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ABSTRACT

KEYWORDS: Shaping, Trellis codes, Viterbi algorithm, Constillations

Trellis shaping is a method of selecting a minimum weight sequence from an equiva-

lent class of possible transmitted sequences by a search through the trellis diagram of

shaping convolutional code C.Shaping gains of the order of 1dB may be obtained with

simple 4-state shaping codes.The shaping gains obtained obtained with more compli-

cated codes approach the ultimate shaping gain of 1.53 dB. With a feedback syndrome

former for C, transmitted data can be recovered without catastrophic error propagation.
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CHAPTER 1

INTRODUCTION

Typical digital communication systems uses M-Quadrature Amplitude Modulation(QAM)

to communicate through an analog channel (specifically a channel with Gaussian noise).

For Higher bit rates(M) the minimum Signal to Noise ratio (SNR) required by a QAM

system with Error Correcting Codes is about 1.53 dB higher than minimum SNR re-

quired by a Gaussian source(>30 percent more transmitter power) as given in Shannon

Hartley theorem (Forney, 1992)

C = B log2

(
1 +

S

N

)

where

C is the channel capacity in bits per second; B is the bandwidth of the channel in

hertz; S is the total signal power over the bandwidth and N is the total noise power

over the bandwidth. S/N is the signal-to-noise ratio of the communication signal to the

Gaussian noise interference expressed as a straight power ratio (not as decibels).

This 1.53 dB difference is called the shaping gap. Typically digital system will

encode bits with uniform probability to maximize the entropy. Shaping code act as

buffer between digital sources and modulator communication system. They will receive

uniformly distributed data and convert it to Gaussian like distribution before presenting

to the modulator. Shaping codes are helpful in reducing transmit power and thus reduce

the cost of Power amplifier and the interference caused to other users in the vicinity.

1.1 Shaping Gain

The coding gain may be viewed as the sum of two components: a coding gain due to

underlying code and a shaping gain γs due to the choice of a particular constellation to



support a finite number of bits per symbol. At high data rates coding gain and shaping

gain are almost completely seperable and additive. The coding gain depends only on the

shape of the constellation. The design and implementation of coding and shaping can

be almost decoupled almost completely and their contributions to performance, com-

plexity, and other code characteristics such as constellation expansion are completely

independent. With conventional block constillations, every point in the constellation

is equally likely. The objective of shaping is to achieve a non-uniform Guassian like

distribution over a somewhat expanded constellation, so as to reduce the average signal

power at the same data rate. The power reduction is called shaping gain. For simplicity,

shaping is performed on a square two dimensional constellation with a binary rate-1/2

convolutional code. Trellis shaping then takes a particular simple form, which will be

called “sign bit shaping”. Sign bit shaping is a special case of trellis shaping. The most

significant parameters of signal constellation are more generally of a shaping scheme

are its datarate R in bits per two dimensions and it average energy Sx per two dimen-

sions, relative to a scale factor such as minimum squared distance d2min between signal

points. For a conventional squareM×M 2D constellation such as 16×16 constillation,

if d2min = 1, these parameters are related by

R = log2M
2

Sx = (M2 − 1)/6 = (2R − 1)/6

For any arbitrary constellation or shaping scheme with d2min = 1, the data rate R

and average energy Sx, the baseline average energy may be defined as

Sbx(R) = 2R/6

The shaping gain is defined as

γs = Sbx(R)/Sx
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1.2 Genrator matrix, Parity check matrix, Syndrome

sequence

In coding theory, a generator matrix is a basis for a linear code, generating all possible

code words. If the matrix is G and the linear code is C,

w = cG

where w is the codeword of the linear codeC, c is a row vector, and a bijection exists

between w and c. A generator matrix for a (n, k, d) code has dimensions k × n. Here

n is the length of the codeword, k is the number of information bits, d is the minimum

distance of the code.The number of redundant bits is denoted by r = n− k.

The systematic form of a generator matrix is

G = [Ik|P ]

where Ik is a k × k identity matrix and P is of dimension k × r.

The parity check matrix for a given code can be derived from its generator matrix.

For a generator matrix for an [n, k]-code is in standard form

G = [Ik|P ]

then parity check matrix is given by

H = [−P T |I(n− k)]

GHT = P − P = 0

For any (row) vector x of the ambient vector space, s = Hxt is called the syndrome
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of x. The vector x is a codeword if and only if s = 0.

1.3 Sign bit Shaping

Sign bit shaping starts with an M ×M square constillation such as the 16 × 16 con-

stillation shown in figure.If this constillation is scaled so that the minimum distance

d2min = 1, then each coordinate takes on values from the 16-point PAM constillation

{±1/2, ±3/2, ±5/2, ±7/2, ±9/2, ±11/2, ±13/2, ±15/2}. The 4-bit representation

is “zabc′′ where the most significant bit, z, is the sign bit. The remaining bits, abc,will

be called least significant bits.

The following bit mapping is used to get a guassian distribution after shaping.

Table 1.1: Bit Mapping

coordinate value bits
-15/2 1000
-13/2 1001
-11/2 1011
-9/2 1010
-7/2 1110
-5/2 1111
-3/2 1101
-1/2 1100
1/2 0000
3/2 0001
5/2 0011
7/2 0010
9/2 0110
11/2 0111
13/2 0101
15/2 0100

A four state rate-1/2 convolutional code C is generated using a generator matrix

G = [D8 +D5 +D4 +D2 +D + 1, D8 +D7 +D4 +D2 + 1]

where addition is modulo 2. Sign bit shaping with shaping code C can be performed

ix



as follows. Let α = {αj} be any sequence of two-dimensional points αj = (α1j, α2j)

from the constellation, and let zi = {zi} be the sequence of sign bits of α, the sequence

of binary 2-tuples zj = (z1j, z2j). The shaping operation is allowed to modify α by

changing the sign bit sequence z to z′ = z
⊕

y, where y is any code sequence in

C, and ‘
⊕′ denotes mod-2 addition. The modification is done so as to minimize the

average energy Sx = E[||α′j||2] of the modified signal points α′j . The reduction in

average energy is achieved by a viterbi algorithm search through a trellis diagram for

the shaping convolutional code C, using appropriate branch metrics.

A trellis diagram for C depicts the state transition diagram of an encoder for C, with

its sates σj at time j to σj+1 at time j + 1 corresponds to a branch in the trellis, and is

labeled by the corresponding encoder output (y1j, y2j).The set of all paths through the

trellis diagram corresponding to set of all code sequences y ε C.

Given an original constellation point αj = (α1j, α2j), if yj = (y1j, y2j) is the binary

2-tuple selected at time j in the selected code sequence y ε C, then the modified output

α′j will be αj with sign bits modified by yj . Therefore, given α, we assign to any

branch whose label is yj is a branch metric ||α′j||2 that is equal to the Euclidean weight

of the corresponding modified output α′j . Then a search for the minimum-weight path

through trellis of C is precisely equivalent to a search for y ε C that results in a modified

sequence α′ of least average energy.

1.4 Data Recovery using Syndrome Former

The modified α′ is sent through a noisy channel as usual. At the receiver, if α and

thus α′ are uncoded, then the estimated sequence α′′ can be obtained by convolutional

symbol-by-symbol hard decisions. Thus shaping does not increase the complexity of

transmission or detection in uncoded systems, apart from possible constellation expan-

sion.

With or without coding, it may be assumed that the estimate α′ is correct most

of the time, but is subject to occasional errors. From α′′, the receiver can recover an

estimate z′′ of the modified sign bit sequence, as well as the unmodified less significant
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bits. No matter what y ε C is choosen at the transmitter, the modified sign bit sequence

z′ = z
⊕

y is an element of the set C
⊕

z, where z is the original sign bit sequence.

Algebraically, C
⊕

z is a coset of the group code C. If z′ is recovered correctly, the

receiver can at least determine this coset. This may be done by passing the estimate z′′

through a syndrome-former for C. In general, a syndrome-former for a rate-k/n binary

linear convolutional code C with k×n generator matrixG is an n-input, (n−k)-output

linear sequential circuit specified by an n × (n − k) transfer function matrix HT such

that

GHT = 0

Consequently, if y = xG is any code sequence in C, then yHT = 0. More generally

if z is any sequence of binary n-tuples, then the syndrome sequence s corresponding to

z is

s = zHT

If z is not in C, then s 6= 0. If z′ = z
⊕

y is an element of the coset C
⊕

z of C,

then z and z′ have the same syndrome:

z′HT = (z
⊕

y)HT = zHT = s

conversely, if z and z′ are in different cosets of C, then they have different syn-

dromes.

It is known that every time-invarient binary linear convolutional code C has a linear,

time-invarient, feedbackfree syndrome-former HT with the same number of state as a

minimal encoder G for C. For example, the code C, whose generator matrix is

G = [D8 +D5 +D4 +D2 +D + 1, D8 +D7 +D4 +D2 + 1]

, has a minimal feedbackfree syndrome-former which is specified by the polynomial

xi



matrix

HT = [D8 +D7 +D4 +D2 + 1, D8 +D5 +D4 +D2 +D + 1]T

It follows that, whichever y ε C is chosen, the receiver can recover from z′ = z
⊕

y

the syndrome sequence s that is associated with the initial sign bit sequence z with a

syndrome-former HT for C, since

z′HT = (z
⊕

y)HT = zHT = s

provided that z′′ = z′. However, even if z′′ 6= z′, occasional errors in the estimate z′′

will cause only limited error propagation in the estimated syndrome sequence s′, since

HT can always be chosen to be feedbackfree.

In summary, regardless of what modification is made during shaping to the original

sign bit sequence z, we can recover one bit of useful information per symbol with lim-

ited error propagation, namely the syndrome bit sj at time j in the syndrome sequence

s = zHT . It is, therefore, desirable to let the syndrome sequence s be part of the input

data to the transmitter, and to generate from s an initial sign bit sequence z that lies in

the coset of C whose syndrome is s. In general, given a syndrome-former specified by

an n × (n − k) matrix HT , any (n − k) × n left inverse (H−1)T for HT may be used

as a coset representative generator. From the syndrome sequence s , the transmitter

generates the coset representative sequence

z = s(H−1)T

then z is a sign bit sequence with syndrome s, since

zHT = s(H−1)THT = s

The inverse for
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HT = [D8 +D7 +D4 +D2 + 1, D8 +D5 +D4 +D2 +D + 1]T

is

(H−1)T = [D7 +D6 +D2, D7 +D5 +D4 +D2 +D + 1]

In summary, sign bit shaping using rate-1/2 code C and the 256-point constellation

may be at a data rate of R = 7 bits per two dimensions. Of the input data, 6 bits

per symbol are used to select the less significant bits, for instance by choosing one

of the 64 points in the first quadrant. (These bits may include coded bits, chosen so

that the initial sequence is a sequence in a channel code C). One bit per symbol is

considered to be a syndrome bit sj . The syndrome sequence s is the input to a 1-

input, 2-output coset representative generator circuit specified by (H−1)T . The output

sequence z = s(H−1)T , a sequence of binary tuples zj , is taken as the initial sign bit

sequence. A 256-state VA decoder for C then determines the sign bit sequence z′ in

the coset C
⊕

z such that the modified sequence α′ has minimum average energy Sx

per symbol. At the receiver, a conventional symbol-by-symbol detector (or decoder for

C) generates an estimated sequence α′′. The less significant bits of α′′j determine the

six corresponding input bits in the usual way, while the sign bit 2-tuples z′′j are passed

through a feedbackfree syndrome-former HT to produce an estimate s′ = z′′HT of the

original syndrome sequence s.

1.5 Plots

The following are the plots when 4000 symbols i.e, 4000*7 bits are transmitted.
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Figure 1.1: Sign bit shaping system supporting R=7 bits per symbol,using the 16x16
constellation and rate 1/2 convolutional code
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Figure 1.2: 256-point constellation
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Figure 1.3: Constellation after sign bit shaping
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Figure 1.4: Distribution of x co-ordinates of the constellation points after sign bit shap-
ing(Guassian)
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Figure 1.5: Distribution of y co-ordinates of the constellation points after sign bit shap-
ing(Gaussian)

Figure 1.6: Distribution of constellation points after sign bit shaping
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