10
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Kapoor et al. (1977) also extended their result for minimum order for undirected

graphs to trees and planar graphs. For trees, they showed the following result:

Theorem 4 Let S = {a; < ay < ... < a,},n > 1 be a set of positive integers. There
exists a tree T' with degree set as S if and only if a; = 1. Moreover, the minimum order

of a tree realizing S (ur(S))is > a; — 1+ 2
=1

1=

The minimum order tree construction in the proof of Theorem 4 uses only 1 vertex
each for each of a5 to a,, and a large number of pendant (degree 1) vertices. So naturally,
the question arose if one could reduce the multiplicity of pendant vertices in a tree,
compromising on the minimum order. However, Kumar et al. (2013) answered this in

the negative with the following proof:

Theorem S The minimum multiplicity of pendant vertices in any tree realization for the

degree set S ={l=a) <ay <...<ap}isy . a;—2n+3.

Proof ThesetS ={1=a; <as <...< a,}canberealized by a tree due to Kapoor
et al. (1977). The minimum order of such a tree is ) ., (a; — 1) + 2. In the minimum

order tree construction in Kapoor et al. (1977), each a; is connected with exactly a; — 2

pendant vertices for ¢ = 3,4,...,n — 1 and for ¢ = 2 and n, a;’s are connected with
a; — 1 pendant vertices and then a; is connected with a;; for: =2,... ,n — 1.
Let m; be the multiplicity of a; in a tree realization 7. Then, (a7, a, ™", ..., 1™)

will be the degree sequence of T.

Case 1 when ay, > 3. If degree sequence D = (d; > dy > ... > d,) is being
realized by a tree then number of pendant vertices in any tree realization Arikati
and Maheshwari (1996) of D is 3°%_ (d; — 2) + 2 where k is the largest index
such that d;, > 3. Hence, m; =2 + (az — 2)ms + (a3 — 2)ms + ... + (a, —
2)my,, ¥i m; > 1. my will be minimum if m; = 1 foreachi = 2,3,...,n and
the tree construction described above satisfy the required conditions. Hence, the
minimum value m; = 2+(a2—2)+(az—2)+. . .+(a,—2) = >, a;,—2(n—1)+1
=y r,a;,—2n+3

11



Case 2 : when ay = 2. We first construct the tree for the degree set S; = {1 = a1 <
a3 < ... < a,} in the way mentioned above and then introduce a vertex v.
Now make v adjacent to any one pendant vertex,say u,so that v becomes the new
pendant vertex and d(u) = 2. Degree set of this modified tree is S and number
of pendant vertices is same as that in the tree realization of D); which is same as
my =2+ (az—2)+(as—2)+...+(a,—2 =2+ (ag—2)+(a3—2)+.. .+ (a,—2)
=Y r,a—2n—-1)+1=>3" a;,—2n+3

However, a similar characterization for planar graphs was not as straightforward.
The following result gives a necessary and sufficient condition for a degree set to be

realized by a planar graph.

Theorem 6 Let S = {a; < ay < ... < a,},n > 1, be a set of positive integers. Then

there exists a planar graph G with degree set S if and only if 1 < a; < 5.

With respect to the minimum number of vertices required for a planar graph to

realize an integer set (1, they only showed results for sets of maximum size 2:

Theorem 7 Let a, and as be positive integers with a, < as. Then,

as+1 forl <a; <3
as + 2 fora; =4

1. Mp<a17a2) = {

2. pplar, as) < 2as + 2fora; =5

Apart from the notions of outdegree and indegree sets, several other variants of
degree sets exist for digraphs:
e A digraph is said to A-realize an integer set if all the elements of the set appear

both as indegree and outdegree at least once, and the indegree and outdegree of
all the vertices belong to the set.

e A digraph is said to V-realize an integer set if all the elements of the set appear
either as indegree and outdegree at least once, and either the indegree or outdegree
of every vertex belongs to the set.

e The underlying degree set of a digraph is the degree set of the underlying undi-
rected graph for any given digraph.

12



Kumar et al. (2013) give A-realizability constraints for asymmetric (Girth = 3) di-
graphs. We will state the result, but not prove it, as the proof is generalized for a girth

k digraph in Chapter 5.

Theorem 8 If S = {a; < ay < ... < a,},n > 2 is a set of positive integers then

a1 +an+1<pn(S) <an1+a,+1

After directed graphs, the natural direction was to move on to directed trees. Surpris-
ingly, minimum order realizability takes a much simpler turn in the domain of directed

tree, be it A-realizability or vee-realizability, as shown in Kumar et al. (2013):

Theorem 9 For the degree set S = {1 = a; < ay... < a,}, minimum order of a
directed tree T(V, E) vee-realizing S, is same as the minimum order undirected tree
realizing S,i.e. Zlaj —1+2

Proof To show that it is upper bounded by Zaz — 1 4 2, we construct a graph with
those many vertices. Consider an undirected tree T, realizing S. We know that every
tree can be expressed as a bipartite graph. Consider the bipartite version of 7}, and add

directions to all edges from left to right. It can be seen that this digraph vee-realizes S.

For each i, a; € S will appear as both (a;,a;) and (aj,a;) at least once, where
aj,ar, € S. Thus, 1 < a; + a; < 2a,. Let T(V, E) be a directed tree for S satisfying

the constraints. We have,

D (d(v) +dT(v) = 2|E| = 2(V Z

veV i=1

This implies the lower bound V| > > a; — 1 + 2.
i=1

In case of A-realizability, a necessary condition is that 0 € S, since the tree’s leaves

will have either indegree or outdegree as 0.

Theorem 10 For the degree set S = {0 < 1 < a3z < ... < a,}, the minimum order of

a directed tree T' which N-realizes the degree set S, is 2 a; — 1 + 2.
i=1

13



Proof We prove the upper bound by constructing the directed tree. Construct a path
with 2(n — 1) number of vertices, say ui, us, ..., Us,—o. Now add (az — 1) pendant
vertices to u;. Foreach 2 < ¢ < 2n — 1, add ariyn — 2 pendant vertices to u;. Add

a, — 1 pendant vertices to the ug,_s.

In this tree, the first 2 vertices have degree a», the next 2 vertices have degree a3 and
so on. Now, we assign directions. Start with the first vertex u; in the path. Direct all
edges connected with u; towards u;. For the next vertex in the path us assign directions
to all adjacent edges away from us. Repeat this process to assign direction to all edges.
Since each a;, for 1 = 2,3,..., n, appears exactly twice and because of the way we
are assigning directions to edges, a; once appears as (a;, 0) and once as (0, a;) in final
directed tree. For all the pendant vertices, indegree and outdegree pair occurs as either

(1,0) or (0, 1). This can be seen in Figure 3.3

To prove the minimality, we consider that each degree needs to appear twice(both as
indegree and outdegree). However we group the indegrees and outdegrees, we cannot
decrease the number of pendant vertices, and thus the underlying undirected tree will

n
have at least 2) "a; — 1 + 2 vertices. [ ]
i=1

@ e ce e e cce @ @
... ‘.. ..‘ ‘.. ... ...

Figure 3.3: A directed tree A-realizing S.

14



CHAPTER 4

Effect of Degree Set Constraints on Reachability

We have already discussed the space complexity of the Directed Graph Reachability
problem, and have established its hardness for the class NL. We will now attempt to
constrain this problem using the Degree set handle, and check if we can either prove

this constrained version to be in L, or prove that it is as hard as the original problem.

We shall denote the degree set of the underlying graph of a directed graph G as
Su(G).

First, we consider a simplified version of this problem, by restricting the degree set
to be a singleton. Clearly, the problem is solvable in constant time (and in constant
space) if the degree set is {1}. However, for degree set {2}, we have the following

result.

Lemma 11 The Directed Graph Reachability problem on a graph G(V,A) can be
solved in deterministic log-space if S,,(G) = {2}.

Proof The following log-space algorithm achieves this:

if s = t ACCEPT

set v := s

while outdegree of v is not 0

choose a vertex which has an edge from v as vnext
if vnext = t, ACCEPT

delete the edge (v,vnext)

if outdegree of vnext is O,

Vv 1= S8
else
v = vnext

REJECT



Correctness:

1. If the outdegree of s is 0, ¢ is obviously not reachable from s, and the algorithm
rejects immediately without entering the loop.

2. If the outdegree of s is 1 and ¢ is not reachable from s, the algorithm reaches a
sink (may be even s as the algorithm deletes edges already traversed) and hence
exits the loop and rejects.

3. If the outdegree of s is 1 and ¢ is reachable from s, then the algorithm follows the
only possible path and accepts on reaching ¢.

4. If the outdegree of s is 2 and ¢ is not reachable from s, then the algorithm reaches
a sink, starts again from s and once more reaches a sink (could be the same one).
It then exits the loop and rejects.

5. If the outdegree of s is 2 and ¢ is reachable from s, then the algorithm goes in one
direction and accepts if it reaches ¢. If it doesn’t, it restarts from s in the opposite
direction and reaches ¢ and accepts.

Space complexity: The above algorithm needs to store at most the labels of two

vertices v and vnext (using O(logn) bits).

B [t is simple to see that this result also holds for any graph with underlying degree

set {1, 2}. Naturally, we try to extend the result. Interestingly, the problem stops being
in log-space for other choices of the degree set. Allowing the singleton set to contain

any positive odd integer greater than 1, we show the following result.

Lemma 12 Every digraph G(V, A) has an equivalent digraph G'(V', A") with S,,(G") =
{k}, (k is any odd integer greater than 1), such that for every s,t € V, 3¢ t' € V'

such that t is reachable from s in G if and only if t' is reachable from s’ in G'.

Proof Consider a given graph G(V, E). For every vertex v € V, we will construct a
connected subgraph H, in G’ with only vertices of degree k, such that H, is functionally
similar to v.
Let S,(G) = {a1,as,...,a,}. Then, the construction of H, for some v € V with
degree a; is as follows:

Casel a; < k, a; is even.

Construct K;.1. Now, we obtain the subgraph H, by deleting any a;/2 edges
from it. Fig. 4.1 illustrates this for a; = 2 and k£ = 3.
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Case 2

Case 3

Figure 4.1: H, fora; =2and k = 3

a; < k, a; 1s odd.

Construct K 1. Now, delete (k —a;) /2 disconnected edges from the graph. (Can
be shown that this can always be done) Then, add another vertex v’ and connect
it to the vertices from which the edges were deleted. This gives H,. Fig. 2 illus-
trates this for ¢; = 1 and k = 3.

Figure 4.2: H,fora; = land k = 3

a; > k.
First, we find integers y and z which satisfy the equation,

a;=2k—-2)+y,0<y<k—2

If we get z = 1, we construct a vertex of degree k connected to a vertex of degree
y + 1. If we get z = 2, we construct two vertices of degree k, both connected to
a vertex of degree y + 2. For any other value of z, we construct a cyclic graph of
z + 1 vertices, such that z of the vertices have k as its degree and one vertex has
degree y + 2. This can be seen clearly in Fig. 4.3.

This vertex (z+1) is then replaced with a subgraph of degree-£ vertices by using
the methods in Cases 1 and 2.

This essentially means that restricting the degree set to even a singleton such as {3}

does not make the problem any easier.
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Figure 4.3: H, for a; > k

We now generalize this to a much broader case of degree sets.

Theorem 13 Every graph G(V, E) has an equivalent graph G'(V', E") where S, (G")
contains at least one odd integer (greater than 1) and for every s,t € V,3s',t' € V'

such that t is reachable from s if and only if t' is reachable from s'.

Proof For this construction, we only need a slight tweak of the previous case.

Take any odd integer greater than 1, say £ € S,(G’). Now, construct an equivalent
graph H for G, where S, (H) = {k}. Then, construct a minimum-order graph H’ on
S.(G") (as in Kapoor et al. (1977)). We give G’ as G' = H|J H'. [ |

So, essentially, we can produce a reduction from the original DREACH to the
Degree-set constrained version. Since the degree set is given beforehand, we can con-
vert each vertex into its corresponding subgraph in log-space (as the subgraphs will be

ready during preprocessing).

This method does not work for degree sets with only even numbers as elements, and
hence it still remains to be seen if restricting the problem with an all-even degree set

makes it solvable in deterministic log-space.
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CHAPTER 5

Degree set realization for directed graphs with specified

girth

We have seen the results in Kapoor et al. (1977) and Chartrand et al. (1976) for
minimum-order realizability conditions in undirected graphs, trees, planar graphs and
even asymmetric directed graphs (realising outdegree set). If we observe closely, the
minimum order conditions for general directed graphs to A-realise degree sets (without
asymmetric conditions, i.e., having Girth = 3) are exactly same as the conditions for
undirected graphs. All we need to do is replace every undirected edge with a pair of

arcs going opposite ways, to achieve the minimum possible order.

Kumar et al. (2013) then gave us conditions to be able to wedge-realise degree sets

by asymmetric (Girth = 3)digraphs.

From Kumar et al. (2013), we know the following theorem:
Theorem 14 If S = {a; < ay < ... < a,},n > 2 is a set of positive integers then

ap +a, + 1< pa(S) <any+an, +1

It was only natural, then, to try and generalise this to Girth k£ digraphs. We will use
a similar construction to generalise this result for girth = & digraphs. Let 4 (S) be the

minimum order of a girth k£ digraph A-realising .S.
Lemma 15 If S = {a} where a is a non-negative integer, then 1 (S) = (k — 1)a + 1.

Proof This case is similar to the one in Chartrand et al. (1976). When a = 0 the graph
is an isolated vertex, the result is obvious. For @ > 1, all vertices in a directed graph
with degree set {a} must have both indegree and outdegree equal to a. Consider a vertex
v, since the graph is asymmetric, v is connected to 2a distinct vertices. Any vertex out

of the a vertices which receive an edge from v connects to a vertices distinct from any



already existing vertex. This continues for £ — 3 steps before one connect a vertex to
an already existing one. Accounting for these vertices and v, we have (kK — 1)a + 1
vertices. Hence, 111(S) > (k — 1)a + 1. To complete the proof, we need to prove that
wr(S) < (k —1)a + 1. To do this, we will come up with a construction of a directed

graph with degree set {a} and order (k — 1)a + 1.

We define G to be the directed graph with the vertex set {v1, vs, .. ., U(k_l)a+1}. The
edges are as follows: {(v;,v;)|]1 <i < (k—1)a+1landi+ 1 <j <i+ a} (where
subscripts are modulo (k£ —1)a+ 1). Clearly, G has girth k£ and has (k — 1)a+ 1 vertices

with degree set {a}. Hence the proof. B The Figure 5.1 shows this construction for

k=4anda =2

Figure 5.1: An example for a minimum order graph of given girth £ = 4 for a singleton
degree set {2}.

‘We now build on this base case, with a construction similar to the one used in Kumar

et al. (2013).

Theorem 16 If S = {a; < as < ... < a,},n > 2 is a set of positive integers then

(k—2)ay +a, +1 < p(S) < (k—3)ay + ap—1 + a, + 1.

Proof We know that there is at least one vertex v of G with either indegree or outde-
gree equal to a,,. Without loss of generality, let us assume that d*(v) = a,. Now, we
know that d~ (v) > a;. Therefore, d*(v) + d~(v) > a, + a;. Since G has girth k, any
vertex v’ which has an edge from v cannot have an edge from itself to any of the vertices
already present. This process has to repeat itself £ — 3 number of times for a vertex to be
able to connect back to an already existing vertex. Thus, including the original vertex

v, the minimum number of vertices in the graph equals (k — 2)a; + a,, + 1.
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To prove that 114(S) < (k — 3)a; + a,—1 + a, + 1, we proceed by induction. By
Lemma 15, we know that ;. ({a;}) = (K — 1)a; + 1. Let the graph representing this be
(1. Divide GGy into k components, C; to Cy_; - each containing a; vertices, and C}, -
containing the remaining vertex. From (G, we obtain (G5, by adding a new component
A, containing as — a; vertices and adding the following edge set £ = {(u,v)|u €
C,v € A1} U{(u,v)|u € Ay,v € Cy}. Thus, we have a girth-k directed graph for the

degree set {a; < ap} with order (k — 2)a; + as + 1.

Now consider that there exists a girth-% directed graph G,,, with degree set {a; <
as < ...< ap}, withorder (k—3)a;+a,,—1+a,+1. Gy, contains a total of 2m+k—3

components :

e A, 1, containing a,, — a,,_1 vertices with outdegree and indegree equal to a;.

o A, for i from 1 to m — 2, each containing a,;; — a; vertices with outdegree a;
and indegree a,, 1_;.

e B, for j from 1 to m — 2, each containing a;4; — a; vertices with outdegree
am-1—; and indegree a;.

e (U}, containing a; vertices with outdegree a,, and indegree a,, 1.
e (5, containing a; vertices with outdegree a; and indegree a,,.
e (1, containing a; vertices with outdegree a,, 1 and indegree a;

e (%, containing 1 vertex with outdegree and indegree a;.

From G,,, we obtain G,,, 1, by adding two new components - A,,, containing a,,, . 1 —
a,, vertices, and B,, | containing a,, — a,,_1 vertices, and adding the edge set £ =
FE; U Ey; U E5, where

o £ ={(u,v)|u € C,ve A, U{(u,v)|lu € Ay,v e Cy}

o Fy={(u,v)lu e Cyh_1,v € Bp_1} U{(u,v)|u € By_1,v € Cy}

o E3={(u,v)lu € By_1-;,v € A;},wherei € {1,2,...,m — 2}

Figure 5.2 illustrates the inductive step. In the figure,

e cvery node represents a component of the graph.

e an edge from a component to another represents an edge from every vertex in the
first to every vertex in the second.

e a dashed-line edge from a component to another represents that there exist some
edges from the first to the second.
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e a darker edge just indicates that it is added during the present iterative step.

e both (s are the same. It has been repeated only to make the graph look cleaner.

Figure 5.2: Construction of G,,,;1 from G,

We can observe that G, | resembles GG, if m is replaced with m+ 1. Thus, through
this construction, we have proved that there always exists a girth-k directed graph G
with degree set (a; < as < ... < a,), of order a,,_; + a, + 1. Hence, the minimum

order 14 (S) < (k —3)ay + ap—1 + a, + 1. [ ]

Thus, we have now generalised this result for graphs of any girth. (Note that even
for Girth = 2, the equation holds and both lower and upper bounds equate to a,, + 1).
Also, we can notice that, for graphs with extremely high girth, a characterization might
only be possible with a huge number of vertices. This leads to the following lemma for

DAGs:
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Lemma 17 For a DAG, it is impossible to find a realization of a degree set with only

positive numbers.
Proof Only if 0 belongs to the degree set, can source and sink vertices be added to
the graph. Since we know that DAGs require at least one of each, we can say that a

DAG cannot A-realize a positive degree set. [ ]

This should not be a surprise, as for DAGs (k = c0), the minimum order to realise

a degree set S, p(S) > (k — 2)a; + a,. Since k = oo, p(S) = oco.
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6.1

CHAPTER 6

Summary and Future Work

Summary

A summary of our work is as follows:

6.2

The Directed Graph Reachability problem falls to logspace when we confine the
degree setto be {1}, {2} or {1, 2}

For all sets with at least one odd integer greater than 1, defining them as degree
sets does not affect the complexity of the Directed Graph Reachability problem.

Foraset S = {a; < ay < ... < a,} of positive integers to be realised by a
digraph of girth £, the minimum number of vertices required is given by,

(k_Q)a1+an+1§Mk(S>S(k_g)a1+an—l+an+1

A DAG cannot A-realize a positive degree set.

Future Work

Settle the Reachability problem even when confined by an even-degree set.

Attempt to use degree sets as a handle for other algorithmic problems such as the
Graph Equivalence Problem.

Close the gap between the upper and lower bounds for the minimum order for
girth £ digraphs.

Extend these degree set results to include 0 in the degree sets.



REFERENCES

. Arikati, R., Srinavasa and A. Maheshwari (1996). Realizing degrees sequences in
parallel. SIAM Journal of Discrete Mathematics, 9, 317-338.

. Chartrand, G., L. Lesniak, and J. Roberts (1976). Degree sets for di-
graphs.  Periodica Mathematica Hungarica, 7, 77-85. ISSN 0031-5303. URL
http://dx.doi.org/10.1007/BF02019997.

. Kapoor, S., A. Polimeni, and C. wall (1977). Degree sets for graphs. Fundamental
Mathematics, 95, 189—194.

. Kumar, P., M. Jayalal Sarma, and S. Sawlani, On directed tree realiza-

tions of degree sets. [In S. Ghosh and T. Tokuyama (eds.), WALCOM: Al-
gorithms and Computation, volume 7748 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013. ISBN 978-3-642-36064-0, 274-285. URL
http://dx.doi.org/10.1007/978-3-642-36065-7,6.

25



