
Approximate Floating Point Arithmetic

A PROJECT REPORT

submitted by

Vikas Chaganti

EE08B053

for the award of the degree

of

BACHELOR OF TECHNOLOGY

and

MASTER OF TECHNOLOGY

under the guidance of

Prof. Shankar balachandran and Prof. Nitin Chandrachoodan

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

CHENNAI-600036

CERTIFICATE

This is to certify that the report titled “Approximate Floating Point Arithmetic”,

submitted by Mr. Vikas Chaganti, to the Indian Institute of Technology Madras, Chennai

for the award of the degree of Master of Technology in Microelectronics and VLSI

design and Bachelor of Technology in Electrical Engineering, is bonafide record of re-

search work done by him under my supervision. The contents of the this thesis, in full

or parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Dr. Shankar Balachandran

Project Guide

Assistant Professor

Dept. of Computer science

IIT-Madras, Chennai-600036

Place: Chennai

Date: June 2013

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere gratitude to my project

guide Dr. Shankar Balachandran, Department of Computer Science. He put a consider

amount of time and effort to explain the concepts related to project and helped me to under-

stand the project clearly. I would like to thank my co-guide Dr. Nithin Chandrachoodan,

Department of Electrical Engineering, for his for his guidance and suggestions during this

project work.

I would not forget to remember my lab mates, Chaitanya, Amit, Sanak, Karthikeyan

and Satish for their timely support and guidance till the completion of our project work.

A special thanks to my parents and sister, an endless source of support and en-

couragement.

Vikas Chaganti

i

Abstract

Floating Point architectures are area and power demanding structures. In this re-

port I propose several approximations can be used to reduce their area and power require-

ments. As a result of these approximations, some error is introduced into the computation.

Barrel shifter is a big part of Floating Point adder, modification to it’s size decreases the

area and power requirements of Floating Point Adder. In Floating Point Computations fi-

nal result is rounded back to fixed length. So use of Truncated multipliers instead of full

precision multipliers, result in power and area efficient Floating Point Multiplier and Float-

ing Point Division Unit. Such Floating Point Arithmetic operations are implemented and

analized in this report.

ii

Contents

1 Introduction 1

1.1 Approximate Computing . 1

1.2 Approximations and Floating Point Arithmetic 2

1.3 Organization of Report . 2

2 Floating Point Adder/Subtractor 4

2.1 Introduction . 4

2.2 Optimization Techniques . 4

2.2.1 Separation FP-Adder into Two Parallel Paths 5

2.2.2 Unification of Sginificand Result Ranges 6

2.2.3 Sign-Magnitude Computation of a Difference 7

2.2.4 Compound Addition . 8

2.2.5 Barrel Shifter Design . 9

2.3 FP Adder Algorithm . 9

2.3.1 R-path . 9

2.3.2 N-path . 14

2.3.3 Path Selection . 16

2.4 Testing and Implementation . 17

2.4.1 Testing . 17

2.4.2 Implementation . 17

2.5 Approximate Barrel Shifter Design . 18

iii

2.6 Results . 19

3 Floating Point Multiplier 21

3.1 Introduction . 21

3.2 FP Multiplication Implementation . 21

3.3 Binary Multiplication . 23

3.3.1 Partial Product Generation . 24

3.3.1.1 Booth Encoding . 24

3.3.2 partial product combination . 25

3.3.3 Array Multipliers . 26

3.4 Floating Point Multiplier with Truncated Multiplier 27

3.5 Testing . 29

3.6 Results . 29

4 Floating Point Division 34

4.1 Introduction . 34

4.2 Binary Division . 34

4.2.1 Division Through Multiplication 35

4.2.1.1 Newton-Phonograph Method 35

4.2.1.2 Goldschdmidt’s algorithm 36

4.3 Division Implementation . 37

4.3.1 Determining the Table Look-up Values 37

4.3.2 Division Unit Architecture . 39

4.4 Floating Point Division . 41

4.5 Division with Truncated Multipliers . 43

4.6 Results . 43

5 Conclusion 46

iv

List of Tables

2.1 Value of FSOP′[54 : 0] . 12

2.2 Area, Power and Delay details of Floating Point Adder 17

2.3 Power Distribution in Floating Point Adder sub modules 18

2.4 Area and Power Comparison among FPAs 19

2.5 Maximum allowable shift . 19

3.1 Radix-4 Booth Encoding Table . 25

3.2 Area, Power and Delay estimates of IEEE compliant FPM vs FPM with

Array Multiplier. 30

4.1 Power Reduction in FPM due to Truncated multipliers 44

v

List of Figures

2.1 Higher-level view of FP-adder implementation 10

2.2 Detailed Block Diagram of R-path . 11

2.3 Detailed Block Diagram of N-Path . 14

2.4 Reduction in Area by reducing control bits in Barrel Shifter 20

2.5 Reduction in Power by Reducing number of control bits in Barrel Shifter . . 20

2.6 Error due to Decrement in number of Control bits in Barrel Shifter 20

3.1 Double Precision Floating point multiplier 22

3.2 4-bit Array Multiplier Implementation . 26

3.3 8-bit Truncated Multiplier . 27

3.4 4-bit Truncated Array Multiplier . 28

3.5 Maximum Error in Product Fraction in FPM with truncated multiplier . . . 30

3.6 Expected Error in Product Fraction in FPM with truncated multiplier 31

3.7 Average Error in Product Fraction in FPM with truncated multiplier 32

3.8 Decrease in area of FPM with Truncated Multiplier 32

3.9 Decrease in Estimated Power of FPM with Truncated Multiplication. 33

4.1 Division Unit . 40

4.2 Block Diagram for Floating Point Division 42

4.3 Expected Error in 54 bit Truncated Multiplier with h truncated bits 44

4.4 Area Reduction in FPM due to Truncated multipliers 44

4.5 Average Error Introduced into Quotient fraction 45

vi

ABBREVIATION

FP Floating Point

FPU Floating Point Unit

FPA Floating Point Addition

FPM Floating Point Multiplication

FPD Floating Point Division

ULP Unit in the Last Place

LSB Least Significant Bit

MSB Most Significant Bit

MSP Most Significant Part

LSP Least Significant Part

XST Xilinx Synthesis Tool

XPE Xilinx Power Analyzer

SEIF Switching Activity Interchange format

ROM Read Only Memory

vii

Chapter 1

Introduction

1.1 Approximate Computing

Typically we expect a Arithmetic unit to produce a correct result. But some times the soft-

ware algorithm does not need such a "strict" correctness, but only limited correctness. If

a program is not precise by its nature, such as approximation, video/audio encoding, clas-

sification application, it most probably does not require all the computations to be precise,

and can exhibit even higher than usual fault tolerance. Whether certain error in computa-

tion is acceptable or not depends on the definition of the quality of service (QoS) for this

application.

The common programs with high error tolerance in computations are Biological

applications, computer vision, machine learning, sensory data analysis and image rendering

etc.. Those can be very tolerant to potential error in computation and produce acceptable

results even in the presence of significant amount of error. So, it is possible to exploit those

characteristics and get performance improvement by simplifying hardware. Moreover, such

performance improvements may result in significantly less computation, and, hence, power

savings.

1

1.2 Approximations and Floating Point Arithmetic

Floating point arithmetic is used by applications that require large dynamic range. In the

context of approximate computing, many applications with error tolerance, like image ren-

dering, Computer vision and machine learning algorithms use floating point arithmetic.

Floating Point computations are lot more complex arithmetic operations and computation-

ally intensive compared to fixed point operations. So some times we may want to reduce

the complexity of floating point computations by giving room for some error. In this report

several techniques like excluding the computation of redundant LSB bits, while computing

fraction of product or quotient, were explained and analyzed.

1.3 Organization of Report

The out line of report is as follows:

Chapter 1 outlines the concept of approximate computing in the context of Floating Point

Arithmetic.

Chapter 2 explains an implementation of Floating Point adder, and several optimiza-

tion techniques to design a fast Floating Point Adder. Some modifications to Barrel Right

Shifter are suggested to decrease the area and power requirements.

Chapter 3 describes a method to implement Floating Point Multiplier. Explains about

the truncated multiplication and FPM with truncated multiplier in place of full precision

multiplier. Area, Power and Error analysis was done for such Floating Point Multipliers.

Chapter 4 explains “Division Through Multiplication” algorithms for fast calculation of

division and an algorithm for Floating point division. Use of truncated multiplication for

division is discussed and implemented. Area, Power and error analysis is done for Floating

Point Multipliers with truncated multipliers.

2

Chapter 5 is conclusion of the report.

3

Chapter 2

Floating Point Adder/Subtractor

2.1 Introduction

Floating-point (FP) addition and subtraction are the most frequent FP operations. Both

operations use a FP-adder. Floating point addition is the most complicated operation among

Floating Point operations. Therefore a lot of effort has been spent on designing FP-adders.

2.2 Optimization Techniques

In this design several optimization techniques have been used to reduce the delay. The

optimization techniques that we use include the following techniques:

1. A two path design with a new separation criterion, presented in[2], is used.

2. A simpler design is obtained by using unconditional preshifts for effective subtrac-

tions to to unify the range of significands’ sum and difference may belong to[2].

3. The sign-magnitude representation of the difference of the exponents and the signif-

icands is derived from one’s complement representation of the difference.

4. A parallel-prefix adder is used to compute the sum and the incremented sum of the

significands [10, 4].

4

5. Two level radix-8 barrel shifter to reduce FANOUT at each node[1]

2.2.1 Separation FP-Adder into Two Parallel Paths

The FP-adder is separated into two parallel paths that work under different assumptions.

The partitioning into two parallel paths enables one to optimize each path separately by

simplifying and skipping some steps of the naive addition algorithm. Such a dual path

approach for FP-addition was first described by Farmwald [3]. Since Farmwald’s dual

path FP-addition algorithm, the common criterion for partitioning the computation into

two paths has been the exponent difference. The exponent difference criterion is defined as

follows: The near path is defined for small exponent differences (i.e., -1, 0,+1), and the far

path is defined for the remaining cases.

A different partitioning criterion presented in [2], is used for partitioning the algo-

rithm into two paths: the N− path is define for the computation of all effective subtractions

with small significand sums f sum ∈ (−1,1)1 and small exponent differences |δ | ≤ 1, and

the R-path for all the remaining cases. We define the path selection signal IS_R as follows:

IS_R ⇔ S.EFF OR |δ | ≥ 2 OR f sum ∈ [1,2) (2.1)

The outcome of the R-path is selected for the final result if IS_R= 1, otherwise the outcome

of the N-path is selected. This partitioning has the following advantages:

1. In the R-path, the normalization shift is limited to a shift by one position (in Sec-

tion 2.2.2, we show how the normalization shift may be restricted to one direction).

Moreover, the addition or subtraction of the significands in the R-path always results

with a positive significand and, therefore, the conversion step can be skipped.

2. In the N-path, the alignment shift is limited to a shift by one position to the right. Un-

der the assumptions of the N-path, the exponent difference is in the range {-1,0,+1}.

1 f sum is fraction part of sum

5

Therefore, a 2-bit subtraction suffices for extracting the exponent difference. More-

over, in the N-path, the significand difference can be exactly represented with 53 bits,

hence, no rounding is required.

Note that the N-path applies only to effective subtractions in which the significand differ-

ence f sum is less than 1. Thus, in the N-path it is assumed that f sum ∈ (−1,1). The

advantages of our partitioning criterion compared to the exponent difference criterion stem

from the following two observations: (1) A conventional implementation of a far path can

be used to implement also the R-path and (2) The N-path is simpler than the near path since

no rounding is required and the N-path applies only to effective subtractions. Hence, the

N-path is simpler and faster than the near path presented in [3].

2.2.2 Unification of Sginificand Result Ranges

In the R-path, the range of the resulting significand is different in effective addition and

effective subtraction. In effective addition, f l ∈ [1,2)2 and f san ∈ [0,2)3. Therefore,

f sum ∈ [1,4). It follows from the definition of the path selection condition that in ef-

fective subtractions f sum ∈ (1
2 ,2) in the R-path. We unify the ranges of f sum in these

two cases to [1,4) by multiplying the significands by 2 in the case of effective subtraction

(i.e., preshifting by one position to the left). The unification of the range of the signifi-

cand sum in effective subtraction and effective addition simplifies the rounding circuitry.

To simplify the notation and the implementation of the path selection condition, we also

preshift the operands for effective subtractions in the N-path. Note that, in this way, the

preshift is computed in the N-path unconditionally, because in the N-path all operations are

effective subtractions. In the following, we give a few examples of values that include the

conditional preshift (note that an additional “p” is included in the names of the preshifted

2 f l is fraction part of large floating point number
3 f san is small fraction shifted by exponent differences mathematically represented as (−1)S_EFF ×2−δ

6

versions):

f l p =

2. f l i f S_EFF

f l otherwise,
(2.2)

f span =

2. f san i f S_EFF

f san otherwise,
(2.3)

f psum =

2. f sum i f S_EFF

f sum otherwise.
(2.4)

Note that, based on the significand sum f psum, which includes the conditional preshift, the

path selection condition (1) can be rewritten as

IS_R ⇔ S_EFF OR |δ | ≥ 2 OR f psum ∈ [2,4) (2.5)

2.2.3 Sign-Magnitude Computation of a Difference

In this technique, the sign-magnitude computation of a difference is computed using one’s

complement representation. This technique is applied in two situations:

1. Exponent difference. The sign-magnitude representation of the exponent difference

is used for two purposes:

(a) the sign determines which operand is selected as the “large” operand; and

(b) the magnitude determines the amount of the alignment shift.

2. Significand difference. In case the exponent difference is zero and an effective sub-

traction takes place, the significand difference might be negative. The sign of the

significand difference is used to update the sign of the result and the magnitude is

normalized to become the result’s significand.

7

Let A and B denote binary strings and let |A| denote the value represented by A (i.e., |A|=

∑i A[i] .2i). The technique is based on the following observation:

abs(|A|− |B|) =

|A|+ |B|+1 i f |A|− |B|> 0

|A|+ |B| i f |A|− |B| ≤ 0
(2.6)

The actual computation proceeds as follows: The binary string D is computed such that

|D| = |A|+ |B|.We refer to D as the one’s complement lazy difference of A and B. We

consider two cases:

1. If the difference is positive, then |D| is off by an ULP and we need to increment D.

However, to save delay, we avoid the increment as follows:

(a) In the case of the exponent difference that determines the alignment shift amount,

the significands are preshifted by one position to compensate for the error.

(b) In the case of the significand difference, the missing ULP is provided by com-

puting the incremented sum of |A| and |B| using a compound adder.

2. If the exponent difference is negative, then the bits of D are negated to obtain an exact

representation of the magnitude of the difference.

2.2.4 Compound Addition

The technique of computing in parallel the sum of the significands as well as the incre-

mented sum is well known. The rounding decision controls which of the sums is selected

for the final result, thus enabling the computation of the sum and the rounding decision in

parallel.

We used the technique suggested in [10] for implementing a compound adder.

This technique is based on a parallel prefix adder in which the carry-generate and carry-

propagate strings, denoted by Gen_C and Prop_C, are computed [4]. Let Gen_C[i] equal

8

the carry bit that is fed to position i. The bits of the sum S of the addends A and B are

obtained as usual by:

S[i] = XOR(A[i],B[i],Gen_C[i]). (2.7)

The bits of the incremented sum SI are obtained by:

SI[i] = XOR(A[i], B[i], OR(Gen_C[i], Prop_C[i])). (2.8)

2.2.5 Barrel Shifter Design

Barrel shifter must be capable of performing large shift operations, as large as the number

of digits in the significand field. The overall performance of the floating point add/subtract

unit is highly dependent on the speed of these two shifters. A barrel shifter can be imple-

mented as single level array where each input bit is directly connected to m output lines.

for m = 53 the large number of connections make this an undesirable solution.

A two level radix-8 barrel shifter instead of a single level barrel shifter, where the

first level shifts from 0-7 bit positions and second level shifts by multiples of 8. Thus, each

bit the first level has 8 destinations and 7 in the second level.

2.3 FP Adder Algorithm

The algorithm is partitioned into two parallel paths called the R-path and the N-path. The

final result is selected between the outcomes of the two paths based on the signal IS_R

(see eqn.(2)). Several block diagrams of our algorithm are depicted in Fig.2.1. We give an

overview of the two paths in the following.

2.3.1 R-path

Computations in R-path are specified in this section. Fig.2.2 shows the detailed block

diagram of R-path.

9

Exponent

Difference

Significand

1's Compl

G,R,S Generation

Significand Addition

Rounding

Align and Swap

Significand Addition

Leading Zero Detection

Post-normalization

Path selection

Eponent

Difference

Prediction

Swap and

Align1

Align2

Figure 2.1: Higher-level view of FP-adder implementation

Exponent Difference Calculation

1. The exponent difference is computed for two ranges: The medium exponent differ-

ence interval consist of [63, 64], and the big exponent difference intervals consist

of [−∞,64] and [65, ∞]. The outputs of the exponent difference box are specified as

follows: Loosely speaking, the SIGN_MED and MAG_MED are the sign-magnitude

representation of , if is in the medium exponent difference interval. Formally,

(−1)SIGN_MED.(MAG_MED) =

δ −1 i f 64≥ δ ≥ 1

δ i f 0≥ δ ≥−63

”don′t− care” otherwise

(2.9)

The reason for missing δ by 1 in the positive case due to the one’s complement

subtraction of exponents. This error term is compensated for in the Align1 box(by

preshifting).

10

1’s complement

Exp

difference

Post-Normalization
and

Rounding

S_EFF

65

S_EFF

MUX MUX

Shift R(63)

FAO[52:0] S_EFF FBO[52:0]

FSOPA_big[117:0]

FSOPA_med[117:0]

Shift L(1) Shift R(1)

MUX

OR

FSOPA[117:0]
FSOPA[62:0]

FSOPA[117:65]

G R S

Compound Prefix
Adder

Shift L(1)

MUX

S_EFF

FLP[53:0] 00

FA[52:0] FB[52:0]

SA SB

Sign_big

Sign_big

Mag_med

is_big

Sum[56:0] Sum_P1[56:0]

MUX
0

0

001 1

1

1

Fract_Round[53:0]

Sign_big

exp_a[10:0] exp_b[10:0]

Figure 2.2: Detailed Block Diagram of R-path

11

SIGN_MED S_EFF pre-shift align-shift accumulated
right shift

FSOP′[54 : 0]

0
0 0 1 1 {00,FBO[52:0]}
1 1 1 0 {1,FBO[52:0],1}

1
0 0 0 0 {0,FBO[52:0],0}
1 1 0 -1 {FBO[52:0],11}

Table 2.1: Value of FSOP′[54 : 0]

2. SIGN_BIG is the sign bit of exponent difference . IS_BIG is a flag defined by:

IS_BIG =

1 i f δ ≥ 65 or δ ≤−64

0 otherwise
(2.10)

Preshift and Align

1. The One’s Complement box calculate the signals FAO, FBO, and S_EFF . The FAO

and FBO signals are defined by

FAO[52 : 0], FBO[52 : 0] =

FA[52 : 0], FB[52 : 0] i f S_EFF = 0

not(FA[52 : 0]), not(FB[52 : 0]) otherwise.
(2.11)

The computations performed in the Preshift and Align 1 region are relevant only if

the exponent difference is in the medium exponent difference interval. The signifi-

cands are pre-shifted if an effective subtraction takes place. After the preshifting, an

alignment shift by one position takes place if SIGN_MED= 1. Table 2.1 summarizes

the specification of FSOP′[54 : 0].

2. The small operand is selected for the medium exponent difference (based on SIGN_MED)

interval and for the large exponent difference interval (based on SIGN_BIG). The

Preshift region deals with preshifting the minuend in case an effective subtraction

takes place.

3. In the big exponent difference intervals, the “required” alignment shift is at least 64

12

positions. Since all alignment shifts of 55 positions or more are equivalent, we may

limit the shift amount in this case.So FSOP′[54 : 0] is right shifted by MAG_MEG if

IS_BIG is 1, otherwise right shifted by 64

FSOPA[118 : 0] =

FSOP′[54 : 0]�MAG_MED i f IS_BIG = 1

FSOP′[54 : 0]� 64 otherwise.
(2.12)

Sum Calculation And Rounding

1. In the Swap region, the large operand is selected based on SIGN_BIG. Large fraction

is shifted by one position to right if S_EFF = 1

FLOP[53 : 0] =

{0,FL[52 : 0]} i f S.EFF = 1

{FL[52 : 0],0} otherwise.
(2.13)

2. GRS Generation block generates Guard(G), Round(R) and Sticky(S) bits

G = FSOPA[64], R = FSOPA[63] and S = OR(FSOPA[62 : 0]). (2.14)

The first 53 bits of FSOPA[117 : 65] appended with G, R, and S bits is given as input

to the compound adder.

FSOP[55 : 0] = {FSOPA[117 : 65],G,R,S}. (2.15)

3. The fractions FLOP and FSOP are aligned and added using the compound adder.

The result is choosen from sum or sum plus one based on the effective value of

S_EFF

FSUM[56 : 0] =

FLOP[55 : 0]+FSOP[55 : 0] i f S_EFF = 1

FLOP[55 : 0]+FSOP[55 : 0]+1 otherwise.
(2.16)

13

LOD

Barrel
Shift
left

MUX

Compound Prefix Adder

MUXMUX

MUX

INVINV2-bit Adder

0

00

0

1

11

1

ea[1:0] eb[1:0]
FB[52:0] FA[52:0]

FB0[52:0]

1 1

1

100

FA[52:0] FB[52:0]SA SB

FLP[52:0]

FSOPA[53:0]

FAO[52:0]

FOPSUM'[52:0] FOPSUMI[52:0]

LODP[5:0]

SL

DELTA[0]DELTA[1]

1

Figure 2.3: Detailed Block Diagram of N-Path

4. The rounding block will finish normalization and implements four IEEE standard

rounding schemes(Round-to-zero, Round-to-nearest-even, Round-to-plus-infinity and

round-to-minus-infinity). The exponent is adjusted accordingly.

2.3.2 N-path

The N-path works under the assumption that an effective subtraction takes place, the sig-

nificand difference (after the swapping of the addends and preshifting) is less than 2, and

the absolute value of the exponent difference |δ | is less than 2. The computations in N-path

are explained below. A detailed block diagram of the N-path and the central signals are

depicted in . 2.3.

14

Exponent Difference Prediction

1. The Small Exponent Difference box outputs DELTA [1 : 0] representing ea[1 : 0]−

eb[1 : 0].

Align and Swap

1. The input to the Small Significands: Select, Align, and Preshift box consists of the

inverted significand strings FAO and FBO. The selection means that if the exponent

difference equals 1, then the subtrahend corresponds to FA, otherwise it corresponds

to FB. The preshifting means that the significands are preshifted by one position to

the left (i.e. multiplied by 2). The alignment means that if the absolute value of the

exponent difference equals 1, then the subtrahend needs to be shifted to the right by

one position (i.e., divided by 2). The output signal FSOPA is therefore specified by

FSOPA[53 : 0] =

{1,FAO[52 : 0]} i f ea− eb =−1

{FBO[52 : 0],1} i f ea− eb = 0

{1,FBO[52 : 0]} i f ea− eb = 1.

(2.17)

2. The Large Significands: Select and Preshift box outputs the minuend FLP[53 : 0] and

the sign-bit of the addend it corresponds to. The selection means that if the exponent

difference equals 1, then the minuend corresponds to FB, otherwise it corresponds to

FA. The preshifting means that the significands are preshifted by one position to the

left (i.e., multiplied by 2). The output signal FLP[53 : 0] is therefore specified by

FLP[53 : 0],SL =

{FB[52 : 0],0},SB i f ea− eb =−1

{FA[52 : 0],0},SA i f ea− eb≥ 0.
(2.18)

Significand Addition

1. In N-path only effective subtraction happens, so sum is calculated using Lazy one’s

15

complement subtraction. When predicted exponent difference is zero the sum can be

eaither positive or negative. A compound adder is used to calculate both sum and

sum+1. If the sign bit of sum is 1 then the result is complement of sum, otherwise

sum+1

abs_FPSUM[53 : 0] =

FOPSUM[53 : 0] i f FOPSUM[54] = 1,

FOPSUMI[53 : 0] otherwise.
(2.19)

2. A priority encoder with priority to MSB is used to find leading one in abs_FPSUM[53 :

0]. In normalization step abs_FPSUM[53 : 0] is shifted left by number of leading ze-

ros. A two level radix-8 barrel shifter is implemented to do left shift. The exponent

is adjusted accordingly.

2.3.3 Path Selection

R-path is selected if IS_R = 1, otherwise N-path is selected. Eqn.1 explains when IS_R

will become 1. A signal IS_R1 is defined such that it will be 1, when |δ | ≥ 2:

IS_R1 = IS_BIG ∨ (OR(MAG_MED[5 : 1])) ∨ (MAG_MED ∧ SIGN_BIG). (2.20)

IS_R2 is equivalent to f sum ∈ [1,2) and is computed in N-path

IS_R2 = abs_FPSUM[53] (2.21)

and IS_R is calculated using:

IS_R = IS_R1 ∨ IS_R2 ∨ S_EFF (2.22)

16

Floating Point Adder
Area(in LUTs) 1947

Estimated Power (mW) 16.62
Delay (ns) 28.9

Area of Barrel Right Shifter
(in LUTs)

439

Table 2.2: Area, Power and Delay details of Floating Point Adder

2.4 Testing and Implementation

2.4.1 Testing

To verify the functional correctness of the implemented design, a functionally equivalent

MATLAB program has been written and used to verify the functional correctness of the

verilog design. For rounding mode, all special cases along with 8000 random generated

numbers are given as inputs to MATLAB program and verilog design. Post-synthesis sim-

ulation is done using Isim and results are written into file. This result is compared with the

results generated using MATLAB. Ideally, these two results should match, otherwise the

design is functionally wrong.

2.4.2 Implementation

This Floating Point Adder is implemented on Vertex-5 LX100T FPGA board. Power of the

implemented design is estimated using Xilinx Power Analyzer (XPE). For more accurate

estimation power a SAIF(Switching Activity Interchange format) file is generated through

post-route simulation, and it as input to the XPE tool. SAIF file contains the activity in-

formation of the nodes in design during the simulation. Area, power and delay details are

given in table 2.2

17

Module Name Power Estimation
(mW)

Floating Point Adder 16.62
N-path 6.26
R-path 6.89

Barrel right shifter 3.14

Table 2.3: Power Distribution in Floating Point Adder sub modules

2.5 Approximate Barrel Shifter Design

The number of LUTs occupied by design and, power estimation are given in table 2.2. Out

of 1947 LUTs used by floating point adder, 439 LUTs used by right shifting Barrel Shifter.

Barrel Right shifter consumes significant (22.4%) amount of total floating point adder area.

Out of 6.89 mW power consumed by total R-path, 3.14 mW power is used by only barrel

shifter. Barrel shifter’s estimated power is almost half of the total power consumed by

entire R-path.

The total power consumed and area requirements of barrel shifter can be reduced

by allowing some approximation into computation. In the IEEE complaint floating point

adder designed in previous section have barrel shifter width of 118 bits. Out of these 118

bits 63 LSB bits are used for computation of sticky bit, 1 bit for round bit. Sticky bit and

round bit are used to correctly round the result after addition. If we exclude the computa-

tion of sticky and round bits, maximum value of error introduced into the computation of

fraction is one LSB. By excluding the computation of sticky and round bits, we can reduce

the width of the Barrel Shifter to 54 bits, which reduces the LUTs required to implement

the barrel right shifter by half. The Barrel shifters power also approximately reduced by

half.

Resources required by barrel shifter can be further reduced by decreasing the no

of control bits in barrel shifter. The reduction in control bits, limits the maximum shift that

occurs introducing error into fraction computation, when the exponent difference s higher

than maximum allowable shift. Table 3 gives maximum allowable shift for corresponding

no of control bits. The above approximations we can not use for Left barrel shift in N-path

18

Floating Point Adder
(Barrel right shifter width=118)

Floating Point Adder
(Barrel right shifter width=54)

rounding mode RZ, RN, RPI, RNI Only RZ
LUTs 1947 1637

Estimated Power 16.62 mW 13.89 mW
Critical path delay 28.9ns 29.2ns

Error in other rounding modes 0 one LSB

Table 2.4: Area and Power Comparison among FPAs

No of Control Bits (n) Maximum Allowed Shift Value
6 64
5 32
4 16
3 8
2 4
1 2

Table 2.5: Maximum allowable shift

for denormalization as it introduces error in MSB side.

The result section have quantitative results for all above scenarios.

2.6 Results

Due to decrement in number of control bits the design of barrel shifter become more simple,

less area and power consuming. Fig.2.4 and Fig.2.5 shows the decrement in the area and

power requirements.

But decrement in control bits result in decrement maximum allowable shift. Error

introduced into fraction when the exponent difference between two inputs is grater than

maximum allowable right shift. Fig.2.6 shows that error increases very rapidly compared

to area and power savings. So only when error tolerance is very high we do such approxi-

mations.

19

44.555.56
1540

1560

1580

1600

1620

1640

Number of Control bits in Barrel Right Shifter

N
um

be
r

of
 L

U
T

s
us

ed
 b

y
Fl

oa
tin

g
Po

in
t A

dd
er

Figure 2.4: Reduction in Area by reducing control bits in Barrel Shifter

44.555.56
0

3

6

9

12

15

Number of Control bits in barrel shifter

P
ow

er
 e

st
im

at
io

bn
 o

f F
lo

at
in

g
P

oi
nt

 A
dd

er
 (

m
W

)

Power N−path
Power in R−path
Power in Barrel Shifter
Power in FPA

Figure 2.5: Reduction in Power by Reducing number of control bits in Barrel Shifter

33.544.55
−20

−15

−10

−5

Number of control bits in Barrel Right Shifter (n)

lo
g(

E
rr

or
 in

 c
om

pu
ta

tio
n

of
 fr

ac
tio

n)

Figure 2.6: Error due to Decrement in number of Control bits in Barrel Shifter

20

Chapter 3

Floating Point Multiplier

3.1 Introduction

Floating point multiplication is one of the most frequent arithmetic operations. The design

of fast, and energy and area efficient implementation of Floating point Multiplier is very

important. The most computationally intensive part in Floating Point Multiplier is Fixed

point multiplication between two fractions of multiplicands. So performance Floating point

multipliers highly depends on the implementation of fraction multiplier.

This chapter compiles of an implementation of double precision Floating point

multiplication for normalized numbers and analyzes how truncated multiplication in place

of full precision multiplication, results in area and power reduction for very little error

introduced.

3.2 FP Multiplication Implementation

Fig.3.1 shows the computations involved in Floating Point Multiplication of two double

precision normalized floating point numbers. The product of two floating point numbers

can be represented by the following equation

(−1)signproduct 1. fproduct .2eproduct = (−1)sign1⊕sign2(1. f1×1. f2).2(e1+e2−bias). (3.1)

21

Exponent Addition
(CSA adder with Compound

prefix addition)

Array Multiplier/

Truncated Array

Multiplier

Normalization
(Shift R(1))

Rounding of Fraction

MUX

Exponent adjustment

after rounding

EXP_2[10:0]EXP_1[10:0] FRACT_1[52:0] FRACT_2[52:0]

FRACT_PRODUCT[105:0]

FRACT_PRODUCT_NORM[105:0]

FRACT_PRODUCT[52:0]EXP_PRODUCT[10:0]

EXP_SUM_P1[12:0]EXP_SUM[12:0]

10

FRACT_PRODUCT[105]

Overflow/Underflow check

and

Output selection

XOR

SIGN_1 SIGN_2

SIGN_PRODUCT

EXP_NORM[12:0]

rmode

Figure 3.1: Double Precision Floating point multiplier

Sign of the product is positive if both the multiplicands are positive or both negative, neg-

ative otherwise. The algorithm and implementation of double precision Floating Point

Multiplier is explained below.

Exponent Addition

1. As shown in the eqn.(3) we need to add both the exponents and subtract the bias(1023

for 64 bit floating point multiplier) value from the sum. This can be expressed in the

following equation

EXP_SUM[12] = EXP_1[10 : 0]+EXP_2[10 : 0]−10′d 1023 (3.2)

22

2. A CS(Carry Save Adder) used to calculate the sum of EXP_1,EXP_2 and two’s

complement of 1023. Compressed the three input adder into two input adder using

3:2 compressor(Full Adder), and added them with the compound prefix adder to

calculate EXP_SUM and EX_SUM_P1(EXP_SUM+1) concurrently. This way we

can reduce one addition operation during normalization to adjust the exponent.

Fraction Multiplication

1. A full precision Array multiplier is used to compute the product of two fractions. I

have used array multiplier as it have very less latency compared to sequential mul-

tiplier and less design time compared to tree multipliers while designing truncated

multipliers of different size later. The Fig.3.2 shows the architecture for 4-bit array

multiplier.

Normalization and Rounding

1. Both input fractions are normalized, hence f1 ∈ [1,2), f2 ∈ [1,2) and fproduct =

f1 × f2 ∈ [1,4). A normalization step(shift right) is needed to bring the fraction

fproduct into [1,2). exponent is adjusted by selecting the EXP_SUM_P1 if right shift

is needed to normalize, EXP_SUM otherwise.

2. The normalized fraction is rounded with standard IEEE rounding modes Round-to-

Zero, Round-to-Nearest-Even, Round-to-plus-Infinite and Round-to-minus-Infinite.

3.3 Binary Multiplication

In this section we briefly describe different methods or algorithms to find product of to

fixed point binary numbers. We focus mainly on unsigned multipliers as only unsigned

multiplication is used in Floating Point Multiplication.

The multiplication can be divided into tw0 stages, 1) Partial product generation,

2)Summation of partial products.

23

3.3.1 Partial Product Generation

In order to achieve the final product value P , partial products are generated by multiplying

the multiplicand by each of the multiplier bits, and assigning to the resulting output bits the

weight obtained by combining the originating bits weight.

The partial product terms that build the partial product matrix for unsigned fixed-

point multipliers can be obtained by adding a row of zeros whenever the corresponding

multiplicand bit is zero, and adding a shifted version of the multiplicand whenever it is a

zero. The process can be described as per the following equation

P = XY =
N−1

∑
i=0

N−1

∑
j=0

xiy j2i+ j =
2N−1

∑
i=0

pi2i. (3.3)

The partial product terms are generated by combining the corresponding multiplicand and

multiplier bits by making use of AND gates, and then aligned to their corresponding final

weight.

3.3.1.1 Booth Encoding

The size of partial product matrices, derived from the large amount of digits required to

represent numbers in binary formats, puts a big effort in the subsequent combination of the

partial product terms.

The original algorithm presented by Andrew Booth in 1951, relied on a re-codification

of the multiplier in a redundant number system. This results in fewer partial products to be

combined, thereby improving the multiplier speed. Instead of generating the partial prod-

ucts using independent bits from the multiplicand, row-generating bits get partitioned in

overlapping groups of three, each of them being decoded into a partial product as per the

indicated selection table .

In general radix-4 Booth implementations result into (n + 2)/2 partial products,

where n is the operand length. They can be obtained by shifting and two’s complement

negation (negate bits and add 1).

24

Multiplier bits Selection
000 +0
001 +Multiplicand
010 +Multiplicand
011 +2×Multiplicand
100 -2×Multiplicand
101 -Multiplicand
110 -Multiplicand
111 -0

Table 3.1: Radix-4 Booth Encoding Table

Although improvements in area, power and timing are derived from the reduction

in partial product terms and the subsequent combinatorial circuitry required to obtain the

product value; area, timing and power overheads are added by the complex data recoding.

3.3.2 partial product combination

After generation of the partial product array, the partial product terms have to be added

or combined together to form the final product value. Sequential multipliers are imple-

mented as small architectures that recursively calculate and different groups of partial prod-

uct terms. They offer the advantage of smaller area, thus reducing silicon requirements and

static power consumption but require several clock cycles for performing a multiplication.

The term parallel multipliers is used to refer to any multiplier that employs more than a

single adder in the addition section, ideally resulting in a reduction of cycles required to

combine the partial product terms equal to the implemented number of adders.

Full Parallel multipliers represent the case where the maximum possible level of

parallelism is applied, implementing all the required partial products in parallel and per-

forming their combination in bigger multi-operand addition blocks in a single cycle. Paral-

lel multipliers are typically implemented using smaller carry save adders, in either array or

tree structures.

25

HAHA HA

FAFA FA

FAFA FA

FAFA FA

x0y0

x1y3

x0y1x0y3 x0y2

x2y0x2y2 x2y1

x3y0x3y2 x3y1

x2y3

x3y3

x1y0x1y2 x1y1

zero

P0
P0

P2P3P4P5P6P7

Figure 3.2: 4-bit Array Multiplier Implementation

3.3.3 Array Multipliers

Array multipliers have been extensively used in industrial applications as they represent

a compromise between design effort and optimization, usually resulting in compact struc-

tures with a regular and simple layout . A classic array multiplier implementation consists

of rows of FA cells where the outputs of each row is connected into the input ports of the

following one. The delay of the array to produce the final carry is proportional to 2N − 2,

where N is the bit-width of the data.

Benefits of the array implementations include short wiring and tidy layouts while

their major drawback is the linear increase on the structure delay. Improvements on the

partial product combination can be achieved by applying tree structures that recombine

their partial products according to different strategies at the expense of wiring complexity.

Even though tree multipliers have less combinatorial delay I chose array multiplier

in our Floating Point Multiplier, because later in chapter 5 we need to generate truncated

multiplier of different width(no. of output bits) for comparative study and design time for

Array Multiplier is less compared to Tree Multiplier(Wallace Multiplier).

26

x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0

x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0

x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0 x0y0

x3y0 x3y0 x3y0 x3y0 x3y0 x3y0 x3y0 x3y0

x4y0 x4y0 x4y0 x4y0 x4y0 x4y0 x4y0 x4y0

x5y0 x5y0 x5y0 x5y0 x5y0 x5y0 x5y0 x5y0

x6y0 x6y0 x6y0 x6y0 x6y0 x6y0 x6y0 x6y0

x7y0 x7y0 x7y0 x7y0 x7y0 x7y0 x7y0 x7y0

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

N︸ ︷︷ ︸ N−h︸ ︷︷ ︸ h︸ ︷︷ ︸
Figure 3.3: 8-bit Truncated Multiplier

3.4 Floating Point Multiplier with Truncated Multiplier

In Floating point multiplication it is not necessary to compute the exact least significant

part of the product, truncated multipliers allow power, area and timing improvements by

skipping the implementation of sections of the least significant part of the partial product

matrix. Instead of computing the full-precision output, the output results from the sum of

the first N +h columns (where 0≤ h≤ N−1) plus an estimation of the erased bits.

Fig.3.3 displays a generic partial product matrix, where the partial product matrix

is split into two main regions, the least significant part (LSP), which contains the N least

significant columns of the partial product matrix, and the most significant part (MSP), that

includes the most significant columns of partial product terms. LAP can be also be split in

two regions, LSPma jor being the N−h most significant column, and LSPminor being the

least significant columns of the partial product matrix.

The product resulting from a full-width multiplier, where the partial product is

fully implemented thus resulting in an exact 2N bit result can be described as:

Pf ull = SMSP +SLSP (3.4)

where SMSP is the sum of the partial product bits belonging to MSP and SLSP is

the sum of those belonging to the LSP. In floating point multiplication, product values

generated by fixed width N ×N bit multipliers are truncated or rounded back to N bits.

27

HA

HAFA

FAFA HA

FAFA FA

x1y3

x0y3

x2y2 x2y1

x3y0x3y2 x3y1

x2y3

x3y3

x1y2

zero

P3P4P5P6P7

Figure 3.4: 4-bit Truncated Array Multiplier

Truncation allows a way of reducing the complexity of the multiplier unit by discarding the

lower parts of the partial product matrix. This results in most of the error being generated

in the lower weighted bits of the output that are discarded when converting the output back

to the original bit width. By doing so, significant savings in power and complexity can be

achieved, at the expense of error introduced into result.

The simplest scheme to obtain a truncated multiplier consists of removing the

lower h columns of the partial product matrix that form the LSPminor, and use the bits in

LSPma jor for rounding. The maximum value of h(columns that can be removed) is N−1.

It results in the multiplier requirements being almost halved in both area and power, at the

expense of a big error with a strong negative bias being introduced in the multiplier output.

Fig.3.4 shows a 4-bit truncated array multiplier.

The product of a Truncated multiplier is formed by the addition of the bits in the

MSP and LSPma jor:

PD−Truncated = SMSP +SLSPma jor (3.5)

53-bit truncated array multipliers with number of truncated bits, “h” ranging from

28

46 to 52 are implemented and used in floating point multiplier. When h≤ 46, the maximum

error introduced due to truncation is one LSB. This error is introduced during rounding

from incorrect calculation of sticky bit or round bit. IF two 53-bit number are integers with

out rounding, maximum error introduced into first N+1(54) bits due to truncation of h bits

given by eqn.6

Errortrncmax =

[
h

∑
n=1

n.2n−1

2N−1

]
(3.6)

A comparison between two Floating Point Multipliers, one with h = 0, and other with

h = 46 is given in Table2.1.For h = 47, the maximum error Errortrncmax = 1. Further error

for random inputs is give in section1.6.

3.5 Testing

To verify the functional correctness of the implemented design, a functionally equivalent

MATLAB program has been written and used to verify the functional correctness of the

verilog design. For rounding mode, all special cases along with 8000 random generated

numbers are given as inputs to MATLAB program and verilog design. Post-synthesis sim-

ulation is done using Isim and results are written into file. This result is compared with the

results generated using MATLAB. Ideally, these two results should match, otherwise the

design is functionally wrong.

3.6 Results

The use of Truncated multiplier for fraction calculation in Floating Point Multiplication

results in less area on chip and less power. But as a result we get error in product. In

this section several quantitative results have been produced to give an estimate of error

introduced due to truncation of bits and area and power savings.

Area and power estimations are obtained from Xilinx Synthesis Tool(XST) and

Xilinx Power Analyzer(XPE). Table 2 have the area, power and delay estimations of IEEE

29

Floating Point
Multiplier

(Full precision Array
Multiplier)

Floating Point
Multiplier

(Truncated Array Multiplier,
n = 46)

Area (in LUTs) 4411 2802
Power (mW) 87.21 57.78

Critical Path Delay(ns) 68.480 71.122
Maximum Error zero one LSB

Table 3.2: Area, Power and Delay estimates of IEEE compliant FPM vs FPM with Array
Multiplier.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

X: 47
Y: 1

Number of Truncated bits (h)

M
ax

im
um

 E
rr

or
 ×

 2
52

Figure 3.5: Maximum Error in Product Fraction in FPM with truncated multiplier

complaint Floating point multiplier (full precision Array multiplier and all four rounding

modes).

For further analysis ans simulations we use only one rounding mode, i.e. Round-

to-Nearest, a more accurate of rounding of four rounding modes.

The error estimated using MATLAB models of the Floating Point multiplier. By

using truncated multipliers in place of full precision multipliers no error is introduced

into exponent calculation. Hence Error we estimating is only error in fraction calculation.

Fig.3.5 shows the maximum error introduced in first N+1 bits of product due to truncation

of h LSB bits, where 0≤ h≤ 52.

If probability that a bit is 0 or 1 is equal to 1
2 , then probability that a product term

equal to zero is 3
4 and 1

4 for it to be one. Expected error is calculated using the following

30

0 10 20 30 40 50 60
0

2

4

6

8

10

12

X: 49
Y: 1

Number of Truncated bits (h)

E
xp

ec
te

d
er

ro
r

Figure 3.6: Expected Error in Product Fraction in FPM with truncated multiplier

probabilities

P(prod_term = 1) = 1/4

P(prod_term = 0) = 3/4.

Hence the expected error is :

Expected Error =
Errortrncmax

4
.

Expected error is plotted against h(Number of Truncated bits) in Fig.3.6

Other than these estimates error is is measured for 2000 random inputs and aver-

age error is plotted is shown in Fig.3.7. Comparing Fig.3.6 and Fig.3.7 average error and

estimated error are almost matching. From this we ma say that if we take sufficiently large

random inputs, then the average error match with the estimate error.

Area and power analysis is done only for Floating Point Multipliers, with h = 0

or 47 ≤ h ≤ 52. For h ≤ 46 maximum error in fraction of product is 1 LSB. So we did

Area and power analysis for truncated multiplier with h = 46 and is compare with Normal

Floating Point Unit in Table2.1. Fig.3.8 and 3.9 shows that Area and Power estimations

decreases with increase in the no of truncated bits.

Fig.3.9 shows that most of the power dissipated in FPM is dissipated in fraction

31

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Number of truncated bits (h)

A
ve

ra
ge

 E
rr

or
 ×

 2
52

Figure 3.7: Average Error in Product Fraction in FPM with truncated multiplier

0 10 20 30 40 50 60
2000

2500

3000

3500

4000

4500

Number of Truncated bits (h)

N
um

be
r

of
 L

U
T

s
us

ed
 b

y
Fl

oa
tin

g
Po

in
t M

ul
tip

lie
r

Figure 3.8: Decrease in area of FPM with Truncated Multiplier

32

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Number of Truncated bits (h)

Po
w

er
 e

st
im

at
io

bn
 o

f
Fl

oa
tin

g
Po

in
t M

ul
tip

lie
r

(m
W

)

Power in round module
Power in fraction multiplier module
Power in exponent module
Power on FPM

Figure 3.9: Decrease in Estimated Power of FPM with Truncated Multiplication.

multiplication.

33

Chapter 4

Floating Point Division

4.1 Introduction

Floating Point Division is one of the basic Floating Point arithmetic operations. The most

complex part of Floating Point Division is calculation of quotient fraction. Division is

most complex operation among multiplication, addition and division. In this chapter I will

discuss the implementation of Floating Point Division using Newton-Phonograph method.

I will discuss how we can gain improvements in area and power by replacing the Full

Precision Multiplier with truncated Multiplier in division architecture.

4.2 Binary Division

There are two different approaches to the development of algorithms for high speed divi-

sion. The more conventional approach uses add/subtract and shift operations, while the

second relies on multiplication. The operation count in first approach is linearly propor-

tional to the word size. The number of steps in the second approach(Division through

Multiplication) is logarithmically proportional to the word size, but each individual step is

more complex.

The most well known algorithm of the first type is the SRT division and High

radix division. In general these algorithms(SRT) result in less area and power but latency

34

for high width division is high compared to second approach. So for division between long

binary number we use Division through Multiplication algorithms. So in this section we

discuss further about division though multiplication.

4.2.1 Division Through Multiplication

4.2.1.1 Newton-Phonograph Method

In this method we first calculate the reciprocal of divisor D and then multiply it by the

dividend to form the final quotient [1]. The reciprocal of D can be calculated using the

Newton-Phonograph iteration method [8]. This is a method of finding the zero of a given

function f (x), where a zero of f (x) is the solution of f (x) = 0. Let x0 be the first ap-

proximation and xi be the estimate for the zero at the ith step. The next estimate, xi+1, is

calculated from

xi+1 = xi−
f (xi)

f ′(xi)
(4.1)

where f ′(x) is the derivative of f (x) with respect to x. For the function f (x) = 1/x−D,

which has a zero at x = 1/D, f ′(x) =−1/x2, yielding

xi+1 = xi(2−D.xi). (4.2)

xi+1 converges to the reciprocal of D. Every iteration the error becomes roughly propor-

tional to the square of the previous error. Hence, the number of significant figures of ac-

curacy approximately doubles itself, which provides the property of quadratically conver-

gence to the method.

The error of initial approximation is assumed to be Exi , such that:

Exi = xi−1/X (4.3)

which can be written as;

xi = Exi +1/X (4.4)

35

Inserting the obtained xi into eqn.(19) will yield us

xi+1 = 1/X−XE2
xi

(4.5)

Similar to eqn.(21), the error of reciprocal result maintained by first NR iteration can be

defined as:

xi+1 = Exi+1 +1/X (4.6)

Equalizing the equations (22) and (23), we obtain

Exi+1 =−XE2
xi

(4.7)

which proves us that the absolute error degrades quadratically in each NR iteration as it is

proportional to the square of one previous error.

We may reduce the required number of iterations by reading the first approxima-

tion from table. This table is stored in a ROM, accepts the j most significant digits of D,

and produces an approximation to 1
D .

4.2.1.2 Goldschdmidt’s algorithm

Goldschmidt division uses an iterative process to repeatedly multiply both the dividend and

divisor by a common factor Ri to converge the divisor, D, to 1 as the dividend, N, converges

to the quotient Q [1].

Q =
N R1R2R3....

DR1R2R3....
(4.8)

The steps for Goldschmidt division are:

• Generate an estimate for the multiplication factor Ri

• Multiply the dividend and divisor by Ri

• If the divisor is sufficiently close to 1, return the dividend, otherwise, loop to step 1.

36

Assuming N/D has been scaled so that 0 < D < 1, each Ri is derived from Di: Di+1 and

Ni+1 are derived from Ri, Di and Ni

Ri = 2−Di (4.9)

Di+1 and Ni+1 are derived from Ri, Di and Ni

Di+1 = Di×Ri (4.10)

Ni+1 = Ni×Ri. (4.11)

Ri = 2−Di is equivalent to finding two’s complement to Di. So totally two mul-

tiplications and one two’s complement is required for each iteration. Here also number

iterations can be reduced if can find a good initial approximation for 1
D .

4.3 Division Implementation

Newton-Phonograph method is used to implement division among fractions of floating

point numbers. As discussed above Newton-Phonograph method does division in two steps,

1) Inverse calculation of divisor, 2) Multiply it with dividend. In this section we discuss an

architecture to compute division.

4.3.1 Determining the Table Look-up Values

A good initial approximation gives result in less no of iterations, hence less latency for the

division. For good initial estimate we have used a modified piecewise linear approximation

based on the first-order Taylor expansion is used [7].

The modification of the operand and the determination of the ROM values are

carried out based on Taylor series expansion. The operand, X , is a 64-bit normalized double

precision floating-point number in the range of 1 ≤ X < 2. The hidden-one and the least

37

significand 52-bit of X represents mantissa. The 53-bit mantissa represented as:

Xmantissa = [1.x1x2x3....x52] (4.12)

Approximated version of the Taylor series expansion by truncating the series after

the first derivative term can be represented as :

f (xi+1) = f (xi)+ f ′(x)(xi+1− xi)

In order that the reciprocal function X−1 to be represented by Taylor series expansion, the

operand, X , can be split into two parts from mth bit to 2mth, where m < 26, such that [4]:

Xm_1 = [1.x1x2x3....xm]

Xm_2 = [0.xm+1xm+2....x2m]×2−m (4.13)

Xmantissa ≈ Xm_1 +Xm_2

The initial reciprocal approximation, X−1, computed by the following equation

X−1 = (Xm_1 +2−m−1)−1− (Xm_1 +2−m−1)−2(Xm_2−2−m−1) (4.14)

where, f (xi) = (Xm_1 +2−m−1)−1, f (xi+1) = X−1 and

xi+1− xi = X− (Xm_1 +2−m−1)−1

= (Xm_2−2m−1). (4.15)

By rewriting eqn.(6), X−1 can also expressed as

X−1 = (Xm_1 +2−m−1)−2[(Xm_1 +2−m−1)− (Xm_2−2−m−1)]. (4.16)

38

In the above equation the first term (Xm_1+2−m−1)−2, will be read from ROM as a constant

term. The first m bit of the mantissa will constitute as the selecting bits of table look-up

procedure. The remaining term of eqn.(10), [(Xm_1 + 2−m−1)− (Xm_2− 2−m−1)], will be

formed by operand modifier. The operation of operand modifier is bit wise inversion of the

bits from (m+1)th to 2mth; where from 1st to mth remain unchanged.

C = (Xm_1 +2−m−1)−2 (4.17)

X ′ = [1.x1x2x3...xmxm+1xm+2xm+3...x2m] (4.18)

Therefore, the initial approximation of X−1 is computed with accuracy of 2m±3 by multi-

plication of term C (read from ROM) with modified operand X ′.

X−1 =C .X ′ (4.19)

4.3.2 Division Unit Architecture

The division unit is shown in Fig.4.1. The first stage is to obtain the initial approximation

for the reciprocal of X by the help of table look-up [7]. At the beginning, the first m bit

from the mantissa of X is taken as the selection bits of the ROM. We have decided on , such

that; m = 0 for which the ROM size would be 210×20 bits. It is desired to keep the ROM

size minimum, in order to prevent the cost of hardware.

Here are the computations in every cycle

Cycle 1: The first twenty (2m = 20) bits of X is supplied to the operand modifier

unit. The operand modifier itself is constructed by ten inverters, in which the most signifi-

cand ten bits stays the same, whereas the least significand ten bits are bit wise inverted.The

ROM output of twenty bits are concatenated by thirty-four zeros in order to be suitable

for 54 x 54 multiplication. Same procedure is applied to operand modifier output as well.

These two 54-bit values constitute C and X ′ in eqn.(47), respectively.

Cycle 2: C and X ′ values are selected by the multiplexors MUX1 and MUX2 and

39

MUX 1

ROM
OPERAND

MODIFIER

ARRAY MULTIPLIER/

TRUNCATED ARRAY MULTIPLIER

MUX 2

INV

R5 R4R3

D[51:42] D[51:32]

D N

S1[1:0] S2[1:0]

Figure 4.1: Division Unit

multiplied using Array Multiplier. The result containing the most significant 54-bits of the

sum (around forty bits of them contain the true result, since two twenty-bit numbers are

multiplied until now) are written into registers R3 and R4. At the end of the cycle, an initial

approximation of reciprocal, i.e., xi is obtained.

Cycle 3: In this clock cycle, the 52-bit mantissa of is selected by MUX1 be-

cause the original number is required to be multiplied with the initial approximation during

Newton-Raphson iterations, as to carry out Xxi operation, which is explicitly stated in

eqn.(19). The selection of X via MUX1 and xi via MUX2 are multiplied. The result is

stored in R4.

Cycle 4: The result is stored in the register R4 is inverted and supplied back to the

MUX2. This inversion is necessary to compute (2−Xxi) in eqn.(19), which is obtained in

the third clock cycle. (2−Xxi) is selected by MUX2 and the initial approximation result, xi

, is selected by MUX1, which is available in register R3 and multiplied in this cycle. This

concludes the first Newton-Phonograph iteration.

Cycle 5: Again, the 52-bit mantissa of is selected by MUX1 because the original

40

number is required to be multiplied with the initial approximation during Newton-Raphson

iterations, as to carry out Xxi operation, which is explicitly stated in eqn.(19). The selection

of X via MUX1 and xi via MUX2 are multiplied. The result is stored in R4.

Cycle 6: The result is stored in the register R4, inverted and supplied back to the

MUX2. (2−Xxi) is selected by MUX2 and the initial approximation result, xi , is selected

by MUX1, which is available in register R3 and multiplied in this cycle. This second

Newton-Phonograph iteration is completed. Inversion of divisor is completed.

Cycle 7: Inversion of divisor is selected by MUX1 from R3 register, dividend is

selected by MUX2 and the product is stored in R5.

4.4 Floating Point Division

Floating point division is very similar to floating point multiplication, yet floating point di-

vision is very less frequently used and computationally complicated due to its Division unit

in palace of multiplier in Floating point multiplier. Division is the most complicated and

computationally intensive among basic arithmetic operations addition, subtraction, mul-

tiplication and division. In the following section Division is implemented using Newto-

Raphson method.

Fig.1.1 shows block diagram for Floating Point Division. This Floating Point

Division unit is designed for double precision, normalized floating point numbers. The

division of two floating point numbers can be represented by the following equation

(−1)signquotient 1. fquotient .2equotient = (−1)sign1⊕sign2(1. f1÷1. f2).2(e1−e2+bias). (4.20)

Sign of the quotient is positive if both divisor and dividend are positive or both negative,

negative otherwise. The algorithm and implementation of double precision Floating Point

Division unit is explained below.

Exponent Subtraction

41

Exponent subtraction
(CSA adder with Compound

prefix addition)

Division

(Newton-Raphson Method)

Normalization
(Shift L(1))

Rounding of Fraction

MUX

Exponent adjustment

after rounding

EXP_2[10:0]EXP_1[10:0] FRACT_1[52:0] FRACT_2[52:0]

FRACT_QUOTIENT[107:0]

FRACT_QUOTIENT_NORM[107:0]

FRACT_QUOTIENTT[52:0]EXP_QUOTIENT[10:0]

EXP_DIF_M1[12:0]EXP_DIF[12:0]

1

FRACT_QUOTIENT[107]

Overflow/Underflow check

and

Output selection

XOR

SIGN_1 SIGN_2

SIGN_QUOTIENT

EXP_NORM[12:0]

rmode

0

Figure 4.2: Block Diagram for Floating Point Division

1. As shown in the eqn.(1) we need to subtract the exponent of divisor, from expo-

nent of dividend and add bias(1023 for 64 bit floating point multiplier) value to the

difference. This can be expressed in the following equation

EXP_DIF [12] = EXP_1[10 : 0]−EXP_2[10 : 0]+10′d 1023 (4.21)

2. A CS(Carry Save Adder) used to calculate the difference of EXP_1,EXP_2 and

add 1023. Compressed the three input adder into two input adder using 3:2 com-

pressor(Full Adder), and added them with the compound prefix adder to calculate

EXP_DIF and EX_DIF_M1(EXP_DIF−1) concurrently. This way we can reduce

one subtraction operation during normalization to adjust the exponent.

Fraction Division

1. Newton-Phonograph method is used to find the quotient. Newton-Phonograph method

42

first reciprocal of divisor is obtained and is multiplied with dividend. In sec.3 Newton-

Phonograph method for quotient calculation is discussed in more detailed.

Normalization and Rounding

1. Both input fractions are normalized, hence f1 ∈ [1,2), f2 ∈ [1,2) and fquotientt =

f1÷ f2 ∈ [1/2,2). A normalization step(shift left) is needed to bring the fraction

fquotient into [1,2). exponent is adjusted by selecting the EXP_DIF_M1 if left shift

is needed to normalize, EXP_DIV otherwise.

2. The normalized fraction is rounded with standard IEEE rounding modes Round-to-

Zero, Round-to-Nearest-Even, Round-to-plus-Infinite and Round-to-minus-Infinite.

4.5 Division with Truncated Multipliers

In the above Newton-Raphson Division Algorithm, during the repetitive iterations only

54 MSB bits of the product term is used as input to the multiplier in next cycle. The

computation of 54 LSB bits does not effect the result. By using a truncated multiplier in

place of full precision multiplier we can save both Area and Power [9]. The truncation of

LSB bits will introduce some error into the computation. And Newton-Raphson Division

algorithm is a self correcting algorithm, So the effect of error introduced by truncated

multiplier is further reduced by the algorithm itself. In the next section error analysis

and Area and Power estimations for several Floating point multipliers with different width

truncated array multipliers.

4.6 Results

Fig.4.3 shows that maximum error in first 54 bits due to truncation is zero till h = 48. hence

we did the area and power analysis only for h≥ 48

43

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Number of Truncated bits (h)

M
ax

im
um

 E
rr

or

Figure 4.3: Expected Error in 54 bit Truncated Multiplier with h truncated bits

0 10 20 30 40 50 60
2500

3000

3500

4000

4500

5000

Number of Truncated bits (h)

N
um

be
r

of
 L

U
T

s
us

ed
 b

y
Fl

oa
tin

g
Po

in
t D

iv
is

io
n

U
ni

t

Figure 4.4: Area Reduction in FPM due to Truncated multipliers

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

90

Number of Truncated bits (h)Po
w

er
 e

st
im

at
io

bn
 o

f
Fl

oa
tin

g
Po

in
t D

iv
is

io
n

U
ni

t (
m

W
)

Power in exponent module
Power in fraction division
Power in round mdule
Power in FPD

Table 4.1: Power Reduction in FPM due to Truncated multipliers

44

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Truncated bits (h)

A
ve

ra
ge

 E
rr

or
 in

 c
om

pu
ta

tio
n

of
 q

uo
tie

nt
 f

ra
ct

io
n

Figure 4.5: Average Error Introduced into Quotient fraction

Average error in quotient fraction computation is plotted w.r.t. number of trun-

cated bits (h) for 500 random inputs. Fig.4.5 shows that average error in case of FPD is

less than the average error in case of FPM. This is due to self correcting nature of Newton-

Raphson method.

45

Chapter 5

Conclusion

In this report several approximations for Floating Point Arithmetic operations are dis-

cussed. For Floating Point Addition reducing the size of barrel right shifter to 54 bits

from 118 bits reduces the area and power estimation of barrel right shifter by half, but it

introduces maximum error of 1ul p. But reduction of no of selection signal of barrel shifter

introduces large errors compared to other approximation methods.

Truncated multipliers for Floating Point Multiplication and Floating Point Divi-

sion introduces very little error till number of truncated bits, h ≈ 47, and results in Good

area and power savings. But when number of truncated bits larger than 47, error increases

more steeply with respect to number of truncated bits(h). Error in case of Floating Point

Division is less compared to error in Floating Point Multiplication for same no of truncated

bits. This is due to self correcting nature of Newton-Raphson method. So the truncated

multiplier can be used in functional approximation of other non liner functions also, in

place of full precision multiplier.

46

Bibliography

[1] Israel Korean, “Co muter Arithmetic Algorithms”, University Press, 2003.

5, 4.2.1.1, 4.2.1.2

[2] P.M. Sideline, Guy Even, “Delay-Optimized Implementation of IEEE

Floating-Point Addition”, IEEE Trans. Computers., vol. 53, no. 2, pp. 97-

113, Feb.2004 1, 2, 2.2.1

[3] P. Farmwald, “On the Design of High Performance Digital Arithmetic

Units,” PhD thesis, Stanford Univ., Aug. 1981. 2.2.1, 2.2.1

[4] R. Brent and H. King, “A Regular Layout for Parallel Adders,” IEEE Trans.

Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982. 4, 2.2.4

[5] Institute of Electrical and Electronics Engineers, New York, NY.

ANSI/IEEE 754-1985 Standard for Binary Floating-Point Arithmetic,

1985

[6] Manuel DE la Guiana Solar, “Energy Efficient Design of Truncated Multi-

pliers”, P.D thesis, Department of Electronic and Computer Science, Uni-

versity of Limerick, Sept.2011

[7] Smut Habakkuk, Ahmed Akkas, “Design and Implementation of Recipro-

cal Unit Using Table Look-up and Newton-Raphson Iteration” 4.3.1, 4.3.2

[8] A. Bjorck G. Dahlquist and N. Anderson eds. Numerical Methods.

Prentice-Hall Inc., 1974. 4.2.1.1

47

[9] E. George Walters III, Michael J. Schulte, “Efficient Function Approxima-

tion Using Truncated Multipliers and Squarers”, Proceedings of the 17th

IEEE Symposium on Computer Arithmetic (ARITH’05), 2005. 4.5

[10] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adders,” IEEE Trans.

Computers, vol. 42, no. 10, Oct. 1993.

4, 2.2.4

48

	1 Introduction
	1.1 Approximate Computing
	1.2 Approximations and Floating Point Arithmetic
	1.3 Organization of Report

	2 Floating Point Adder/Subtractor
	2.1 Introduction
	2.2 Optimization Techniques
	2.2.1 Separation FP-Adder into Two Parallel Paths
	2.2.2 Unification of Sginificand Result Ranges
	2.2.3 Sign-Magnitude Computation of a Difference
	2.2.4 Compound Addition
	2.2.5 Barrel Shifter Design

	2.3 FP Adder Algorithm
	2.3.1 R-path
	2.3.2 N-path
	2.3.3 Path Selection

	2.4 Testing and Implementation
	2.4.1 Testing
	2.4.2 Implementation

	2.5 Approximate Barrel Shifter Design
	2.6 Results

	3 Floating Point Multiplier
	3.1 Introduction
	3.2 FP Multiplication Implementation
	3.3 Binary Multiplication
	3.3.1 Partial Product Generation
	3.3.1.1 Booth Encoding

	3.3.2 partial product combination
	3.3.3 Array Multipliers

	3.4 Floating Point Multiplier with Truncated Multiplier
	3.5 Testing
	3.6 Results

	4 Floating Point Division
	4.1 Introduction
	4.2 Binary Division
	4.2.1 Division Through Multiplication
	4.2.1.1 Newton-Phonograph Method
	4.2.1.2 Goldschdmidt's algorithm

	4.3 Division Implementation
	4.3.1 Determining the Table Look-up Values
	4.3.2 Division Unit Architecture

	4.4 Floating Point Division
	4.5 Division with Truncated Multipliers
	4.6 Results

	5 Conclusion

